1
|
Yilmaz H, Abdulazez IF, Gursoy S, Kazancioglu Y, Ustundag CB. Cartilage Tissue Engineering in Multilayer Tissue Regeneration. Ann Biomed Eng 2025; 53:284-317. [PMID: 39400772 DOI: 10.1007/s10439-024-03626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
The functional and structural integrity of the tissue/organ can be compromised in multilayer reconstructive applications involving cartilage tissue. Therefore, multilayer structures are needed for cartilage applications. In this review, we have examined multilayer scaffolds for use in the treatment of damage to organs such as the trachea, joint, nose, and ear, including the multilayer cartilage structure, but we have generally seen that they have potential applications in trachea and joint regeneration. In conclusion, when the existing studies are examined, the results are promising for the trachea and joint connections, but are still limited for the nasal and ear. It may have promising implications in the future in terms of reducing the invasiveness of existing grafting techniques used in the reconstruction of tissues with multilayered layers.
Collapse
Affiliation(s)
- Hilal Yilmaz
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, Turkey.
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey.
| | - Israa F Abdulazez
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
- University of Baghdad Al-Khwarizmi College of Engineering Biomedical Engineering Departments, Baghdad, Iraq
| | - Sevda Gursoy
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Yagmur Kazancioglu
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Cem Bulent Ustundag
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
2
|
Damerau A, Nguyen DHD, Lubahn C, Renggli K, Pfeiffenberger M, Krönke G, Herrmann M, Leeuw T, Buttgereit F, Gaber T. Microphysiological System-Generated Physiological Shear Forces Reduce TNF-α-Mediated Cartilage Damage in a 3D Model of Arthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412010. [PMID: 39716911 PMCID: PMC11831510 DOI: 10.1002/advs.202412010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/05/2024] [Indexed: 12/25/2024]
Abstract
Osteoarthritis (OA) is a leading cause of disability, often resulting from overuse or injury, but inactivity can also contribute to cartilage degeneration. Conventional in vivo models struggle to isolate and study the specific effects of mechanical stress on cartilage health. To address this limitation, a microphysiological system (MPS) is established to examine how varying levels of shear stress impact cartilage homeostasis. The system allows for the cultivation of 3D chondrogenic microconstructs (CMCs) derived from human mesenchymal stromal cells, simulating both physiological and pathophysiological shear stress. Inflammation is induced via TNF-α or activated peripheral blood mononuclear cells to model cartilage damage, enabling the evaluation of therapeutic interventions. The study demonstrates the development of an arthritis-like phenotype and successful restoration of cartilage conditions through a JAK inhibitor under physiological shear stress. Physiological shear stress is identified as a critical factor in maintaining cartilage integrity. This MPS offers a standardized method to study shear stress, replicate cytokine-induced cartilage damage, and simulate key features of arthritis, providing a valuable alternative to animal models.
