1
|
Ling Z, Yang H, Zhang S, Yao J, Ren W, Wang X. Emerging Technologies to Enhance Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells: Focus on Nanomaterials and Bioactive Compounds. ACS Biomater Sci Eng 2025. [PMID: 40332241 DOI: 10.1021/acsbiomaterials.4c01409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Bone tissue damage and associated disorders significantly compromise the quality of life of affected patients, and existing therapeutic options remain limited. Bone marrow mesenchymal stem cells (BMSCs) play a crucial role in bone regenerative medicine, owing to their ability to differentiate into osteoblasts. Utilizing cutting-edge technologies, nanomaterials, and bioactive compounds can emulate the natural bone tissue microenvironment, offer a three-dimensional scaffold that facilitates the osteogenic differentiation of BMSCs, and modulate signals at the molecular level, thereby showing promise for applications in bone regeneration and repair. This review seeks to discuss the latest research advancements, elucidate the underlying mechanisms, and highlight the potential benefits of these technologies in augmenting the osteogenic capacity of BMSCs. Furthermore, the challenges and future directions for integrating these technologies in practical settings are discussed to pioneer new vistas in bone regenerative medicine.
Collapse
Affiliation(s)
- Ziyi Ling
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Han Yang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Shuhong Zhang
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jingke Yao
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wenjie Ren
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, China
| |
Collapse
|
2
|
Tang L, Fan X, Xu Y, Zhang Y, Li G. Luteolin Inhibits Dexamethasone-Induced Osteoporosis by Autophagy Activation Through miR-125b-5p/SIRT3/AMPK/mTOR Axis, an In Vitro and In Vivo Study. Food Sci Nutr 2025; 13:e70071. [PMID: 40104207 PMCID: PMC11913733 DOI: 10.1002/fsn3.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/20/2025] Open
Abstract
Luteolin (LUT) has been suggested as an inhibitor of osteoporosis (OP). This investigation examines the pivotal role of the miR-125b-5p/SIRT3/AMPK/mTOR pathway in mediating luteolin-induced effects on OP. Mesenchymal stem cells derived from bone marrow (BMSCs) were exposed to dexamethasone (DEX) to create an in vitro model of OP. Following treatment with luteolin, the levels of miR-125b-5p and SIRT3 were quantified using reverse transcription polymerase chain reaction. Moreover, SIRT3, AMPK, mTOR protein levels, and osteogenesis (OPN, Runx2, OSX, and OCN), and autophagy (p62, ATG5, LC3, and BECN1) were evaluated using ELISA. Additionally, specific mimics and siRNA were constructed to overexpress miR-125b-5p or downregulate SIRT3. Furthermore, animal models of DEX-induced OP were constructed to assess the effects of LUT at doses of 50 and 100 mg/kg/day on bone histology, stereology, biochemistry, and the expression of the miR-125b-5p, SIRT3/AMPK/mTOR axis, and markers of osteogenesis and autophagy. The findings revealed that LUT suppressed miR-125b-5p expression, overexpressed SIRT3 and AMPK, and downregulated mTOR in BMSCs compared to DEX (p-value < 0.01). Interestingly, LUT restored the levels of markers for osteogenesis and autophagy (p-value < 0.001). The overexpression of SIRT3 or miR-125b-5p downregulation inhibited LUT therapeutic properties. In animals, LUT improved bone histology (p-value < 0.05) and inhibited miR-125b-5p and mTOR expression while overexpressing SIRT3 and AMPK (p-value < 0.001). RUNX2, OSX, OPN, and OCN levels were improved, and autophagy was enhanced in LUT-treated rats. The current findings revealed that LUT could promote osteogenesis and improve OP via autophagy activation through the miR-125b-5p/SIRT3/AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Liang Tang
- Department of Geriatrics The First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology) Kunming China
| | - Xinyu Fan
- Orthopedics 920th Hospital of Joint Logistics Support Force Kunming China
| | - Yongqing Xu
- Orthopedics 920th Hospital of Joint Logistics Support Force Kunming China
| | - Yeming Zhang
- Orthopedics The People's Hospital of Xiangyun County Xiangyun China
| | - Gang Li
- Orthopedics 920th Hospital of Joint Logistics Support Force Kunming China
| |
Collapse
|
3
|
Sousa AC, Mcdermott G, Shields F, Alvites R, Lopes B, Sousa P, Moreira A, Coelho A, Santos JD, Atayde L, Alves N, Richardson SM, Domingos M, Maurício AC. Innovative Ink-Based 3D Hydrogel Bioprinted Formulations for Tissue Engineering Applications. Gels 2024; 10:831. [PMID: 39727588 DOI: 10.3390/gels10120831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Three-dimensional (3D) models with improved biomimicry are essential to reduce animal experimentation and drive innovation in tissue engineering. In this study, we investigate the use of alginate-based materials as polymeric inks for 3D bioprinting of osteogenic models using human bone marrow stem/stromal cells (hBMSCs). A composite bioink incorporating alginate, nano-hydroxyapatite (nHA), type I collagen (Col) and hBMSCs was developed and for extrusion-based printing. Rheological tests performed on crosslinked hydrogels confirm the formation of solid-like structures, consistently indicating a superior storage modulus in relation to the loss modulus. The swelling behavior analysis showed that the addition of Col and nHA into an alginate matrix can enhance the swelling rate of the resulting composite hydrogels, which maximizes cell proliferation within the structure. The LIVE/DEAD assay outcomes demonstrate that the inclusion of nHA and Col did not detrimentally affect the viability of hBMSCs over seven days post-printing. PrestoBlueTM revealed a higher hBMSCs viability in the alginate-nHA-Col hydrogel compared to the remaining groups. Gene expression analysis revealed that alginate-nHA-col bioink favored a higher expression of osteogenic markers, including secreted phosphoprotein-1 (SPP1) and collagen type 1 alpha 2 chain (COL1A2) in hBMSCs after 14 days, indicating the pro-osteogenic differentiation potential of the hydrogel. This study demonstrates that the incorporation of nHA and Col into alginate enhances osteogenic potential and therefore provides a bioprinted model to systematically study osteogenesis and the early stages of tissue maturation in vitro.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Grace Mcdermott
- Department of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, UK
| | - Fraser Shields
- Department of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, UK
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Department of Animal and Veterinary Sciences, University Institute of Health Sciences (IUCS), Cooperative of Polytechnic and University Higher Education, CRL (CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - José Domingos Santos
- Associated Laboratory for Green Chemistry (REQUIMTE-LAQV), Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal
| | - Stephen M Richardson
- Department of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, UK
| | - Marco Domingos
- Department of Mechanical and Aerospace Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
4
|
Jiang N, Hu Z, Wang Q, Hao J, Yang R, Jiang J, Wang H. Fibroblast growth factor 2 enhances BMSC stemness through ITGA2-dependent PI3K/AKT pathway activation. J Cell Physiol 2024; 239:e31423. [PMID: 39188080 DOI: 10.1002/jcp.31423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSC) are promising cellular reservoirs for treating degenerative diseases, tissue injuries, and immune system disorders. However, the stemness of BMSCs tends to decrease during in vitro cultivation, thereby restricting their efficacy in clinical applications. Consequently, investigating strategies that bolster the preservation of BMSC stemness and maximize therapeutic potential is necessary. Transcriptomic and single-cell sequencing methodologies were used to perform a comprehensive examination of BMSCs with the objective of substantiating the pivotal involvement of fibroblast growth factor 2 (FGF2) and integrin alpha 2 (ITGA2) in stemness regulation. To investigate the impact of these genes on the BMSC stemness in vitro, experimental approaches involving loss and gain of function were implemented. These approaches encompassed the modulation of FGF2 and ITGA2 expression levels via small interfering RNA and overexpression plasmids. Furthermore, we examined their influence on the proliferation and differentiation capacities of BMSCs, along with the expression of stemness markers, including octamer-binding transcription factor 4, Nanog homeobox, and sex determining region Y-box 2. Transcriptomic analyzes successfully identified FGF2 and ITGA2 as pivotal genes responsible for regulating the stemness of BMSCs. Subsequent single-cell sequencing revealed that elevated FGF2 and ITGA2 expression levels within specific stem cell subpopulations are closely associated with stemness maintenance. Moreover, additional in vitro experiments have convincingly demonstrated that FGF2 effectively enhances the BMSC stemness by upregulating ITGA2 expression, a process mediated by the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. This conclusion was supported by the observed upregulation of stemness markers following the induction of FGF2 and ITGA2. Moreover, administration of the BEZ235 pathway inhibitor resulted in the repression of stemness transcription factors, suggesting the substantial involvement of the PI3K/AKT pathway in stemness preservation facilitated by FGF2 and ITGA2. This study elucidates the involvement of FGF2 in augmenting BMSC stemness by modulating ITGA2 and activating the PI3K/AKT pathway. These findings offer valuable contributions to stem cell biology and emphasize the potential of manipulating FGF2 and ITGA2 to optimize BMSCs for therapeutic purposes.
