1
|
Bashandy SAE, Mostafa RE, El-Baset MA, Ibrahim FAA, Morsy FA, Farid OA, Ibrahim HM, Mohamed BMSA. Zinc sulphate attenuates metabolic dysfunctions induced by olanzapine via the reduction of insulin resistance, hepatic oxidative stress, and inflammation in albino rats. BMC Pharmacol Toxicol 2025; 26:84. [PMID: 40229885 PMCID: PMC11998154 DOI: 10.1186/s40360-025-00889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/03/2025] [Indexed: 04/16/2025] Open
Abstract
Olanzapine, an atypical antipsychotic drug, is used to treat psychological diseases. However, it's use carries common side effects. Those include weight gain, dyslipidemia, elevated glucose levels, and disrupted oxidative balance. We aimed to test the effect of zinc coadministration to lessen metabolic disturbances, inflammation and oxidative stress in a rat model. Four treatment groups (n = 6) were involved in this investigation. Group 1 was the control group (received no intervention). Group 2 received olanzapine (10 mg/kg, p.o.; daily) for six weeks, whereas Groups 3 and 4 received 50 mg/kg and 100 mg/kg of zinc sulphate (ZnSO4,p.o.; daily) respectively, in addition to olanzapine (10 mg/kg p.o.; daily). Following treatment completion, group 2 showed increased levels of stress markers (GSSG, MDA, and NO) and impaired levels of antioxidant markers (CAT, SOD, and GSH). Further, a strong positive correlation between insulin resistance index (HOMA-IR) and IL-6, TNF-α, and MDA of liver. Insulin resistance is a possible manifestation of the oxidative stress burden and the widespread inflammatory environment. In groups 3 and 4, however, ZnSO4 recovered each of these markers in a dose-dependent manner. Improvements were also noted in other homeostatic markers, such as taurine, coenzyme Q10, ascorbic acid, and vitamin E. Remarkably, in both combination groups, there was a significant improvement in all metabolic indicators of dyslipidemia (triglycerides, total cholesterol) and insulin resistance index. The biochemical study and the histological assessment of the liver slices agreed with the results. Thus, the results clearly suggest that Zinc supplementation can significantly improve oxidative stress, inflammation, metabolic perturbation (dyslipidemia and insulin resistance), and liver injury caused by olanzapine in Albino rats.
Collapse
Affiliation(s)
- Samir A E Bashandy
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt.
| | - Rasha E Mostafa
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt
| | - Marawan A El-Baset
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt
- Department of Neurology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fatma A A Ibrahim
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El- Bohouth St., Dokki, P.O. 12622, Cairo, Egypt
| | - Fatma A Morsy
- Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt
| | - Omar A Farid
- Physiology Department, National Organization for Drug Control and Research, Cairo, Egypt
| | - Halima M Ibrahim
- Physiology Department, National Organization for Drug Control and Research, Cairo, Egypt
| | - Bassim M S A Mohamed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt.
| |
Collapse
|
2
|
Ray A, Birdi A, Nebhinani N, Banerjee M, Sharma P, Sharma S, Suthar N, Janu VC, Yadav D. Correlation Between Severity of Schizophrenia with Certain Trace Elements and TNF-α Gene Expression and Its Circulatory Level in the Population of Western India. Biol Trace Elem Res 2025; 203:2159-2169. [PMID: 38995436 DOI: 10.1007/s12011-024-04301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
This cross-sectional study aimed to assess serum trace element (TE) concentrations, TNF-α gene expression, protein levels in schizophrenia (SZ) patients, and their correlation with disease severity measured by Positive and Negative Syndrome Scale (PANSS) scores. Forty SZ cases and 40 healthy controls aged 18-60 were recruited. Forty (n = 40) cases who meet ICD-10 criteria for SZ and 40 (n = 40) healthy individuals (controls) between 18 and 60 years of age were recruited in the study. Sandwich enzyme-linked immunosorbent assay (ELISA) and RT-qPCR (quantitative real-time PCR) were used to estimate pro-inflammatory cytokine TNF-α protein and gene expression. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) and graphite furnace atomic absorption spectroscopy (GFAAS) were used to assess serum levels of trace elements (TEs): Fe, Zn, Cu, Mg, and Se. Compared to healthy controls, cases had significantly higher levels of TNF-α protein, as well as Fe, Cu, and Se (p < 0.05). Cu correlated positively with TNF-α protein level (rho = 0.234; p = 0.048) and gene expression (rho = 0.333; p = 0.041) and with PANSS negative (rho = 0.531), general (rho = 0.643), and total (rho = 0.541) scores. Additionally, Zn negatively correlated with serum Mg (rho = - 0.426, p < 0.01) and positively with serum Se (rho = 0.343, p < 0.05). In conclusion, elevated Cu levels could potentially contribute to the development of SZ. Elevated Cu levels in cases and their correlation with the TNF-α gene and protein and PANSS score indicate Cu's potential role in exacerbating SZ severity through inflammatory cytokines. This suggests the involvement of metals and cytokines in the pathophysiology of SZ.