Collapse
Affiliation(s)
- Alexandra Damerau
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- German Rheumatism Research Centre (DRFZ) Berlina Leibniz Institute10117BerlinGermany
| | - Duc Ha Do Nguyen
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
| | - Christina Lubahn
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
| | - Kasper Renggli
- School of Life SciencesUniversity of Applied Sciences and Arts Northwestern SwitzerlandMuttenz4132Switzerland
| | - Moritz Pfeiffenberger
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- German Rheumatism Research Centre (DRFZ) Berlina Leibniz Institute10117BerlinGermany
| | - Gerhard Krönke
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- German Rheumatism Research Centre (DRFZ) Berlina Leibniz Institute10117BerlinGermany
| | - Matthias Herrmann
- Immunology & Inflammation Research TASanofi‐Aventis Deutschland GmbH65926FrankfurtGermany
| | - Thomas Leeuw
- Immunology & Inflammation Research TASanofi‐Aventis Deutschland GmbH65926FrankfurtGermany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- German Rheumatism Research Centre (DRFZ) Berlina Leibniz Institute10117BerlinGermany
| | - Timo Gaber
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- German Rheumatism Research Centre (DRFZ) Berlina Leibniz Institute10117BerlinGermany
| |
Collapse
|
3
|
Xie Y, Wei C, Fu D, Zhang W, Du Y, Huang C, Liu S, Yao R, He Z, Zhang S, Jin X, Shen B, Cao L, Wang P, Fang X, Zheng X, Lin H, Wei X, Lin W, Bai M, Zhu D, Li Y, Ding Y, Zhu H, Ye H, He J, Su Y, Jia Y, Wu H, Wang Y, Xing D, Qiu X, Li Z, Hu F. Large-scale multicenter study reveals anticitrullinated SR-A peptide antibody as a biomarker and exacerbator for rheumatoid arthritis. SCIENCE ADVANCES 2025; 11:eadr8078. [PMID: 39752500 PMCID: PMC11698088 DOI: 10.1126/sciadv.adr8078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
Current diagnosis and treatment of rheumatoid arthritis (RA) is still challenging. More than one-third of patients with RA could not be accurately diagnosed because of lacking biomarkers. Our recent study reported that scavenger receptor-A (SR-A) is a biomarker for RA, especially for anticyclic citrullinated peptide antibody (anti-CCP)-negative RA. Here, we further identified the B cell autoantigenic epitopes of SR-A. By a large-scale multicenter study including one training and three validation cohorts of 1954 participants, we showed that anticitrullinated SR-A peptide antibody (anti-CSP) was exclusively elevated in RA as a biomarker, particularly useful for seronegative RA. Combination of anti-CSP with anti-CCP demonstrated superior diagnostic value for RA, with sensitivity of 84.83% and specificity of 92.43%. Moreover, RA anti-CSP revealed distinct glycosylation patterns, capable of provoking inflammation in cartilage organoids and exacerbating disease progression in experimental arthritis. Together, these data identify anti-CSP as an RA autoantibody clinically applicable and actively involved in disease pathogenesis.
Collapse
Affiliation(s)
- Yang Xie
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Chaonan Wei
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Dongdong Fu
- Department of Rheumatology and Immunology, Xinxiang Central Hospital, Xinxiang, China
| | - Wei Zhang
- Department of Rheumatology and Immunology, First Hospital Affiliated to Baotou Medical College & Inner Mongolia Key Laboratory of Autoimmunity, Baotou, China
| | - Yan Du
- Department of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuncui Huang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shuyan Liu
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Ranran Yao
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Zihao He
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Shenghua Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xu Jin
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Bin Shen
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Ping Wang
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xiangyu Fang
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xi Zheng
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Hongying Lin
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xihua Wei
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Wenhao Lin
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Mingxin Bai
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Danxue Zhu
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yingni Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yamin Ding
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Huaqun Zhu
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Hua Ye
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yuan Jia
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Huaxiang Wu
- Department of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongfu Wang
- Department of Rheumatology and Immunology, First Hospital Affiliated to Baotou Medical College & Inner Mongolia Key Laboratory of Autoimmunity, Baotou, China
| | - Dan Xing
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
4
|
Adams M, Cottrell J. Development and characterization of an in vitro fluorescently tagged 3D bone-cartilage interface model. Front Endocrinol (Lausanne) 2024; 15:1484912. [PMID: 39600948 PMCID: PMC11588493 DOI: 10.3389/fendo.2024.1484912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Three-dimensional cultures are widely used to study bone and cartilage. These models often focus on the interaction between osteoblasts and osteoclasts or osteoblasts and chondrocytes. A culture of osteoblasts, osteoclasts and chondrocytes would represent the cells that interact in the joint and a model with these cells could be used to study many diseases that affect the joints. The goal of this study was to develop 3D bone-cartilage interface (3D-BCI) that included osteoblasts, osteocytes, osteoclasts, and cartilage. Fluorescently tagged cell lines were developed to assess the interactions as cells differentiate to form bone and cartilage. Mouse cell line, MC3T3, was labeled with a nuclear GFP tag and differentiated into osteoblasts and osteocytes in Matrigel. Raw264.7 cells transfected with a red cytoplasmic tag were added to the system and differentiated with the MC3T3 cells to form osteoclasts. A new method was developed to differentiate chondrocyte cell line ATDC5 in a cartilage spheroid, and the ATDC5 spheroid was added to the MC3T3 and Raw264.7 cell model. We used an Incucyte and functional analysis to assess the cells throughout the differentiation process. The 3D-BCI model was found to be positive for TRAP, ALP, Alizarin red and Alcian blue staining to confirm osteoblastogenesis, osteoclastogenesis, and cartilage formation. Gene expression confirmed differentiation of cells based on increased expression of osteoblast markers: Alpl, Bglap, Col1A2, and Runx2, cartilage markers: Acan, Col2A1, Plod2, and osteoclast markers: Acp5, Rank and Ctsk. Based on staining, protein expression and gene expression results, we conclude that we successfully developed a mouse model with a 3D bone-cartilage interface.