Collapse
Affiliation(s)
- Nizhou Jiang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Spine Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhenxin Hu
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Quanxiang Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jiayu Hao
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Rui Yang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Jian Jiang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Hong Wang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| |
Collapse
|
5
|
Arab S, Bahraminasab M, Asgharzade S, Doostmohammadi A, Zadeh ZK, Nooshabadi VT. On the osteogenic differentiation of dental pulp stem cells by a fabricated porous nano-hydroxyapatite substrate loaded with sodium fluoride. BMC Oral Health 2024; 24:1218. [PMID: 39402484 PMCID: PMC11476061 DOI: 10.1186/s12903-024-04987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
In the present study, nano-hydroxyapatite (n-HA) powder was extracted from carp bone waste to fabricate porous n-HA substrates by a molding and sintering process. Subsequently, the substrates were loaded with different amounts of sodium fluoride (NaF) through immersion in NaF suspensions for 10, 7.5, and 5 min. The NaF-loaded n-HA substrates were then examined for their structural and physical properties, chemical bonds, loading and release profile, pH changes, cytotoxicity, and osteogenic effect on dental pulp stem cells (DPSCs) at the level of RNA and protein expression. The results showed that the n-HA substrates were porous (> 40% porosity) and had rough surfaces. The NaF could be successfully loaded on the substrates, which was 6.43, 4.50, and 1.47 mg, respectively for n-HA substrates with immersion times of 10, 7.5, and 5 min in the NaF suspensions. It was observed that the NaF release rate was rather fast during the first 24 h in all groups (39.06%, 36.43%, and 39.57% for 10, 7.5, and 5 min, respectively), and decreased dramatically after that, indicating a slow detachment of NaF. Furthermore, the pH of the medium related to all materials was changed during the first 4 days of immersion (from 7.38 to pH of about 7.85, 7.84, 7.63, and 7.66 for C0, C5, C7.5, and C10, respectively). The pH of media associated with the C7.5, and C10 increased up to 4 days and remained relatively constant until day 14 (pH = 7.6). The results of the cytotoxicity assay rejected any toxicity of the fabricated NaF-loaded n-HA substrates on DPSCs, and the cells could adhere to their surfaces with enlarged morphology. The results showed no effect on the osteogenic differentiation at the protein level. Nevertheless, this effect was observed at the gene level.
Collapse
Affiliation(s)
- Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Doostmohammadi
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Zahra Khatib Zadeh
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
6
|
Tang Y, Mu Z, Pan D, Liu R, Hong S, Xiong Z. The role and mechanism of β-catenin-mediated skeletal muscle satellite cells in osteoporotic fractures by Jian-Pi-Bu-Shen formula. J Mol Histol 2024; 55:875-893. [PMID: 39105942 DOI: 10.1007/s10735-024-10238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
Osteoporosis is a metabolic bone disease. β-Catenin is associated with fractures. Jian-Pi-Bu-Shen (JPBS) can promote the healing of osteoporotic fractures (OPF). However, the mechanism of β-catenin-mediated skeletal muscle satellite cells (SMSCs) in OPF by the JPBS is unclear. SMSCs were isolated and divided into five groups. The results showed that the survival rate of SMSCs was significantly higher in the low, medium, and high dose JPBS-containing serum groups after 7 days of incubation. The ALP activity and the number of SMSCs mineralized in the JPBS-containing serum intervention group were elevated. Axin, GSK-3β, β-catenin siRNAs were constructed and transfected into cells. Transfection of siRNAs reduced Axin, GSK-3β, and β-catenin expressions, respectively. β-Catenin-siRNA reversed ALP activity, the number of SMSCs mineralized, and the expression of β-catenin, BMP2, Runx2, COL-I, SP7/Ostrix, Osteocalcin, and BMP-7. Transcriptomic results suggested that the TNF signaling pathway associated with OPF was enriched. SD rats were subjected to the construction of OPF model by removing the ovaries. JPBS decreased the levels of PINP, ALP, CTX, and NTX through β-catenin in OPF rats, while increasing Runx2, β-catenin expressions through β-catenin at the broken end of fractures. Moreover, JPBS decreased BMC, BMD, and BV/TV and improved pathological damage through β-catenin in OPF rats. JPBS decreased the expression of Axin, GSK-3β mRNA, and protein, but increased the expressions of β-catenin, Pax7, COL-II, COL-II, BMP2, and Runx2 through β-catenin in OPF rats. In conclusion, JPBS inhibits Axin/GSK-3β expression, activates the β-catenin signaling, and promotes the osteogenic differentiation of SMSCs.
Collapse
Affiliation(s)
- Yanghua Tang
- Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, No. 156, Yucai Road, Xiaoshan District, Hangzhou, 311201, Zhejiang, China
| | - Zhuosong Mu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Dong Pan
- Third Clinical Medical College, Zhejiang Chinese Medical University, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Renqi Liu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Shenghu Hong
- Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, No. 156, Yucai Road, Xiaoshan District, Hangzhou, 311201, Zhejiang, China
| | - Zhenfei Xiong
- Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, No. 156, Yucai Road, Xiaoshan District, Hangzhou, 311201, Zhejiang, China.
| |
Collapse
|
7
|
Hoffman J, Zheng S, Zhang H, Murphy RF, Dahl KN. Image-based discrimination of the early stages of mesenchymal stem cell differentiation. Mol Biol Cell 2024; 35:ar103. [PMID: 38837346 PMCID: PMC11321037 DOI: 10.1091/mbc.e24-02-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are self-renewing, multipotent cells, which can be used in cellular and tissue therapeutics. MSCs cell number can be expanded in vitro, but premature differentiation results in reduced cell number and compromised therapeutic efficacies. Current techniques fail to discriminate the "stem-like" population from early stages (12 h) of differentiated MSC population. Here, we imaged nuclear structure and actin architecture using immunofluorescence and used deep learning-based computer vision technology to discriminate the early stages (6-12 h) of MSC differentiation. Convolutional neural network models trained by nucleus and actin images have high accuracy in reporting MSC differentiation; nuclear images alone can identify early stages of differentiation. Concurrently, we show that chromatin fluidity and heterochromatin levels or localization change during early MSC differentiation. This study quantifies changes in cell architecture during early MSC differentiation and describes a novel image-based diagnostic tool that could be widely used in MSC culture, expansion and utilization.
Collapse
Affiliation(s)
- Justin Hoffman
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Shiyuan Zheng
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Huaiying Zhang
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Robert F. Murphy
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Kris Noel Dahl
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
8
|
Yu Y, Lee S, Bock M, An SB, Shin HE, Rim JS, Kwon JO, Park KS, Han I. Promotion of Bone Formation in a Rat Osteoporotic Vertebral Body Defect Model via Suppression of Osteoclastogenesis by Ectopic Embryonic Calvaria Derived Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:8174. [PMID: 39125746 PMCID: PMC11311643 DOI: 10.3390/ijms25158174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Osteoporotic vertebral compression fractures (OVCFs) are the most prevalent fractures among patients with osteoporosis, leading to severe pain, deformities, and even death. This study explored the use of ectopic embryonic calvaria derived mesenchymal stem cells (EE-cMSCs), which are known for their superior differentiation and proliferation capabilities, as a potential treatment for bone regeneration in OVCFs. We evaluated the impact of EE-cMSCs on osteoclastogenesis in a RAW264.7 cell environment, which was induced by the receptor activator of nuclear factor kappa-beta ligand (RANKL), using cytochemical staining and quantitative real-time PCR. The osteogenic potential of EE-cMSCs was evaluated under various hydrogel conditions. An osteoporotic vertebral body bone defect model was established by inducing osteoporosis in rats through bilateral ovariectomy and creating defects in their coccygeal vertebral bodies. The effects of EE-cMSCs were examined using micro-computed tomography (μCT) and histology, including immunohistochemical analyses. In vitro, EE-cMSCs inhibited osteoclast differentiation and promoted osteogenesis in a 3D cell culture environment using fibrin hydrogel. Moreover, μCT and histological staining demonstrated increased new bone formation in the group treated with EE-cMSCs and fibrin. Immunostaining showed reduced osteoclast activity and bone resorption, alongside increased angiogenesis. Thus, EE-cMSCs can effectively promote bone regeneration and may represent a promising therapeutic approach for treating OVCFs.
Collapse
Affiliation(s)
- Yerin Yu
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
| | - Somin Lee
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
| | - Minsung Bock
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
| | - Seong Bae An
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
- Advanced Regenerative Medicine Research Center, CHA Future Medicine Research Institute, Seongnam-si 13488, Republic of Korea
| | - Hae Eun Shin
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
| | - Jong Seop Rim
- Fetal Stem Cell Research Center, CHA Advanced Research Institute, Seongnam-si 13488, Republic of Korea; (J.S.R.); (J.-o.K.)
| | - Jun-oh Kwon
- Fetal Stem Cell Research Center, CHA Advanced Research Institute, Seongnam-si 13488, Republic of Korea; (J.S.R.); (J.-o.K.)
| | - Kwang-Sook Park
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
- Advanced Regenerative Medicine Research Center, CHA Future Medicine Research Institute, Seongnam-si 13488, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
- Advanced Regenerative Medicine Research Center, CHA Future Medicine Research Institute, Seongnam-si 13488, Republic of Korea
| |
Collapse
|
9
|
Percival KM, Paul V, Husseini GA. Recent Advancements in Bone Tissue Engineering: Integrating Smart Scaffold Technologies and Bio-Responsive Systems for Enhanced Regeneration. Int J Mol Sci 2024; 25:6012. [PMID: 38892199 PMCID: PMC11172494 DOI: 10.3390/ijms25116012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
In exploring the challenges of bone repair and regeneration, this review evaluates the potential of bone tissue engineering (BTE) as a viable alternative to traditional methods, such as autografts and allografts. Key developments in biomaterials and scaffold fabrication techniques, such as additive manufacturing and cell and bioactive molecule-laden scaffolds, are discussed, along with the integration of bio-responsive scaffolds, which can respond to physical and chemical stimuli. These advancements collectively aim to mimic the natural microenvironment of bone, thereby enhancing osteogenesis and facilitating the formation of new tissue. Through a comprehensive combination of in vitro and in vivo studies, we scrutinize the biocompatibility, osteoinductivity, and osteoconductivity of these engineered scaffolds, as well as their interactions with critical cellular players in bone healing processes. Findings from scaffold fabrication techniques and bio-responsive scaffolds indicate that incorporating nanostructured materials and bioactive compounds is particularly effective in promoting the recruitment and differentiation of osteoprogenitor cells. The therapeutic potential of these advanced biomaterials in clinical settings is widely recognized and the paper advocates continued research into multi-responsive scaffold systems.