Collapse
Affiliation(s)
- Arti Ray
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Amandeep Birdi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Naresh Nebhinani
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Navaratan Suthar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | | | - Dharmveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India.
| |
Collapse
|
3
|
Rog J, Łobejko Ł, Hordejuk M, Marciniak W, Derkacz R, Kiljańczyk A, Matuszczak M, Lubiński J, Nesterowicz M, Żendzian-Piotrowska M, Zalewska A, Maciejczyk M, Karakula-Juchnowicz H. Pro/antioxidant status and selenium, zinc and arsenic concentration in patients with bipolar disorder treated with lithium and valproic acid. Front Mol Neurosci 2024; 17:1441575. [PMID: 39324118 PMCID: PMC11423611 DOI: 10.3389/fnmol.2024.1441575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024] Open
Abstract
Disturbances in pro/antioxidant balance emerge as a crucial element in bipolar disorder (BD). Some studies suggest that treatment effects on trace element concentration in BD. This study aimed to identify (a) the changes related to oxidative stress in BD and their relationship with trace elements engaged in pro/antioxidant homeostasis; (b) BD biomarkers using machine learning algorithm classification and regression tree (C&RT) analysis. 62 individuals with BD and 40 healthy individuals (HC) were included in the study. The concentration of pro/antioxidant state and concentration of selenium, zinc, arsenic in blood were assessed. We found a higher concentration of total antioxidant capacity, catalase, advanced oxidation protein products and a lower concentration of 4-hydroxynonenal (4-HNE), glutathione, glutathione peroxidase (GPx) in BD compared to HC. All examined trace elements were lower in the BD group compared to HC. A combination of two variables, 4-HNE (cut-off: ≤ 0.004 uM/mg protein) and GPx (cut-off: ≤ 0.485 U/mg protein), was the most promising markers for separating the BD from the HC. The area under the receiver operating characteristic curve values for C&RT was 90.5%. Disturbances in the pro/antioxidant state and concentration of trace elements of patients with BD may be a target for new therapeutic or diagnostic opportunity of BD biomarkers.
Collapse
Affiliation(s)
- Joanna Rog
- Laboratory of Human Metabolism Research, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Łukasz Łobejko
- Mental Health Center at the Independent Public Healthcare in Leżajsk, Leżajsk, Poland
| | - Michalina Hordejuk
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Lublin, Poland
| | - Wojciech Marciniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- Read-Gene, Grzepnica, Poland
| | - Róża Derkacz
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- Read-Gene, Grzepnica, Poland
| | - Adam Kiljańczyk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Milena Matuszczak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- Read-Gene, Grzepnica, Poland
| | - Miłosz Nesterowicz
- Students’ Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | | | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Hanna Karakula-Juchnowicz
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
4
|
Gao B, Li C, Qu Y, Cai M, Zhou Q, Zhang Y, Lu H, Tang Y, Li H, Shen H. Progress and trends of research on mineral elements for depression. Heliyon 2024; 10:e35469. [PMID: 39170573 PMCID: PMC11336727 DOI: 10.1016/j.heliyon.2024.e35469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Objective To explore the research progress and trends on mineral elements and depression. Methods After querying the MeSH database and referring to the search rules, the search terms were selected and optimized to obtain the target literature collection. We analyzed the general characteristics of the literature, conducted network clustering and co-occurrence analysis, and carried out a narrative review of crucial literature. Results Bipolar disorder was a dominant topic in the retrieved literature, which saw a significant increase in 2010 and 2019-2020. Most studies focused on mineral elements, including lithium, calcium, magnesium, zinc, and copper. The majority of journals and disciplines were in the fields of psychiatry, neuropsychology, neuropharmacology, nutrition, medical informatics, chemistry, and public health. The United States had the highest proportion in terms of paper sources, most-cited articles, high-frequency citations, frontier citations, and high centrality citation. Regarding the influence of academic institutions, the top five were King's College London, the Chinese Academy of Sciences, University of Barcelona, INSERM, and Heidelberg University. Frontier keywords included bipolar disorder, drinking water, (neuro)inflammation, gut