Collapse
Affiliation(s)
- Mary Adams
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, United States
- Immunology Translational Research, Translational Early Development, Bristol Myers Squibb, Summit, NJ, United States
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
5
|
Bowes A, Collins A, Oakley F, Gentile P, Ferreira AM, Dalgarno K. Bioprinted High-Cell-Density Laminar Scaffolds Stimulate Extracellular Matrix Production in Osteochondral Co-Cultures. Int J Mol Sci 2024; 25:11131. [PMID: 39456913 PMCID: PMC11508368 DOI: 10.3390/ijms252011131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Many tissues have a laminar structure, but there are limited technologies for establishing laminar co-cultures for in vitro testing. Here, we demonstrate that collagen-alginate-fibrin (CAF) hydrogel scaffolds produced using the reactive jet impingement bioprinting technique can produce osteochondral laminar co-cultures with well-defined interfaces between cell types and high cell densities to support cell-cell interaction across the interfaces. The influence of cell density and the presence of the two cell types on the production of extracellular matrix (ECM) and the emergent mechanical properties of gels is investigated using IHC, ELISA, gel mass, and the compression modulus. The results indicate that high-cell-density cultures and co-cultures with these specific cell types produce greater levels of ECM and a more biomimetic in vitro culture than low-cell-density cultures. In laminar scaffolds produced using TC28a2 chondrocytes and SaoS-2 osteoblasts, both cell density and the presence of the two cell types enhance ECM production and the mechanical properties of the cultures, presenting a promising approach for the production of more biomimetic in vitro models.
Collapse
Affiliation(s)
- Aidan Bowes
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.B.); (P.G.); (A.M.F.)
- Faculty of Technology, Sunderland University, Sunderland SR6 0DD, UK
| | - Amy Collins
- Newcastle Fibrosis Research Group, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK; (A.C.); (F.O.)
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK; (A.C.); (F.O.)
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.B.); (P.G.); (A.M.F.)
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.B.); (P.G.); (A.M.F.)
| | - Kenny Dalgarno
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.B.); (P.G.); (A.M.F.)