Collapse
Affiliation(s)
- Kelly M. Percival
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (K.M.P.); (V.P.)
| | - Vinod Paul
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (K.M.P.); (V.P.)
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (K.M.P.); (V.P.)
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
10
|
Melo-Fonseca F, Gasik M, Cruz A, Moreira D, S. Silva F, Miranda G, Mendes Pinto I. Engineering a Hybrid Ti6Al4V-Based System for Responsive and Consistent Osteogenesis. ACS OMEGA 2024; 9:8985-8994. [PMID: 38434873 PMCID: PMC10905591 DOI: 10.1021/acsomega.3c07232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/17/2023] [Accepted: 01/05/2024] [Indexed: 03/05/2024]
Abstract
As the aging population increases worldwide, the incidence of musculoskeletal diseases and the need for orthopedic implants also arise. One of the most desirable goals in orthopedic reconstructive therapies is de novo bone formation. Yet, reproducible, long-lasting, and cost-effective strategies for implants that strongly induce osteogenesis are still in need. Nanoengineered titanium substrates (and their alloys) are among the most used materials in orthopedic implants. Although having high biocompatibility, titanium alloys hold a low bioactivity profile. The osteogenic capacity and osseointegration of Ti-based implantable systems are limited, as they critically depend on the body-substrate interactions defined by blood proteins adsorbed into implant surfaces that ultimately lead to the recruitment, proliferation, and differentiation of mesenchymal stem cells (MSCs) to comply bone formation and regeneration. In this work, a hybrid Ti6Al4V system combining micro- and nanoscale modifications induced by hydrothermal treatment followed by functionalization with a bioactive compound (fibronectin derived from human plasma) is proposed, aiming for bioactivity improvement. An evaluation of the biological activity and cellular responses in vitro with respect to bone regeneration indicated that the integration of morphological and chemical modifications into Ti6Al4V surfaces induces the osteogenic differentiation of MSCs to improve bone regeneration by an enhancement of mineral matrix formation that accelerates the osseointegration process. Overall, this hybrid system has numerous competitive advantages over more complex treatments, including reproducibility, low production cost, and potential for improved long-term maintenance of the implant.
Collapse
Affiliation(s)
- Francisca Melo-Fonseca
- Center
for MicroElectroMechanical Systems (CMEMS-UMinho), University of Minho, Guimarães 4800-058, Portugal
- LABBELS—Associate
Laboratory, Braga, Guimarães 4710-057, Portugal
- International
Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Michael Gasik
- School
of Chemical Engineering, Aalto University
Foundation, Espoo 00076, Finland
| | - Andrea Cruz
- International
Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Daniel Moreira
- Institute
for Research and Innovation in Health (i3S), Porto 4200-135, Portugal
| | - Filipe S. Silva
- Center
for MicroElectroMechanical Systems (CMEMS-UMinho), University of Minho, Guimarães 4800-058, Portugal
- LABBELS—Associate
Laboratory, Braga, Guimarães 4710-057, Portugal
| | - Georgina Miranda
- CICECO, Aveiro
Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, Aveiro 3810-193, Portugal
| | - Inês Mendes Pinto
- International
Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
- Institute
for Research and Innovation in Health (i3S), Porto 4200-135, Portugal
| |
Collapse
|
11
|
Najeeb S, Manekia FA, Sadiq MSK, Adanir N, Khurshid Z, Zafar MS, Heboyan A. The effect of fibroblast growth factor-2 on the outcomes of tooth replantation: A systematic review of animal studies. Sci Prog 2024; 107:368504241228964. [PMID: 38489928 PMCID: PMC10943733 DOI: 10.1177/00368504241228964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Background/Aim: The ideal treatment of tooth avulsion is replantation. However, replanting teeth may lead to root resorption. Fibroblast growth factor-2 (FGF-2) is a cytokine that plays an important role in wound repair and tissue regeneration. Recently, FGF-2 has been studied a potential regenerative agent to prevent root resorption and ankylosis. The aim of this review is to analyze and summarize the currently available literature focusing on using FGF-2 based regenerative modalities to improve the outcomes of tooth replantation. Materials and Methods: An electronic search was conducted via PubMed/Medline, Google Scholar and ISI Web of Knowledge, using the Medical Subject Headings (MeSH) terms "Basic fibroblast growth factor," "Fibroblast growth factor-2," "tooth replantation," and "replantation" for studies published between January 2001 and June 2021. Data was extracted and quality assessment was carried using the ARRIVE guidelines. Results: Nine animal studies were included in this review. In six studies, FGF-2 had a favorable effect on the tissue regeneration around roots of replanted teeth when compared to other treatment groups. However, quality assessment of the studies revealed many sources of bias and deficiencies in the studies. Conclusions: Within the limitations of this study, it may be concluded that FGF-2 may improve the outcomes of delayed replantation of avulsed teeth. However, more long-term animal studies, with improved experimental designs, and clinical trials are required to determine the clinical potential of the growth factor in improving the outcomes of delayed tooth replantation.
Collapse
Affiliation(s)
- Shariq Najeeb
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Evidentia Dental Outcomes Research, Calgary, AB, Canada
| | | | - Muhammad Shahrukh Khan Sadiq
- Department of Oral Pathology, Bahria University Dental College, Bahria University Health Ciences, Karachi, Pakistan
| | - Necdet Adanir
- Department of Restorative Dentistry, College of Dentistry, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Kingdom of Saudi Arabia
- Current affiliation: Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madina Al Munawwarrah, Saudi Arabia
- School of Dentistry, University of Jordan, Amman, Jordan
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
- Current affiliation: Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, Yerevan, Armenia
| |
Collapse
|
12
|
Luo X, Liu J, Zhang P, Yu Y, Wu B, Jia Q, Liu Y, Xiao C, Cao Y, Jin H, Zhang L. Isolation, characterization and differentiation of dermal papilla cells from Small-tail Han sheep. Anim Biotechnol 2023; 34:3475-3482. [PMID: 36542538 DOI: 10.1080/10495398.2022.2156873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dermal papilla cells (DPCs) are the key dermal component of the hair follicle that directly regulates hair follicle development, growth and regeneration. Successfully isolated and cultured DPCs from Small-tail Han sheep could provide a good model for the study of hair follicle development mechanism in vitro. DPCs were isolated using enzyme digestion and dissecting microscope from Small-tail Han sheep. Adherent cells were identified by cell characteristics, particular gene expression, differentiation capability to adipocyte and osteoblast using specific differentiation mediums. Additionally, flow cytometry was used to detect the cell cycle of DPCs. Cells originating from the dermal papilla showed the morphological appearance of mesenchymal cells (fibroblast-like cells). Purified DPCs were positive for α-SMA (α smooth muscle actin) and vimentin; in addition to their strong proliferation abilities in vitro, these DPCs can be differentiated into adipocyte and osteoblasts lineage under appropriate culture condition. DPCs were successfully isolated and subcultured from Small-tail Han sheep, which exhibited progenitor cell features and multiple differentiation potency. It provides a material for studying the molecular mechanism of hair follicle development and hair cycle, which will promote wool production in the future.
Collapse
Affiliation(s)
- Xinhui Luo
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Jianqiang Liu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Pengju Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yongsheng Yu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Bin Wu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Qi Jia
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
- Agriculture College, Yanbian University, Yanji, Jilin, China
| | - Yanguang Liu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
- Agriculture College, Yanbian University, Yanji, Jilin, China
| | - Cheng Xiao
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yang Cao
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Haiguo Jin
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Lichun Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
13
|
Bar JK, Lis-Nawara A, Kowalczyk T, Grelewski PG, Stamnitz S, Gerber H, Klimczak A. Osteogenic Potential of Human Dental Pulp Stem Cells (hDPSCs) Growing on Poly L-Lactide-Co-Caprolactone and Hyaluronic Acid (HYAFF-11 TM) Scaffolds. Int J Mol Sci 2023; 24:16747. [PMID: 38069071 PMCID: PMC10705868 DOI: 10.3390/ijms242316747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Bone tissue engineering using different scaffolds is a new therapeutic approach in regenerative medicine. This study explored the osteogenic potential of human dental pulp stem cells (hDPSCs) grown on a hydrolytically modified poly(L-lactide-co-caprolactone) (PLCL) electrospun scaffold and a non-woven hyaluronic acid (HYAFF-11™) mesh. The adhesion, immunophenotype, and osteogenic differentiation of hDPSCs seeded on PLCL and HYAFF-11™ scaffolds were analyzed. The results showed that PLCL and HYAFF-11™ scaffolds significantly supported hDPSCs adhesion; however, hDPSCs' adhesion rate was significantly higher on PLCL than on HYAFF-11™. SEM analysis confirmed good adhesion of hDPSCs on both scaffolds before and after osteogenesis. Alizarin red S staining showed mineral deposits on both scaffolds after hDPSCs osteogenesis. The mRNA levels of runt-related transcription factor 2 (Runx2), collagen type I (Coll-I), osterix (Osx), osteocalcin (Ocn), osteopontin (Opn), bone sialoprotein (Bsp), and dentin sialophosphoprotein (Dspp) gene expression and their proteins were higher in hDPSCs after osteogenic differentiation on both scaffolds compared to undifferentiated hDPSCs on PLCL and HYAFF-11™. These results showed that PLCL scaffolds provide a better environment that supports hDPSCs attachment and osteogenic differentiation than HYAFF-11™. The high mRNA of early osteogenic gene expression and mineral deposits observed after hDPSCs osteogenesis on a PLCL mat indicated its better impact on hDPSCs' osteogenic potential than that of HYAFF-11™, and hDPSC/PLCL constructs might be considered in the future as an innovative approach to bone defect repair.