microbiota, and systematic analysis. Research on lithium response, magnesium supplementation, and treatment-resistant unipolar depression increased significantly after 2013. Conclusion Global adverse events may have indirectly driven the progress in related research. Although the literature from the United States represents an absolute majority, its influence on academic institutions is relatively weaker. Multiple pieces of evidence support the efficacy of lithium in treating bipolar disorder (BD). A series of key discoveries have led to a paradigm shift in research, leading to increasingly detailed studies on the role of magnesium, calcium, zinc, and copper in the treatment of depression. Most studies on mineral elements remain diverse and inconclusive. The potential toxicity and side effects of some elements warrant careful attention.
Collapse
Affiliation(s)
- Biao Gao
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
- Teaching and Research Support Center, Naval Medical University, Shanghai, 200433, China
| | - Chenqi Li
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
- Department of Nutrition, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Yicui Qu
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Mengyu Cai
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Qicheng Zhou
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Yinyin Zhang
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Hongtao Lu
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Yuxiao Tang
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Hongxia Li
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
5
|
Guo J, Garshick E, Si F, Tang Z, Lian X, Wang Y, Li J, Koutrakis P. Environmental Toxicant Exposure and Depressive Symptoms. JAMA Netw Open 2024; 7:e2420259. [PMID: 38958973 PMCID: PMC11222999 DOI: 10.1001/jamanetworkopen.2024.20259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/03/2024] [Indexed: 07/04/2024] Open
Abstract
Importance Recognizing associations between exposure to common environmental toxicants and mental disorders such as depression is crucial for guiding targeted mechanism research and the initiation of disease prevention efforts. Objectives To comprehensively screen and assess the associations between potential environmental toxicants and depressive symptoms and to assess whether systemic inflammation serves as a mediator. Design, Setting, and Participants A total of 3427 participants from the 2013-2014 and 2015-2016 waves of the National Health and Nutrition Examination and Survey who had information on blood or urine concentrations of environmental toxicants and depression scores assessed by the 9-item Patient Health Questionnaire (PHQ-9) were included. Statistical analysis was performed from July 1, 2023, to January 31, 2024. Exposures Sixty-two toxicants in 10 categories included acrylamide, arsenic, ethylene oxide, formaldehyde, iodine, metals, nicotine metabolites, polycyclic aromatic hydrocarbons, volatile organic compound (VOC) metabolites; and perchlorate, nitrate, and thiocyanate. Main Outcomes and Measures An exposome-wide association study and the deletion-substitution-addition algorithm were used to assess associations with depression scores (PHQ-9 ≥5) adjusted for other important covariates. A mediation analysis framework was used to evaluate the mediating role of systemic inflammation assessed by the peripheral white blood cell count. Results Among the 3427 adults included, 1735 (50.6%) were women, 2683 (78.3%) were younger than 65 years, and 744 (21.7%) were 65 years or older, with 839 (24.5%) having depressive symptoms. In terms of race and ethnicity, 570 participants (16.6%) were Mexican American, 679 (19.8%) were non-Hispanic Black, and 1314 (38.3%) were non-Hispanic White. We identified associations between 27 chemical compounds or metals in 6 of 10 categories of environmental toxicants and the prevalence of depressive symptoms, including the VOC metabolites N-acetyl-S-(2-hydroxy-3-butenyl)-l-cysteine (odds ratio [OR], 1.74 [95% CI, 1.38, 2.18]) and total nicotine equivalent-2 (OR, 1.42 [95% CI, 1.26-1.59]). Men and younger individuals appear more vulnerable to environmental toxicants than women and older individuals. Peripheral white blood cell count mediated 5% to 19% of the associations. Conclusions and Relevance In this representative cross-sectional study of adults with environmental toxicant exposures, 6 categories of environmental toxicants were associated with depressive symptoms with mediation by systemic inflammation. This research provides insight into selecting environmental targets for mechanistic research into the causes of depression and facilitating efforts to reduce environmental exposures.
Collapse
Affiliation(s)
- Jianhui Guo
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Eric Garshick
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, Medical Service, Veterans Affairs Boston Healthcare System and Harvard Medical School, Boston, Massachusetts
| | - Feifei Si
- Peking University Sixth Hospital Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ziqi Tang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Xinyao Lian
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Yaqi Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Jing Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
6
|
Manchia M, Paribello P, Pinna M, Faa G. The Role of Copper Overload in Modulating Neuropsychiatric Symptoms. Int J Mol Sci 2024; 25:6487. [PMID: 38928192 PMCID: PMC11204094 DOI: 10.3390/ijms25126487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Copper is a transition metal essential for growth and development and indispensable for eukaryotic life. This metal is essential to neuronal function: its deficiency, as well as its overload have been associated with multiple neurodegenerative disorders such as Alzheimer's disease and Wilson's disease and psychiatric conditions such as schizophrenia, bipolar disorder, and major depressive disorders. Copper plays a fundamental role in the development and function of the human Central Nervous System (CNS), being a cofactor of multiple enzymes that play a key role in physiology during development. In this context, we thought it would be timely to summarize data on alterations in the metabolism of copper at the CNS level that might influence the development of neuropsychiatric symptoms. We present a non-systematic review with the study selection based on the authors' judgement to offer the reader a perspective on the most significant elements of neuropsychiatric symptoms in Wilson's disease. We highlight that Wilson's disease is characterized by marked heterogeneity in clinical presentation among patients with the same mutation. This should motivate more research efforts to disentangle the role of environmental factors in modulating the expression of genetic predisposition to this disorder.
Collapse
Affiliation(s)
- Mirko Manchia
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09124 Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Pasquale Paribello
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09124 Cagliari, Italy
| | - Martina Pinna
- Forensic Psychiatry Unit, Sardinia Health Agency, 09123 Cagliari, Italy;
| | - Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
7
|
Tyczyńska M, Gędek M, Brachet A, Stręk W, Flieger J, Teresiński G, Baj J. Trace Elements in Alzheimer's Disease and Dementia: The Current State of Knowledge. J Clin Med 2024; 13:2381. [PMID: 38673657 PMCID: PMC11050856 DOI: 10.3390/jcm13082381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Changes in trace element concentrations are being wildly considered when it comes to neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. This study aims to present the role that trace elements play in the central nervous system. Moreover, we reviewed the mechanisms involved in their neurotoxicity. Low zinc concentrations, as well as high levels of copper, manganese, and iron, activate the signalling pathways of the inflammatory, oxidative and nitrosative stress response. Neurodegeneration occurs due to the association between metals and proteins, which is then followed by aggregate formation, mitochondrial disorder, and, ultimately, cell death. In Alzheimer's disease, low Zn levels suppress the neurotoxicity induced by β-amyloid through the selective precipitation of aggregation intermediates. High concentrations of copper, iron and manganese cause the aggregation of intracellular α-synuclein, which results in synaptic dysfunction and axonal transport disruption. Parkinson's disease is caused by the accumulation of Fe in the midbrain dopaminergic nucleus, and the pathogenesis of multiple sclerosis derives from Zn deficiency, leading to an imbalance between T cell functions. Aluminium disturbs the homeostasis of other metals through a rise in the production of oxygen reactive forms, which then leads to cellular death. Selenium, in association with iron, plays a distinct role in the process of ferroptosis. Outlining the influence that metals have on oxidoreduction processes is crucial to recognising the pathophysiology of neurodegenerative diseases and may provide possible new methods for both their avoidance and therapy.