Collapse
Affiliation(s)
- Julia K. Bar
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.L.-N.); (P.G.G.)
| | - Anna Lis-Nawara
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.L.-N.); (P.G.G.)
| | - Tomasz Kowalczyk
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research (IPPT PAN), Polish Academy of Sciences, Adolfa Pawińskiego 5B St., 02-106 Warsaw, Poland;
| | - Piotr G. Grelewski
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.L.-N.); (P.G.G.)
| | - Sandra Stamnitz
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland;
| | - Hanna Gerber
- Department of Maxillofacial Surgery, Wroclaw Medical University, Borowska 213, 50-556Wroclaw, Poland;
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland;
| |
Collapse
|
14
|
Chen Q, Yang Z, Sun X, Long R, Shen J, Wang Z. Inokosterone activates the BMP2 to promote the osteogenic differentiation of bone marrow mesenchymal stem cells and improve bone loss in ovariectomized rats. Biochem Biophys Res Commun 2023; 682:349-358. [PMID: 37839103 DOI: 10.1016/j.bbrc.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Evidence suggests that enhancing the osteogenic ability of bone marrow-derived mesenchymal stem cells (BMSCs) may be beneficial in the fight against osteoporosis (OP) effects. Inokosterone (IS) is a major active constituent of Achyranthis bidentatae radix (ABR), which stimulates osteogenic differentiation of mouse embryonic osteoblasts. This study aims to investigate effect of IS on OP using osteogenic differentiated BMSCs and ovariectomy (OVX)-induced OP rats. The BMSCs were treated with 50, 100, or 200 mg/L IS and OP rats were given 2 or 4 mg/kg of IS by gavage. Cell viability, the osteogenic differentiation marker protein expression level, and mineralization were observed. This study proved that IS improved cell viability, osteogenic differentiation, and cellular mineralization in BMSCs and raised expression levels of bone morphogenetic protein-2 (BMP2), Smad1, runt-related transcription factor 2 (RUNX2), collagen I, ALP, and OCN. By BMP2 knockdown/overexpression, this study also proved the BMP2 signaling pathway activation is a potential biological mechanism of IS to improve osteogenic differentiation and mineralization in osteogenic differentiated BMSCs. In OVX-induced OP rats, IS was observed to antagonize bone loss, improve osteogenic differentiation marker protein expression levels, and activate BMP-2, smad1, and RUNX2. These findings provide scientific support for further investigation of the biological mechanisms of IS in ameliorating OP.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Orthopedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 311200, China
| | - Zhihua Yang
- Department of Orthopedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 311200, China
| | - Xiangyi Sun
- Department of Orthopedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 311200, China
| | - Ruchao Long
- Department of Orthopedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 311200, China
| | - Jianwei Shen
- Department of Orthopedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 311200, China
| | - Zhen Wang
- Department of Orthopedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 311200, China.
| |
Collapse
|
15
|
Zhou Y, Jiang R, Zeng J, Chen Y, Ren J, Chen S, Nie E. Transcriptome analysis of osteogenic differentiation of human maxillary sinus mesenchymal stem cells using RNA-Seq. Heliyon 2023; 9:e20305. [PMID: 37800070 PMCID: PMC10550513 DOI: 10.1016/j.heliyon.2023.e20305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
Recent studies have demonstrated that human maxillary sinus mesenchymal stem cells (hMSMSCs) have osteogenic potential and can be osteogenically induced. Here, we investigated pivotal molecular functions and candidates that contribute to the osteogenic differentiation of hMSMSCs. Human maxillary sinus membranes were harvested from 3 patients with jaw deformities. hMSMSCs from human maxillary sinus membranes were osteogenically induced for 0 or 21 days. Subsequently, their functional profiles were analysed by RNA sequencing and validated by quantitative PCR. Compared with control hMSMSCs, osteogenically induced hMSMSCs showed (1) osteogenic differentiation phenotype, as evidenced by the cell nodes, alizarin red staining, osteogenesis-related protein, and RNA expression; (2) accelerated osteogenic process of ossification and calcium signalling, as demonstrated by Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway; (3) enriched osteogenesis gene expression of SMOC2, OMD, IGF1, JUNB, BMP5, ADRA1A, and IGF2, which was validated by quantitative PCR. Based on by these results, we demonstrated that accelerated ossification process, calcium signalling, and upregulation of SMOC2, OMD, IGF1, JUNB, BMP5, ADRA1A and IGF2, may contribute to the osteogenic differentiation of hMSMSCs.
Collapse
Affiliation(s)
- Yutao Zhou
- Department of Stomatology, Panyu Central Hospital, Guangzhou, China
| | - Rui Jiang
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jindi Zeng
- Department of Stomatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Chen
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Ren
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Songling Chen
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ermin Nie
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Tsai MH, Megat Abdul Wahab R, Zainal Ariffin SH, Azmi F, Yazid F. Enhanced Osteogenesis Potential of MG-63 Cells through Sustained Delivery of VEGF via Liposomal Hydrogel. Gels 2023; 9:562. [PMID: 37504441 PMCID: PMC10378863 DOI: 10.3390/gels9070562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023] Open
Abstract
The challenges of using VEGF to promote osteoblastic differentiation include a short half-life and a narrow therapeutic window. A carrier system combining hydrogel and liposomes may improve the therapeutic efficacy of VEGF for bone regeneration. This study aimed to investigate the effects of delivery of VEGF via liposomal hydrogel on the osteogenesis of MG-63 cells. Liposomal hydrogel scaffold was fabricated and then characterized in terms of the morphological and chemical properties using FESEM and FTIR. In 2.5D analysis, the MG-63 cells were cultured on liposomal hydrogel + VEGF as the test group. The osteogenic effects of VEGF were compared with the control groups, i.e., hydrogel without liposomes + VEGF, osteogenic medium (OM) supplemented with a bolus of VEGF, and OM without VEGF. Cell morphology, viability, and differentiation and mineralization potential were investigated using FESEM, MTT assay, ALP activity, and Alizarin red staining. The characterization of scaffold showed no significant differences in the morphological and chemical properties between hydrogel with and without liposomes (p > 0.05). The final 2.5D culture demonstrated that cell proliferation, differentiation, and mineralization were significantly enhanced in the liposomal hydrogel + VEGF group compared with the control groups (p < 0.05). In conclusion, liposomal hydrogel can be used to deliver VEGF in a sustained manner in order to enhance the osteogenesis of MG-63 cells.
Collapse
Affiliation(s)
- Milton Hongli Tsai
- Discipline of Orthodontics, Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Rohaya Megat Abdul Wahab
- Discipline of Orthodontics, Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Shahrul Hisham Zainal Ariffin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Fazren Azmi
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Farinawati Yazid
- Discipline of Pediatric Dentistry, Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
17
|
Sarrigiannidis SO, Dobre O, Navarro AR, Dalby MJ, Gonzalez-Garcia C, Salmeron-Sanchez M. Engineered dual affinity protein fragments to bind collagen and capture growth factors. Mater Today Bio 2023; 20:100641. [PMID: 37179535 PMCID: PMC10173277 DOI: 10.1016/j.mtbio.2023.100641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Collagen type I lacks affinity for growth factors (GFs) and yet it is clinically used to deliver bone morphogenic protein 2 (BMP-2), a potent osteogenic growth factor. To mitigate this lack of affinity, supra-physiological concentrations of BMP-2 are loaded in collagen sponges leading to uncontrolled BMP-2 leakage out of the material. This has led to important adverse side effects such as carcinogenesis. Here, we design recombinant dual affinity protein fragments, produced in E. Coli, which contain two regions, one that spontaneously binds to collagen and a second one that binds BMP-2. By adding the fragment to collagen sponges, BMP-2 is sequestered enabling solid phase presentation of BMP-2. We demonstrate osteogenesis in vivo with ultra-low doses of BMP-2. Our protein technology enhances the biological activity of collagen without using complex chemistries or changing the manufacturing of the base material and so opens a pathway to clinical translation.
Collapse
|
18
|
Iranmanesh P, Vedaei A, Salehi-Mazandarani S, Nikpour P, Khazaei S, Khademi A, Galler KM, Nekoofar MH, Dummer PMH. MicroRNAs-mediated regulation of the differentiation of dental pulp-derived mesenchymal stem cells: a systematic review and bioinformatic analysis. Stem Cell Res Ther 2023; 14:76. [PMID: 37038220 PMCID: PMC10088330 DOI: 10.1186/s13287-023-03289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/16/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Human dental pulp-derived mesenchymal stem cells (hDP-MSCs), which include human dental pulp stem cells (hDPSCs) and stem cells from human exfoliated deciduous teeth (SHEDs), are promising cell sources for regenerative therapies. Nevertheless, a lack of knowledge relating to the mechanisms regulating their differentiation has limited their clinical application. microRNAs (miRNAs) are important regulatory molecules in cellular processes including cell differentiation. This systematic review aims to provide a panel of miRNAs that regulate the differentiation of hDP-MSCs including hDPSCs and SHEDs. Additionally, bioinformatic analyses were conducted to discover target genes, signaling pathways and gene ontologies associated with the identified miRNAs. METHODS A literature search was performed in MEDLINE (via PubMed), Web of Science, Scopus, Embase and Cochrane Library. Experimental studies assessing the promotive/suppressive effect of miRNAs on the differentiation of hDP-MSCs and studies evaluating changes to the expression of miRNAs during the differentiation of hDP-MSCs were included. miRNAs involved in odontogenic/osteogenic differentiation were then included in a bioinformatic analysis. A miRNA-mRNA network was constructed, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. A protein-protein interaction (PPI) network was also constructed. RESULTS Of 766 initially identified records through database searching, 42 and 36 studies were included in qualitative synthesis and bioinformatic analyses, respectively. Thirteen miRNAs promoted and 17 suppressed odontogenic/osteogenic differentiation of hDP-MSCs. hsa-miR-140-5p, hsa-miR-218 and hsa-miR-143 were more frequently reported suppressing the odontogenic/osteogenic differentiation of hDP-MSCs. hsa-miR-221 and hsa-miR-124 promoted and hsa-miR-140-5p inhibited neuronal differentiation, hsa-miR-26a-5p promoted and hsa-miR-424 suppressed angiogenic differentiation, and hsa-miR-135 and hsa-miR-143 inhibited differentiation within myogenic lineages. A miRNA-mRNA network including 1890 nodes and 2171 edges was constructed. KEGG pathway analysis revealed MAPK, PI3K-Akt and FoxO as key signaling pathways involved in the odontogenic/osteogenic differentiation of hDP-MSCs. CONCLUSIONS The findings of this systematic review support the potential application of the specific miRNAs to regulate the directed differentiation of hDP-MSCs in the field of regenerative therapies.