Collapse
Affiliation(s)
- Magdalena Tyczyńska
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (M.T.); (W.S.)
| | - Marta Gędek
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.); (A.B.); (G.T.)
| | - Adam Brachet
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.); (A.B.); (G.T.)
| | - Wojciech Stręk
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (M.T.); (W.S.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.); (A.B.); (G.T.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (M.T.); (W.S.)
| |
Collapse
|
8
|
Pethő ÁG, Fülöp T, Orosz P, Tapolyai M. Magnesium Is a Vital Ion in the Body-It Is Time to Consider Its Supplementation on a Routine Basis. Clin Pract 2024; 14:521-535. [PMID: 38525719 PMCID: PMC10961779 DOI: 10.3390/clinpract14020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024] Open
Abstract
The importance of maintaining proper magnesium intake and total body magnesium content in preserving human health remains underappreciated among medical professionals and laymen. This review aimed to show the importance of hypomagnesemia as a modifiable risk factor for developing disease processes. We searched the PubMed database and Google Scholar using the keywords 'magnesium', 'diabetes', 'cardiovascular disease', 'respiratory disease', 'immune system', 'inflammation', 'autoimmune disease', 'neurology', 'psychiatry', 'cognitive function', 'cancer', and 'vascular calcification'. In multiple contexts of the search terms, all reviews, animal experiments, and human observational data indicated that magnesium deficiency can lead to or contribute to developing many disease states. The conclusions of several in-depth reviews support our working hypothesis that magnesium and its supplementation are often undervalued and underutilized. Although much research has confirmed the importance of proper magnesium supply and tissue levels, simple and inexpensive magnesium supplementation has not yet been sufficiently recognized or promoted.
Collapse
Affiliation(s)
- Ákos Géza Pethő
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Tibor Fülöp
- Medicine Service, Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA; (T.F.); (M.T.)
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Petronella Orosz
- Bethesda Children’s Hospital, 1146 Budapest, Hungary;
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Mihály Tapolyai
- Medicine Service, Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA; (T.F.); (M.T.)
- Department of Nephrology, Szent Margit Kórhaz, 1032 Budapest, Hungary
| |
Collapse
|
9
|
Cao B, Wang R, Kwan ATH, McIntyre RS, Yan L. Association between rare earth elements and depression: Evidence from pilot mice model of chronic unpredictable mild stress-induced depression and human studies of major depressive disorder. CHEMOSPHERE 2023; 345:140525. [PMID: 37879378 DOI: 10.1016/j.chemosphere.2023.140525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
The etiology of Major Depressive Disorder (MDD) has been associated with levels of trace elements in the human body. The source of trace elements in the human body may be rare earth elements (REEs). Our study aimed to identify the potential relationship between t REEs in blood and brain samples and depression from two paths: animal experiments and population studies. In the animal experiments, 35 adult Sprague-Dawley rats were randomly allocated to the control group (n = 14) and treatment group (n = 21), which received the chronic unpredictable mild stress (CUMS) procedure for four weeks and further categorized into the sensitive group (n = 9) and resilient group (n = 12) by sucrose water preference test. Then, all rats were executed to obtain serum and brain tissue samples. We also recruited 197 participants and divided them into the major depressive disorder (MDD) group (n = 100) and the control group (n = 97) then serum samples were collected for REEs detection. Our finding reported that significant differences were found in the levels of La and Ce in blood samples from different groups in the CUMS rat model (sensitive group < resilient group < control group) (all p < 0.05), with similar patterns for other elements (Pr, Nd, and Y) (but p > 0.5). No significant inter-group difference was reported in rat brain tissue samples. After adjusting for demographic variables, we found that the concentrations of all five REEs (La, Ce, Pr, Nd, Y) were lower in depression group than in control group (all p < 0.01). The current conjoint animal and human data supported appropriate levels of REEs have a certain protective effect on body health. These results may be attributed to Hormesis effects. Whether the possible favorable effects of REEs on improving symptoms of depression or can be applied to drug development remains to be further investigated.