Collapse
Affiliation(s)
- Pedram Iranmanesh
- Dental Research Center, Department of Endodontics, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Vedaei
- Student Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sadra Salehi-Mazandarani
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saber Khazaei
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abbasali Khademi
- Dental Research Center, Department of Endodontics, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kerstin M. Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Erlangen, Erlangen, Germany
| | - Mohammad-Hossein Nekoofar
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endodontics, Bahçeşehir University School of Dentistry, Istanbul, Turkey
| | - Paul M. H. Dummer
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
19
|
Khvorostina M, Mironov A, Nedorubova I, Bukharova T, Vasilyev A, Goldshtein D, Komlev V, Popov V. Osteogenesis Enhancement with 3D Printed Gene-Activated Sodium Alginate Scaffolds. Gels 2023; 9:gels9040315. [PMID: 37102926 PMCID: PMC10137500 DOI: 10.3390/gels9040315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Natural and synthetic hydrogel scaffolds containing bioactive components are increasingly used in solving various tissue engineering problems. The encapsulation of DNA-encoding osteogenic growth factors with transfecting agents (e.g., polyplexes) into such scaffold structures is one of the promising approaches to delivering the corresponding genes to the area of the bone defect to be replaced, providing the prolonged expression of the required proteins. Herein, a comparative assessment of both in vitro and in vivo osteogenic properties of 3D printed sodium alginate (SA) hydrogel scaffolds impregnated with model EGFP and therapeutic BMP-2 plasmids was demonstrated for the first time. The expression levels of mesenchymal stem cell (MSC) osteogenic differentiation markers Runx2, Alpl, and Bglap were evaluated by real-time PCR. Osteogenesis in vivo was studied on a model of a critical-sized cranial defect in Wistar rats using micro-CT and histomorphology. The incorporation of polyplexes comprising pEGFP and pBMP-2 plasmids into the SA solution followed by 3D cryoprinting does not affect their transfecting ability compared to the initial compounds. Histomorphometry and micro-CT analysis 8 weeks after scaffold implantation manifested a significant (up to 46%) increase in new bone volume formation for the SA/pBMP-2 scaffolds compared to the SA/pEGFP ones.
Collapse
Affiliation(s)
- Maria Khvorostina
- Institute of Photon Technologies of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow 108840, Russia
- Research Centre for Medical Genetics, Moscow 115478, Russia
| | - Anton Mironov
- Institute of Photon Technologies of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow 108840, Russia
| | | | | | - Andrey Vasilyev
- Research Centre for Medical Genetics, Moscow 115478, Russia
- Central Research Institute of Dental and Maxillofacial Surgery, Moscow 119021, Russia
| | | | - Vladimir Komlev
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladimir Popov
- Institute of Photon Technologies of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow 108840, Russia
| |
Collapse
|
20
|
Rikitake K, Kunimatsu R, Yoshimi Y, Nakajima K, Hiraki T, Aisyah Rizky Putranti N, Tsuka Y, Abe T, Ando K, Hayashi Y, Nikawa H, Tanimoto K. Effect of CD146 + SHED on bone regeneration in a mouse calvaria defect model. Oral Dis 2023; 29:725-734. [PMID: 34510661 DOI: 10.1111/odi.14020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Stem cells from human exfoliated deciduous teeth (SHED) have bone regeneration ability and potential therapeutic applications. CD146, a cell adhesion protein expressed by vascular endothelial cells, is involved in osteoblastic differentiation of stem cells. The effect of CD146 on SHED-mediated bone regeneration in vivo remains unknown. We aimed to establish efficient conditions for SHED transplantation. MATERIALS AND METHODS SHED were isolated from the pulp of an extracted deciduous tooth and cultured; CD146-positive (CD146+ ) and CD146-negative (CD146- ) populations were sorted. Heterogeneous populations of SHED and CD146+ and CD146- cells were transplanted into bone defects generated in the skulls of immunodeficient mice. Micro-computed tomography was performed immediately and 4 and 8 weeks later. Histological and immunohistochemical assessments were performed 8 weeks later. RESULTS Bone regeneration was observed upon transplantation with CD146+ and heterogeneous populations of SHED, with significantly higher bone regeneration observed with CD146+ cells. Bone regeneration was higher in the CD146- group than in the control group, but significantly lower than that in the other transplant groups at 4 and 8 weeks. Histological and immunohistochemical assessments revealed that CD146+ cells promoted bone regeneration and angiogenesis. CONCLUSION Transplantation of CD146+ SHED into bone defects may be useful for bone regeneration.
Collapse
Affiliation(s)
- Kodai Rikitake
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuki Yoshimi
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kengo Nakajima
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomoka Hiraki
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Nurul Aisyah Rizky Putranti
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuji Tsuka
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takaharu Abe
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kazuyo Ando
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yoko Hayashi
- Analysis Center of Life Science, Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Hiroki Nikawa
- Department of Oral Biology and Engineering, Division of Oral Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University Graduate School, Hiroshima, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
21
|
Fredianto M, Herman H, Ismiarto YD, Purba A, Putra A, Hidayah N. Combination Effect of Rotator Cuff Repair with Secretome-hypoxia MSCs Ameliorates TNMD, RUNX2, and Healing Histology Score in Rotator Cuff Tear Rats. THE ARCHIVES OF BONE AND JOINT SURGERY 2023; 11:617-624. [PMID: 37873528 PMCID: PMC10590487 DOI: 10.22038/abjs.2023.67933.3218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/20/2023] [Indexed: 10/25/2023]
Abstract
Objectives In order to treat a rat model of rotator cuff rupture, this work concentrated on the expression of TNMD and RUNX2, followed by rotator cuff repair and secretome-hMSCs. Methods A total of thirty 10-weeks-old male Sprague-Dawley rats were separated into five groups randomly, RC on week 0, lesion treated with a rotator cuff repair and saline (RC + NaCl group, n = 6) for 2 and 8 weeks, and lesion treated with a rotator cuff repair and secretome-hMSCs (RC + secretome-hMSC group, n = 6) for 2 and 8 weeks. The supraspinatus and infraspinatus muscle-tendon units were obtained for histological and biomechanical investigation at 0, 2 and 8 weeks following injury. Results The findings showed that, in comparison with the RC + NaCl group, secretome-hMSCs significantly improved tendon repair by upregulating TNMD and RUNX2 expression and histology score. Conclusion Combining Secretome-hypoxia MSCs with RC healing may help rats with rotator cuff tears.
Collapse
Affiliation(s)
- Meiky Fredianto
- Doctoral Study Program, Faculty of Medicine, Padjadjaran University, Bandung, West Java, Indonesia
| | - Herry Herman
- Division of Oncology, Department of Orthopedic Surgery, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Yoyos Dias Ismiarto
- Department of Orthopedics and Traumatology, Faculty of Medicine, Padjadjaran University, Indonesia
| | - Ambrosius Purba
- Department of Physiology, Faculty of Medicine, Padjadjaran University, Bandung Indonesia
| | - Agung Putra
- Stem Cell and Cancer Research, Semarang, Indonesia
| | | |
Collapse
|
22
|
Pan J, Bao Y, Pan S, Zhuang D, Xu Y, Pan X, Li H. Hydroxysafflor Yellow A-Induced Osteoblast Differentiation and Proliferation of BM-MSCs by Up-Regulating Nuclear Vitamin D Receptor. Curr Mol Med 2023; 23:410-419. [PMID: 35996252 DOI: 10.2174/1566524023666220820125924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vitamin D receptor (VDR) is critical for mineral and bone homeostasis since it plays an essential role in the osteoblast differentiation of bone marrow mesenchymal stem cells (BM-MSCs). Hydroxysafflor yellow A (HSYA) has the potential to promote bone mineralization and inhibit bone resorption, while its detailed mechanism needs to be elaborated. OBJECTIVE This study intends to explore the action of HSYA on the proliferation and differentiation of BM-MSC and the underlying mechanism. METHODS Different concentrations of HSYA to BM-MSC and CCK-8, and EdU were used to detect cell viability and proliferation. The alkaline phosphatase (ALP) was used to observe the differentiation ability of BM-MSC osteoblasts. The calcium uptake and mineralization of osteoblast-like cells were observed by alizarin red staining. The level of calcium ion uptake in cells was detected by flow cytometry. AutoDock was performed for molecular docking of HSYA to VDR protein. Immunofluorescence and western blotting were performed to detect the expression of VDR expression levels. Finally, the effect of VDR was verified by a VDR inhibitor. RESULTS After treatment with HSYA, the proliferation and calcium uptake of BM-MSC were increased. The level of ALP increased significantly and reached its peak on the 12th day. HSYA promoted calcium uptake and calcium deposition, and mineralization of osteoblasts. The western blotting and immunofluorescence showed that HSYA increased the expression of VDR in the osteoblast-like cell's nucleus and upregulated Osteocalcin, S100 calcium-binding protein G, and CYP24A1. In addition, HYSA treatment increased the expression of osteopontin and the synthesis of osteogenic proteins, such as Type 1 collagen. After the addition of the VDR inhibitor, the effect of HSYA was weakened. CONCLUSION HSYA could significantly promote the activity and proliferation of osteoblasts and increase the expression level of VDR in osteoblasts. HSYA may also improve calcium absorption by osteoblasts by regulating the synthesis of calciumbinding protein and vitamin D metabolic pathway-related proteins.
Collapse
Affiliation(s)
- Jiewen Pan
- Key Laboratory of Comprehensive Prevention and Treatment of Congenital Anomalies, Women's and Children's Hospital of Ningbo, Ningbo, China
| | - Youwei Bao
- Key Laboratory of Comprehensive Prevention and Treatment of Congenital Anomalies, Women's and Children's Hospital of Ningbo, Ningbo, China
| | - Shuqing Pan
- Key Laboratory of Comprehensive Prevention and Treatment of Congenital Anomalies, Women's and Children's Hospital of Ningbo, Ningbo, China
| | - Danyan Zhuang
- Key Laboratory of Comprehensive Prevention and Treatment of Congenital Anomalies, Women's and Children's Hospital of Ningbo, Ningbo, China
| | - Yanan Xu
- Science and Education Department, Women's and Children's Hospital of Ningbo, Ningbo, China
| | - Xiaoli Pan
- Key Laboratory of Comprehensive Prevention and Treatment of Congenital Anomalies, Women's and Children's Hospital of Ningbo, Ningbo, China
| | - Haibo Li
- Key Laboratory of Comprehensive Prevention and Treatment of Congenital Anomalies, Women's and Children's Hospital of Ningbo, Ningbo, China
| |
Collapse
|
23
|
Zukhiroh Z, Putra A, Chodidjah C, Sumarawati T, Subchan P, Trisnadi S, Hidayah N, Amalina ND. Effect of Secretome-Hypoxia Mesenchymal Stem Cells on Regulating SOD and MMP-1 mRNA Expressions in Skin Hyperpigmentation Rats. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND: Ultraviolet B (UVB) radiation is the main factor causing hyperpigmentation. MSC secretome contains bioactive soluble molecules such as cytokines and growth factors that can accelerate skin regeneration. However, the molecular role of the secretome in hyperpigmentation is still unclear.
AIM: This study aimed to determine the effect of secretome hypoxia mesenchymal stem cells (S-HMSC) gel on the expression of superoxide dismutase (SOD) and matrix metalloproteinases (MMP-1) genes in skin tissue of hyperpigmented rats induced by UVB light exposure.
MATERIALS AND METHODS: Experimental research with post-test only control group. The control, base gel, T1 and T2 groups were UVB irradiated 6 times in 14 days at 302 nm with an minimal erythema dose of 390 mJ/cm2, respectively, while sham group did not receive UVB exposure. T1 was given 100 uL of S-HMSC gel and T2 was given 200 uL of S-HMSC gel every day for 14 days, while base gel received base gel. On day 15, skin tissue was isolated and analyzed for SOD and MMP-1 expression using qRT-PCR.
RESULTS: The relative expression of the SOD gene in the treatment group (P1 = 0.47 ± 0.20, P2 = 1.22 ± 0.47) increased with increasing dose compared to the control group (UVB = 0.05 ± 0.01, Base gel = 0.05 ± 0.02). The relative expression of the MMP-1 gene in the treatment group (T1 = 5.82 ± 1.16, T2 = 2.86 ± 1.57) decreased with increasing dose compared to the control group (Control = 10.10 ± 2.31, and Base gel = 9.55 ± 1.29).
CONCLUSION: Administration of S-HMSC gel can increase SOD gene expression and decrease MMP-1 gene expression in skin tissue of hyperpigmented rats model induced by UVB light.
Collapse
|
24
|
Alavi SE, Panah N, Page F, Gholami M, Dastfal A, Sharma LA, Ebrahimi Shahmabadi H. Hydrogel-based therapeutic coatings for dental implants. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Stamnitz S, Krawczenko A, Szałaj U, Górecka Ż, Antończyk A, Kiełbowicz Z, Święszkowski W, Łojkowski W, Klimczak A. Osteogenic Potential of Sheep Mesenchymal Stem Cells Preconditioned with BMP-2 and FGF-2 and Seeded on an nHAP-Coated PCL/HAP/β-TCP Scaffold. Cells 2022; 11:3446. [PMID: 36359842 PMCID: PMC9659177 DOI: 10.3390/cells11213446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 08/30/2023] Open
Abstract
Mesenchymal stem cells (MSCs) attract interest in regenerative medicine for their potential application in bone regeneration. However, direct transplantation of cells into damaged tissue is not efficient enough to regenerate large bone defects. This problem could be solved with a biocompatible scaffold. Consequently, bone tissue engineering constructs based on biomaterial scaffolds, MSCs, and osteogenic cytokines are promising tools for bone regeneration. The aim of this study was to evaluate the effect of FGF-2 and BMP-2 on the osteogenic potential of ovine bone marrow-derived MSCs seeded onto an nHAP-coated PCL/HAP/β-TCP scaffold in vitro and its in vivo biocompatibility in a sheep model. In vitro analysis revealed that cells preconditioned with FGF-2 and BMP-2 showed a better capacity to adhere and proliferate on the scaffold than untreated cells. BM-MSCs cultured in an osteogenic medium supplemented with FGF-2 and BMP-2 had the highest osteogenic differentiation potential, as assessed based on Alizarin Red S staining and ALP activity. qRT-PCR analysis showed increased expression of osteogenic marker genes in FGF-2- and BMP-2-treated BM-MSCs. Our pilot in vivo research showed that the implantation of an nHAP-coated PCL/HAP/β-TCP scaffold with BM-MSCs preconditioned with FGF-2 and BMP-2 did not have an adverse effect in the sheep mandibular region and induced bone regeneration. The biocompatibility of the implanted scaffold-BM-MSC construct with sheep tissues was confirmed by the expression of early (collagen type I) and late (osteocalcin) osteogenic proteins and a lack of an elevated level of proinflammatory cytokines. These findings suggest that FGF-2 and BMP-2 enhance the osteogenic differentiation potential of MSCs grown on a scaffold, and that such a tissue engineering construct may be used to regenerate large bone defects.
Collapse
Affiliation(s)
- Sandra Stamnitz
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Agnieszka Krawczenko
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Urszula Szałaj
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Żaneta Górecka
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland
| | - Agnieszka Antończyk
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 51, 50-366 Wroclaw, Poland
| | - Zdzisław Kiełbowicz
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 51, 50-366 Wroclaw, Poland
| | - Wojciech Święszkowski
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland
| | - Witold Łojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
26
|
Oliver‐Cervelló L, Martin‐Gómez H, Mandakhbayar N, Jo Y, Cavalcanti‐Adam EA, Kim H, Ginebra M, Lee J, Mas‐Moruno C. Mimicking Bone Extracellular Matrix: From BMP-2-Derived Sequences to Osteogenic-Multifunctional Coatings. Adv Healthc Mater 2022; 11:e2201339. [PMID: 35941083 PMCID: PMC11468143 DOI: 10.1002/adhm.202201339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 01/28/2023]
Abstract
Cell-material interactions are regulated by mimicking bone extracellular matrix on the surface of biomaterials. In this regard, reproducing the extracellular conditions that promote integrin and growth factor (GF) signaling is a major goal to trigger bone regeneration. Thus, the use of synthetic osteogenic domains derived from bone morphogenetic protein 2 (BMP-2) is gaining increasing attention, as this strategy is devoid of the clinical risks associated with this molecule. In this work, the wrist and knuckle epitopes of BMP-2 are screened to identify peptides with potential osteogenic properties. The most active sequences (the DWIVA motif and its cyclic version) are combined with the cell adhesive RGD peptide (linear and cyclic variants), to produce tailor-made biomimetic peptides presenting the bioactive cues in a chemically and geometrically defined manner. Such multifunctional peptides are next used to functionalize titanium surfaces. Biological characterization with mesenchymal stem cells demonstrates the ability of the biointerfaces to synergistically enhance cell adhesion and osteogenic differentiation. Furthermore, in vivo studies in rat calvarial defects prove the capacity of the biomimetic coatings to improve new bone formation and reduce fibrous tissue thickness. These results highlight the potential of mimicking integrin-GF signaling with synthetic peptides, without the need for exogenous GFs.
Collapse
Affiliation(s)
- Lluís Oliver‐Cervelló
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya (UPC)Barcelona08019Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCBarcelona08019Spain
| | - Helena Martin‐Gómez
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya (UPC)Barcelona08019Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCBarcelona08019Spain
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan330‐714Republic of Korea
- Department of Biomaterials ScienceSchool of DentistryDankook UniversityCheonan330‐714Republic of Korea
| | - Young‐Woo Jo
- Neobiotech Co.Ltd R&D CenterSeoul08381Republic of Korea
| | - Elisabetta Ada Cavalcanti‐Adam
- Department of Cellular BiophysicsGrowth Factor Mechanobiology groupMax Planck Institute for Medical Research Jahnstraße 2969120HeidelbergGermany
| | - Hae‐Won Kim
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan330‐714Republic of Korea
- Department of Biomaterials ScienceSchool of DentistryDankook UniversityCheonan330‐714Republic of Korea
| | - Maria‐Pau Ginebra
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya (UPC)Barcelona08019Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCBarcelona08019Spain
- Institute for Bioengineering of CataloniaBarcelona08028Spain
| | - Jung‐Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan330‐714Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan330‐714Republic of Korea
- Department of Biomaterials ScienceSchool of DentistryDankook UniversityCheonan330‐714Republic of Korea
| | - Carlos Mas‐Moruno
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringUniversitat Politècnica de Catalunya (UPC)Barcelona08019Spain
- Barcelona Research Center in Multiscale Science and EngineeringUPCBarcelona08019Spain
| |
Collapse
|
27
|
Toledano-Serrabona J, Bosch BM, Díez-Tercero L, Gil FJ, Camps-Font O, Valmaseda-Castellón E, Gay-Escoda C, Sánchez-Garcés MÁ. Evaluation of the inflammatory and osteogenic response induced by titanium particles released during implantoplasty of dental implants. Sci Rep 2022; 12:15790. [PMID: 36138061 PMCID: PMC9500064 DOI: 10.1038/s41598-022-20100-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Implantoplasty is a mechanical decontamination technique that consists of removing the threads and polishing and smoothing the dental implant surface. During implantoplasty there is a large release of titanium metal particles that might provoke a proinflammatory response and reduce the viability of osteogenic cells. We analyze the inflammatory and osteogenic response induced by Ti6Al4V particles released during implantoplasty and by as-received commercially pure Ti particles. Macrophages stimulated with metal particles obtained by implantoplasty and with as-received Ti particles showed an increased proinflammatory expression of TNF-α and a decreased expression of TGF-β and CD206. Regarding cytokine release, there was an increase in IL-1β, while IL-10 decreased. The osteogenic response of Ti6Al4V extracts showed a significant decrease in Runx2 and OC expression compared to the controls and commercially pure Ti extracts. There were no relevant changes in ALP activity. Thus, implantoplasty releases metal particles that seems to induce a pro-inflammatory response and reduce the expression of osteogenic markers.