Collapse
Affiliation(s)
- Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, 400715, PR China.
| | - Ruiqi Wang
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, 400715, PR China
| | - Angela T H Kwan
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada; Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Roger S McIntyre
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, 100191, PR China; Vaccine Research Center, School of Public Health, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
10
|
Baj J, Bargieł J, Cabaj J, Skierkowski B, Hunek G, Portincasa P, Flieger J, Smoleń A. Trace Elements Levels in Major Depressive Disorder-Evaluation of Potential Threats and Possible Therapeutic Approaches. Int J Mol Sci 2023; 24:15071. [PMID: 37894749 PMCID: PMC10606638 DOI: 10.3390/ijms242015071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The multifactorial etiology of major depressive disorder (MDD) includes biological, environmental, genetic, and psychological aspects. Recently, there has been an increasing interest in metallomic studies in psychiatry, aiming to evaluate the role of chosen trace elements in the MDD etiology as well as the progression of symptoms. This narrative review aims to summarize the available literature on the relationship between the concentration of chosen elements in the serum of patients with MDD and the onset and progression of this psychiatric condition. The authors reviewed PubMed, Web of Science, and Scopus databases searching for elements that had been investigated so far and further evaluated them in this paper. Ultimately, 15 elements were evaluated, namely, zinc, magnesium, selenium, iron, copper, aluminium, cadmium, lead, mercury, arsenic, calcium, manganese, chromium, nickel, and phosphorus. The association between metallomic studies and psychiatry has been developing dynamically recently. According to the results of current research, metallomics might act as a potential screening tool for patients with MDD while at the same time providing an assessment of the severity of symptoms. Either deficiencies or excessive amounts of chosen elements might be associated with the progression of depressive symptoms or even the onset of the disease among people predisposed to MDD.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Julia Bargieł
- Student Research Group of Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.B.); (J.C.); (B.S.)
| | - Justyna Cabaj
- Student Research Group of Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.B.); (J.C.); (B.S.)
| | - Bartosz Skierkowski
- Student Research Group of Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.B.); (J.C.); (B.S.)
| | - Gabriela Hunek
- Student Research Group of Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Agata Smoleń
- Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, 20-080 Lublin, Poland;
| |
Collapse
|
11
|
Łukasz B, Rybakowska I, Krakowiak A, Gregorczyk M, Waldman W. Lithium batteries safety, wider perspective. Int J Occup Med Environ Health 2023; 36:3-20. [PMID: 36520014 PMCID: PMC10464770 DOI: 10.13075/ijomeh.1896.01995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/25/2022] [Indexed: 11/06/2022] Open
Abstract
Energy production and storage has become a pressing issue in recent decades and its solutions bring new problems. This paper reviews the literature on the human and environmental risks associated with the production, use, and disposal of increasingly common lithium-ion batteries. Popular electronic databases were used for this purpose focused on the period since 2000. Assessment of the toxicological and environmental impact of batteries should then have a holistic scope to precede and guide the introduction of appropriate safety measures. In this short review the authors will try to touch upon this complex subject and point out some important issues related to an unprecedented development of lithium ion batteries-powered world. Given the multi-billion dollar business with the risks associated with the development of new technologies requires careful consideration of whether the balance of profits and losses is beneficial to humans and the planet. Int J Occup Med Environ Health. 2023;36(1):3-20.
Collapse
Affiliation(s)
- Bartłomiej Łukasz
- Medical University of Gdansk, Gdańsk, Department of Biochemistry and Clinical Physiology, Poland
| | - Iwona Rybakowska
- Medical University of Gdansk, Gdańsk, Department of Biochemistry and Clinical Physiology, Poland
| | - Anna Krakowiak
- Nofer Institute of Occupational Medicine, Toxicology Clinic, Łódź, Poland
| | - Magdalena Gregorczyk
- Medical University of Gdansk, Gdańsk, Department of Biochemistry and Clinical Physiology, Poland
| | - Wojciech Waldman
- Medical University of Gdansk, Department of Clinical Toxicology, Gdańsk, Poland
| |
Collapse
|
12
|
Tabata K, Miyashita M, Yamasaki S, Toriumi K, Ando S, Suzuki K, Endo K, Morimoto Y, Tomita Y, Yamaguchi S, Usami S, Itokawa M, Hiraiwa-Hasegawa M, Takahashi H, Kasai K, Nishida A, Arai M. Hair zinc levels and psychosis risk among adolescents. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:107. [PMID: 36433958 PMCID: PMC9700858 DOI: 10.1038/s41537-022-00307-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/24/2022] [Indexed: 11/27/2022]
Abstract
Recent meta-analyses have shown lower zinc and higher copper levels in the serum of people with schizophrenia than in healthy controls. However, the relationship between trace elements (TEs) and the pathophysiology of psychosis, including schizophrenia, remains unclear due to the antipsychotic effects on mineral levels. In this study, we aimed to determine the relationship between zinc and copper levels in hair and psychosis risk among drug-naïve adolescents. This study was conducted as a part of a population-based biomarker subsample study of the Tokyo Teen Cohort Study, including 252 community-dwelling 14-year-old drug-naïve adolescents. Zinc and copper levels in hair were measured using inductively coupled plasma mass spectrometry. The thought problems (TP) scale from the Child Behavior Checklist was used to evaluate psychosis risk. Regression analysis showed that hair zinc levels were negatively correlated with the TP scale (T-score) (β = -0.176, P = 0.005). This result remained significant after adjusting for age and sex (β = -0.175, P = 0.005). In contrast, hair copper levels were not associated with the TP scale (T-score) (β = 0.026, P = 0.687). These findings suggest that lower zinc levels could be involved in the pathophysiology of psychosis, independent of antipsychotics. Further longitudinal studies are required to investigate whether hair zinc level is a useful new biomarker for assessing psychosis risk.