Collapse
Affiliation(s)
- Jorge Toledano-Serrabona
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Begoña M Bosch
- Bioengineering Institute of Technology, International University of Catalonia, Sant Cugat del Vallès, Spain
| | - Leire Díez-Tercero
- Bioengineering Institute of Technology, International University of Catalonia, Sant Cugat del Vallès, Spain
| | - F Javier Gil
- Bioengineering Institute of Technology, International University of Catalonia, Sant Cugat del Vallès, Spain.
- Faculty of Dentistry, International University of Catalonia, Sant Cugat del Vallès, Spain.
| | - Octavi Camps-Font
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
| | - Eduard Valmaseda-Castellón
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
| | - Cosme Gay-Escoda
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Mª Ángeles Sánchez-Garcés
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
28
|
Zeng Y, Huang C, Duan D, Lou A, Guo Y, Xiao T, Wei J, Liu S, Wang Z, Yang Q, Zhou L, Wu Z, Wang L. Injectable temperature-sensitive hydrogel system incorporating deferoxamine-loaded microspheres promotes H-type blood vessel-related bone repair of a critical size femoral defect. Acta Biomater 2022; 153:108-123. [PMID: 36115651 DOI: 10.1016/j.actbio.2022.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
Insufficient vascularization is a major challenge in the repair of critical-sized bone defects. Deferoxamine (DFO) has been reported to play a potential role in promoting the formation of H-type blood vessels, a specialized vascular subtype with coupled angiogenesis and osteogenesis. However, whether DFO promotes the expression of H-type vessels in critical femoral defects with complete periosteal damage remains unknown. Moreover, stable drug loading systems need to be designed owing to the short half-life and high-dose toxic effects of DFO. In this study, we developed an injectable DFO-gelatin microspheres (GMs) hydrogel complex as a stable drug loading system for the treatment of critical femoral defects in rats. Our results showed that sustained release of DFO in critical femoral defects stimulated the generation of functional H-type vessels. The DFO-GMs hydrogel complex effectively promoted proliferation, formation, and migration of human umbilical vein endothelial cells in vitro. In vivo, the application of the DFO-GMs hydrogel complex expanded the distribution range and prolonged the expression time of H-type vessels in the defect area and was positively correlated with the number of osterix+ cells and new bone tissue. Topical application of the HIF-1α inhibitor PX-478 partially blocked the stimulation of H-type vessels by DFO, whereas the osteogenic potential of the latter was also weakened. Our results extended the local application of DFO and provided a theoretical basis for targeting H-type vessels to treat large femoral defects. STATEMENT OF SIGNIFICANCE: Abundant functional blood vessels are essential for bone repair. The H-type blood vessel is a functional subtype with angiogenesis and osteogenesis coupling potential. A drug loading system with long-term controlled release was first used to investigate the formation of H-type blood vessels in critical femoral defects and promotion of bone repair. Our results showed that the application of DFO-GMs hydrogel complex expanded the distribution range and expression time of H-type vessels, and was positively correlated with the number of osteoblasts and volume of new bone tissue. These results expanded the local application approach of DFO and provide a theoretical basis for targeting H-type vessels to treat large femoral defects.
Collapse
Affiliation(s)
- Yuwei Zeng
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Chuang Huang
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Dongming Duan
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Aiju Lou
- Department of Rheumatology, Liwan Central Hospital of Guangzhou, 35 Liwan Road, Guangzhou 510030, China
| | - Yuan Guo
- Department of Stomatology, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Tianhua Xiao
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Jianguo Wei
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Song Liu
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Zhao Wang
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Qihao Yang
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China.
| | - Zenghui Wu
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China.
| | - Le Wang
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China.
| |
Collapse
|
29
|
Bharathi R, Ganesh SS, Harini G, Vatsala K, Anushikaa R, Aravind S, Abinaya S, Selvamurugan N. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int J Biol Macromol 2022; 222:132-153. [PMID: 36108752 DOI: 10.1016/j.ijbiomac.2022.09.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
The bone tissue engineering approach for treating large bone defects becomes necessary when the tissue damage surpasses the threshold of the inherent regenerative ability of the human body. A myriad of natural biodegradable polymers and scaffold fabrication techniques have emerged in the last decade. Chitosan (CS) is especially attractive as a bone scaffold material to support cell attachment and proliferation and mineralization of the bone matrix. The primary amino groups in CS are responsible for properties such as controlled drug release, mucoadhesion, in situ gelation, and transfection. CS-based smart drug delivery scaffolds that respond to environmental stimuli have been reported to have a localized sustained delivery of drugs in the large bone defect area. This review outlines the recent advances in the fabrication of CS-based scaffolds as a pharmaceutical carrier to deliver drugs such as antibiotics, growth factors, nucleic acids, and phenolic compounds for bone tissue regeneration.
Collapse
Affiliation(s)
- R Bharathi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Shree Ganesh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - G Harini
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kumari Vatsala
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - R Anushikaa
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Aravind
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Abinaya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
30
|
Karakeçili A, Korpayev S, Orhan K. Optimizing Chitosan/Collagen Type I/Nanohydroxyapatite Cross-linked Porous Scaffolds for Bone Tissue Engineering. Appl Biochem Biotechnol 2022; 194:3843-3859. [PMID: 35543856 DOI: 10.1007/s12010-022-03962-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/02/2022] [Indexed: 11/02/2022]
Abstract
Bio-composite scaffolds mimicking the natural microenvironment of bone tissue offer striking advantages in material-guided bone regeneration. The combination of biodegradable natural polymers and bioactive ceramics that leverage potent bio-mimicking cues has been an active strategy to achieve success in bone tissue engineering. Herein, a competitive approach was followed to point out an optimized bio-composite scaffold in terms of scaffold properties and stimulation of osteoblast differentiation. The scaffolds, composed of chitosan/collagen type I/nanohydroxyapatite (Chi/Coll/nHA) as the most attractive components in bone tissue engineering, were analyzed. The scaffolds were prepared by freeze-drying method and cross-linked using different types of cross-linkers. Based on the physicochemical and mechanical characterization, the scaffolds were eliminated comparatively. All types of scaffolds displayed highly porous structures. The cross-linker type and collagen content had prominent effects on mechanical strength. Glyoxal cross-linked structures displayed optimum mechanical and structural properties. The MC3T3-E1 proliferation, osteogenic-related gene expression, and matrix mineralization were better pronounced in collagen presence and triggered as collagen type I amount was increased. The results highlighted that glyoxal cross-linked scaffolds containing equal amounts of Chi and Coll by mass and 1% (w/v) nHA are the best candidates for osteoblast differentiation and matrix mineralization.
Collapse
Affiliation(s)
- Ayşe Karakeçili
- Chemical Engineering Department, Faculty of Engineering, Ankara University, 06100, Ankara, Turkey.
| | - Serdar Korpayev
- Biotechnology Institute, Ankara University, 06100, Ankara, Turkey.
| | - Kaan Orhan
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, 06560, Turkey.,Medical Design Application and Research Center (MEDITAM), Ankara University, Ankara, 06100, Turkey
| |
Collapse
|
31
|
Abazari MF, Torabinejad S, Zare Karizi S, Enderami SE, Samadian H, Hajati-Birgani N, Norouzi S, Nejati F, Al bahash A, Mansouri V. Promoted osteogenic differentiation of human induced pluripotent stem cells using composited polycaprolactone/polyvinyl alcohol/carbopol nanofibrous scaffold. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Zhu L, Liu Y, Wang A, Zhu Z, Li Y, Zhu C, Che Z, Liu T, Liu H, Huang L. Application of BMP in Bone Tissue Engineering. Front Bioeng Biotechnol 2022; 10:810880. [PMID: 35433652 PMCID: PMC9008764 DOI: 10.3389/fbioe.2022.810880] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/01/2022] [Indexed: 01/15/2023] Open
Abstract
At present, bone nonunion and delayed union are still difficult problems in orthopaedics. Since the discovery of bone morphogenetic protein (BMP), it has been widely used in various studies due to its powerful role in promoting osteogenesis and chondrogenesis. Current results show that BMPs can promote healing of bone defects and reduce the occurrence of complications. However, the mechanism of BMP in vivo still needs to be explored, and application of BMP alone to a bone defect site cannot achieve good therapeutic effects. It is particularly important to modify implants to carry BMP to achieve slow and sustained release effects by taking advantage of the nature of the implant. This review aims to explain the mechanism of BMP action in vivo, its biological function, and how BMP can be applied to orthopaedic implants to effectively stimulate bone healing in the long term. Notably, implantation of a system that allows sustained release of BMP can provide an effective method to treat bone nonunion and delayed bone healing in the clinic.
Collapse
Affiliation(s)
- Liwei Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Ao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhengqing Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Youbin Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Chenyi Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhenjia Che
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Tengyue Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
- *Correspondence: He Liu, ; Lanfeng Huang,
| | - Lanfeng Huang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: He Liu, ; Lanfeng Huang,
| |
Collapse
|
33
|
Wu W, Wang Z, Zhang Z, Yang W, Fan X, Xu J, Huang Z, Shao Q. Overexpression of sonic hedgehog enhances the osteogenesis in rat ectomesenchymal stem cells. Cell Tissue Bank 2022; 23:569-580. [PMID: 35147838 DOI: 10.1007/s10561-022-09994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/20/2022] [Indexed: 11/02/2022]
Abstract
Ectoderm-derived mesenchymal stem cells (EMSCs) were used as potential seed cells for bone tissue engineering to treat bone defects due to their capability of rapid proliferation and osteogenic differentiation. Sonic hedgehog (Shh) signaling was reported to play an important role in the development of bone tissue, but its role is not understood. The present study investigated the role of Shh molecule in osteogenic differentiation of rat EMSCs in vitro. Rat EMSCs were isolated form nasal respiratory mucosa and identified with immunofluorescence and analyzed with other methods, including reverse transcriptase polymerase chain reaction (qPCR) and western blotting. EMSCs expressed CD90, CD105, nestin, and vimentin. On the seventh day of osteogenic induction, expression levels of Shh and Gli1 was higher according to the result of qPCR and Western blotting. After induction for 14 days, higher alkaline phosphatase (ALP) activity and more mineralized nodules were seen in comparison to the cells that did not undergo induction. Shh signaling appears to enhance osteogenic differentiation of rat EMSCs, suggesting that Shh signaling directs the lineage differentiation of ectodermal stem cells and represents a promising strategy for skeletal tissue regeneration.
Collapse
Affiliation(s)
- Weijiang Wu
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
| | - Zhe Wang
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
| | - Zhijian Zhang
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
| | - Wenjing Yang
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
| | - Xin Fan
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
| | - Jili Xu
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Zhiqiang Huang
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Qixiang Shao
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an, 223002, Jiangsu, People's Republic of China.
| |
Collapse
|
34
|
Pliszczak-Król A, Kiełbowicz Z, Król J, Antończyk A, Gemra M, Skrzypczak P, Prządka P, Zalewski D, Bieżyński J, Nicpoń J. Parameters of Hemostasis in Sheep Implanted with Composite Scaffold Settled by Stimulated Mesenchymal Stem Cells-Evaluation of the Animal Model. MATERIALS 2021; 14:ma14226934. [PMID: 34832335 PMCID: PMC8622787 DOI: 10.3390/ma14226934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 11/26/2022]
Abstract
Implantation of composite scaffolds could be potentially associated with the risk of hemostatic disturbances in a recipient. However, there is a lack of information on possible alterations in clotting mechanisms resulting from such a procedure. The aim of the present work was to investigate changes in hemostatic parameters in sheep implanted with a scaffold composed of poly(ε-caprolactone) and hydroxyapatite and tricalcium phosphate (9:4.5:4.5), settled previously with mesenchymal stem cells stimulated by fibroblast growth factor-2 and bone morphogenetic protein-2. Nine Merino sheep were examined for 7 days, and measurements of clotting times (PT, aPTT), activities of antithrombin, protein C and clotting factors II-XII, and concentrations of fibrinogen and D-dimer were carried out before and 1 h, 24 h, 3 days and 7 days after scaffold implantation. The introduction of scaffold initially resulted in a slowdown of the clotting processes (most evident 24 h after surgery); PT and aPTT increased to 14.8 s and 33.9 s, respectively. From the third day onwards, most of these alterations began to return to normal values. The concentration of fibrinogen rose throughout the observation period (up to 8.4 g/L), mirroring the ongoing inflammatory reaction. However, no signals of significant disturbances in hemostatic processes were detected in the sheep tested.
Collapse
Affiliation(s)
- Aleksandra Pliszczak-Król
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-6-6409-2994
| | - Zdzisław Kiełbowicz
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (Z.K.); (A.A.); (P.S.); (P.P.); (J.B.); (J.N.)
| | - Jarosław Król
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Agnieszka Antończyk
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (Z.K.); (A.A.); (P.S.); (P.P.); (J.B.); (J.N.)
| | - Marianna Gemra
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Piotr Skrzypczak
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (Z.K.); (A.A.); (P.S.); (P.P.); (J.B.); (J.N.)
| | - Przemysław Prządka
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (Z.K.); (A.A.); (P.S.); (P.P.); (J.B.); (J.N.)
| | - Dariusz Zalewski
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Janusz Bieżyński
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (Z.K.); (A.A.); (P.S.); (P.P.); (J.B.); (J.N.)
| | - Jakub Nicpoń
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (Z.K.); (A.A.); (P.S.); (P.P.); (J.B.); (J.N.)
| |
Collapse
|
35
|
Mesenchymal Stem Cells, Bioactive Factors, and Scaffolds in Bone Repair: From Research Perspectives to Clinical Practice. Cells 2021; 10:cells10081925. [PMID: 34440694 PMCID: PMC8392210 DOI: 10.3390/cells10081925] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell-based therapies are promising tools for bone tissue regeneration. However, tracking cells and maintaining them in the site of injury is difficult. A potential solution is to seed the cells onto a biocompatible scaffold. Construct development in bone tissue engineering is a complex step-by-step process with many variables to be optimized, such as stem cell source, osteogenic molecular factors, scaffold design, and an appropriate in vivo animal model. In this review, an MSC-based tissue engineering approach for bone repair is reported. Firstly, MSC role in bone formation and regeneration is detailed. Secondly, MSC-based bone tissue biomaterial design is analyzed from a research perspective. Finally, examples of animal preclinical and human clinical trials involving MSCs and scaffolds in bone repair are presented.
Collapse
|
36
|
Novais A, Chatzopoulou E, Chaussain C, Gorin C. The Potential of FGF-2 in Craniofacial Bone Tissue Engineering: A Review. Cells 2021; 10:932. [PMID: 33920587 PMCID: PMC8073160 DOI: 10.3390/cells10040932] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
Bone is a hard-vascularized tissue, which renews itself continuously to adapt to the mechanical and metabolic demands of the body. The craniofacial area is prone to trauma and pathologies that often result in large bone damage, these leading to both aesthetic and functional complications for patients. The "gold standard" for treating these large defects is autologous bone grafting, which has some drawbacks including the requirement for a second surgical site with quantity of bone limitations, pain and other surgical complications. Indeed, tissue engineering combining a biomaterial with the appropriate cells and molecules of interest would allow a new therapeutic approach to treat large bone defects while avoiding complications associated with a second surgical site. This review first outlines the current knowledge of bone remodeling and the different signaling pathways involved seeking to improve our understanding of the roles of each to be able to stimulate or inhibit them. Secondly, it highlights the interesting characteristics of one growth factor in particular, FGF-2, and its role in bone homeostasis, before then analyzing its potential usefulness in craniofacial bone tissue engineering because of its proliferative, pro-angiogenic and pro-osteogenic effects depending on its spatial-temporal use, dose and mode of administration.
Collapse
Affiliation(s)
- Anita Novais
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
| | - Eirini Chatzopoulou
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
- Département de Parodontologie, Université de Paris, UFR Odontologie-Garancière, 75006 Paris, France
| | - Catherine Chaussain
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
| | - Caroline Gorin
- Pathologies, Imagerie et Biothérapies Orofaciales, Université de Paris, URP2496, 1 rue Maurice Arnoux, 92120 Montrouge, France; (A.N.); (E.C.); (C.C.)
- AP-HP Département d’Odontologie, Services d’odontologie, GH Pitié Salpêtrière, Henri Mondor, Paris Nord, Hôpital Rothschild, Paris, France
| |
Collapse
|
37
|
Hu Y, Zhao QW, Wang ZC, Fang QQ, Zhu H, Hong DS, Liang XG, Lou D, Tan WQ. Co-transfection with BMP2 and FGF2 via chitosan nanoparticles potentiates osteogenesis in human adipose-derived stromal cells in vitro. J Int Med Res 2021; 49:300060521997679. [PMID: 33769121 PMCID: PMC8166400 DOI: 10.1177/0300060521997679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To investigate if co-transfection of human bone morphogenetic protein 2 (BMP-2, BMP2) and human fibroblast growth factor 2 (FGF2, FGF2) via chitosan nanoparticles promotes osteogenesis in human adipose tissue-derived stem cells (ADSCs) in vitro. MATERIALS AND METHODS Recombinant BMP2 and/or FGF2 expression vectors were constructed and packaged into chitosan nanoparticles. The chitosan nanoparticles were characterized by atomic force microscopy. Gene and protein expression levels of BMP-2 and FGF2 in ADSCs in vitro were evaluated by real-time polymerase chain reaction (PCR), western blot, and enzyme-linked immunosorbent assay. Osteocalcin (OCN) and bone sialoprotein (BSP) gene expression were also evaluated by real-time PCR to assess osteogenesis. RESULTS The prepared chitosan nanoparticles were spherical with a relatively homogenous size distribution. The BMP2 and FGF2 vectors were successfully transfected into ADSCs. BMP-2 and FGF2 mRNA and protein levels were significantly up-regulated in the co-transfection group compared with the control group. OCN and BSP mRNA levels were also significantly increased in the co-transfection group compared with cells transfected with BMP2 or FGF2 alone, suggesting that co-transfection significantly enhanced osteogenesis. CONCLUSIONS Co-transfection of human ADSCs with BMP2/FGF2 via chitosan nanoparticles efficiently promotes the osteogenic properties of ADSCs in vitro.
Collapse
Affiliation(s)
- Ying Hu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Qing-Wei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Qing-Qing Fang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - He Zhu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Dong-Sheng Hong
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xing-Guang Liang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Dong Lou
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| |
Collapse
|