Collapse
Grants
- JP19dm0207069 Japan Agency for Medical Research and Development (AMED)
- JP18dm0307001 Japan Agency for Medical Research and Development (AMED)
- JP18dm0307004 Japan Agency for Medical Research and Development (AMED)
- JSPS KAKENHI (grant numbers JP17H05930 and JP20H03608)
- JSPS KAKENHI (grant number JP20H01777) and JST-Mirai Program (grant number JPMJMI21J3)
- JSPS KAKENHI (grant number JP22K07609)
- JSPS KAKENHI (grant numbers JP16K15566, JP17H05931, JP19H04877, and JP19K17055)
- JSPS KAKENHI (grant numbers JP16H06395, JP16H06399, JP16K21720, JP20H03596, JP21H05171, and JP21H05174), Moonshot R&D (grant number JPMJMS2021), UTokyo Center for Integrative Science of Human Behavior (CiSHuB), and the International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS)
- JSPS KAKENHI (grant numbers JP16H06398, JP19H00972, JP20H03951, JP21H05173 and JP21K10487)
Collapse
Affiliation(s)
- Koichi Tabata
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuhiro Miyashita
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Syudo Yamasaki
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shuntaro Ando
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kaori Endo
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuko Morimoto
- Department of Psychology, Ube Frontier University, Ube, Japan
| | - Yasufumi Tomita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Satoshi Yamaguchi
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Satoshi Usami
- Center for Research and Development on Transition from Secondary to Higher Education, The University of Tokyo, Tokyo, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Mariko Hiraiwa-Hasegawa
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Atsushi Nishida
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
13
|
Coelho FC, Cerchiaro G, Araújo SES, Daher JPL, Cardoso SA, Coelho GF, Guimarães AG. Is There a Connection between the Metabolism of Copper, Sulfur, and Molybdenum in Alzheimer’s Disease? New Insights on Disease Etiology. Int J Mol Sci 2022; 23:ijms23147935. [PMID: 35887282 PMCID: PMC9324259 DOI: 10.3390/ijms23147935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) and other forms of dementia was ranked 3rd in both the Americas and Europe in 2019 in a World Health Organization (WHO) publication listing the leading causes of death and disability worldwide. Copper (Cu) imbalance has been reported in AD and increasing evidence suggests metal imbalance, including molybdenum (Mo), as a potential link with AD occurrence.We conducted an extensive literature review of the last 60 years of research on AD and its relationship with Cu, sulfur (S), and Mo at out of range levels.Weanalyzed the interactions among metallic elements’ metabolisms;Cu and Mo are biological antagonists, Mo is a sulfite oxidase and xanthine oxidase co-factor, and their low activities impair S metabolism and reduce uric acid, respectively. We found significant evidence in the literature of a new potential mechanism linking Cu imbalance to Mo and S abnormalities in AD etiology: under certain circumstances, the accumulation of Cu not bound to ceruloplasmin might affect the transport of Mo outside the blood vessels, causing a mild Mo deficiency that might lowerthe activity of Mo and S enzymes essential for neuronal activity. The current review provides an updated discussion of the plausible mechanisms combining Cu, S, and Mo alterations in AD.
Collapse
Affiliation(s)
- Fábio Cunha Coelho
- Laboratório de Fitotecnia (LFIT), Universidade Estadual do Norte Fluminense Darcy Ribeiro—UENF, Campos dos Goytacazes 28013-602, Brazil
- Correspondence: ; Tel.: +55-22-998509469
| | - Giselle Cerchiaro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001, Bl. B, Santo André 09210-170, Brazil;
| | - Sheila Espírito Santo Araújo
- Laboratório de Biologia Celular e Tecidual (LBCT), Universidade Estadual do Norte Fluminense Darcy Ribeiro—UENF, Campos dos Goytacazes 28013-602, Brazil; (S.E.S.A.); (A.G.G.)
| | - João Paulo Lima Daher
- Departamento de Patologia, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói 24210-350, Brazil;
| | - Silvia Almeida Cardoso
- Departamento de Medicina e Enfermagem (DEM), Universidade Federal de Viçosa, Viçosa 36579-900, Brazil;
| | - Gustavo Fialho Coelho
- Instituto de Ciências Médicas, Universidade Federal do Rio de Janeiro, Macaé 27930-560, Brazil;
| | - Arthur Giraldi Guimarães
- Laboratório de Biologia Celular e Tecidual (LBCT), Universidade Estadual do Norte Fluminense Darcy Ribeiro—UENF, Campos dos Goytacazes 28013-602, Brazil; (S.E.S.A.); (A.G.G.)
| |
Collapse
|
14
|
Kim H, Harrison FE, Aschner M, Bowman AB. Exposing the role of metals in neurological disorders: a focus on manganese. Trends Mol Med 2022; 28:555-568. [PMID: 35610122 PMCID: PMC9233117 DOI: 10.1016/j.molmed.2022.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023]
Abstract
Metals are ubiquitous chemical entities involved in a myriad of biological processes. Despite their integral role in sustaining life, overexposure can lead to deleterious neurological outcomes posing a public health concern. Excess exposure to metals has been associated with aberrant neurodevelopmental and neurodegenerative diseases and prominently contributes to environmental risk for neurological disorders. Here, we use manganese (Mn) to exemplify the gap in our understanding of the mechanisms behind acute metal toxicity and their relationship to chronic toxicity and disease. This challenge frustrates understanding of how individual exposure histories translate into preventing and treating brain diseases from childhood through old age. We discuss ways to enhance the predictive value of preclinical models and define mechanisms of chronic, persistent, and latent neurotoxicity.
Collapse
Affiliation(s)
- Hyunjin Kim
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
15
|
Molecular Insights in Psychiatry. Int J Mol Sci 2022; 23:ijms23094878. [PMID: 35563268 PMCID: PMC9104522 DOI: 10.3390/ijms23094878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 12/04/2022] Open
|
16
|
ICP-MS Multi-Elemental Analysis of the Human Meninges Collected from Sudden Death Victims in South-Eastern Poland. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061911. [PMID: 35335273 PMCID: PMC8949131 DOI: 10.3390/molecules27061911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
Abstract
Metals perform many important physiological functions in the human body. The distribution of elements in different tissues is not uniform. Moreover, some structures can be the site of an accumulation of essential or toxic metals, leading to multi-directional intracellular damage. In the nervous system, these disorders are especially dangerous. Metals dyshomeostasis has been linked to a variety of neurological disorders which end up leading to permanent injuries. The multi-elemental composition of the human brain is still the subject of numerous investigations and debates. In this study, for the first time, the meninges, i.e., the dura mater and the arachnoid, were examined for their elemental composition by means of inductively coupled plasma mass spectrometry (ICP-MS). Tissue samples were collected post mortem from those who died suddenly as a result of suicide (n = 20) or as a result of injuries after an accident (n = 20). The interactions between 51 elements in both groups showed mainly weak positive correlations, which dominated the arachnoid mater compared to the dura mater. The study showed differences in the distribution of some elements within the meninges in the studied groups. The significant differences concerned mainly metals from the lanthanide family (Ln), macroelements (Na, K, Ca, Mg), a few micronutrients (Co), and toxic cadmium (Cd). The performed evaluation of the elemental distribution in the human meninges sheds new light on the trace metals metabolism in the central nervous system, although we do not yet fully understand the role of the human meninges.
Collapse
|