| |
Collapse
|
6
|
Damerau A, Kirchner M, Mertins P, Buttgereit F, Gaber T. A point-of-research decision in synovial tissue engineering: Mesenchymal stromal cells, tissue derived fibroblast or CTGF-mediated mesenchymal-to-fibroblast transition. Eur J Cell Biol 2024; 103:151455. [PMID: 39293131 DOI: 10.1016/j.ejcb.2024.151455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/20/2024] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are prevalent inflammatory joint diseases characterized by synovitis, cartilage, and bone destruction. Fibroblast-like synoviocytes (FLSs) of the synovial membrane are a decisive factor in arthritis, making them a target for future therapies. Developing novel strategies targeting FLSs requires advanced in vitro joint models that accurately replicate non-diseased joint tissue. This study aims to identify a cell source reflecting physiological synovial fibroblasts. Therefore, we newly compared the phenotype and metabolism of "healthy" knee-derived FLSs from patients with ligament injuries (trauma-FLSs) to mesenchymal stromal cells (MSCs), their native precursors. We differentiated MSCs into fibroblasts using connective tissue growth factor (CTGF) and compared selected protein and gene expression patterns to those obtained from trauma-FLSs and OA-FLSs. Based on these findings, we explored the potential of an MSC-derived synovial tissue model to simulate a chronic inflammatory response akin to that seen in arthritis. We have identified MSCs as a suitable cell source for synovial tissue engineering because, despite metabolic differences, they closely resemble human trauma-derived FLSs. CTGF-mediated differentiation of MSCs increased HAS2 expression, essential for hyaluronan synthesis. It showed protein expression patterns akin to OA-FLSs, including markers of ECM components and fibrosis, and enzymes leading to a shift in metabolism towards increased fatty acid oxidation. In general, cytokine stimulation of MSCs in a synovial tissue model induced pro-inflammatory and pro-angiogenic gene expression, hyperproliferation, and increased glucose consumption, reflecting cellular response in human arthritis. We conclude that MSCs can serve as a proxy to study physiological synovial processes and inflammatory responses. In addition, CTGF-mediated mesenchymal-to-fibroblast transition resembles OA-FLSs. Thus, we emphasize MSCs as a valuable cell source for tools in preclinical drug screening and their application in tissue engineering.
Collapse
Affiliation(s)
- Alexandra Damerau
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany.
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Frank Buttgereit
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Timo Gaber
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany.
| |
Collapse
|
7
|
Gaetani R, Chimenti I. 3D Cultures for Modelling the Microenvironment: Current Research Trends and Applications. Int J Mol Sci 2023; 24:11109. [PMID: 37446284 DOI: 10.3390/ijms241311109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The importance of 3D culture systems for drug screening or physio-pathological models has exponentially increased in recent years [...].
Collapse
Affiliation(s)
- Roberto Gaetani
- Department of Molecular Medicine, Faculty of Pharmacy and Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Isotta Chimenti
- Department of Medical and Surgical Sciences and Biotechnology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro, 80122 Naples, Italy
| |
Collapse
|
8
|
Optimization of a Tricalcium Phosphate-Based Bone Model Using Cell-Sheet Technology to Simulate Bone Disorders. Processes (Basel) 2022. [DOI: 10.3390/pr10030550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bone diseases such as osteoporosis, delayed or impaired bone healing, and osteoarthritis still represent a social, financial, and personal burden for affected patients and society. Fully humanized in vitro 3D models of cancellous bone tissue are needed to develop new treatment strategies and meet patient-specific needs. Here, we demonstrate a successful cell-sheet-based process for optimized mesenchymal stromal cell (MSC) seeding on a β-tricalcium phosphate (TCP) scaffold to generate 3D models of cancellous bone tissue. Therefore, we seeded MSCs onto the β-TCP scaffold, induced osteogenic differentiation, and wrapped a single osteogenically induced MSC sheet around the pre-seeded scaffold. Comparing the wrapped with an unwrapped scaffold, we did not detect any differences in cell viability and structural integrity but a higher cell seeding rate with osteoid-like granular structures, an indicator of enhanced calcification. Finally, gene expression analysis showed a reduction in chondrogenic and adipogenic markers, but an increase in osteogenic markers in MSCs seeded on wrapped scaffolds. We conclude from these data that additional wrapping of pre-seeded scaffolds will provide a local niche that enhances osteogenic differentiation while repressing chondrogenic and adipogenic differentiation. This approach will eventually lead to optimized preclinical in vitro 3D models of cancellous bone tissue to develop new treatment strategies.
Collapse
|
9
|
Damerau A, Kirchner M, Pfeiffenberger M, Ehlers L, Do Nguyen DH, Mertins P, Bartek B, Maleitzke T, Palmowski Y, Hardt S, Winkler T, Buttgereit F, Gaber T. Metabolic reprogramming of synovial fibroblasts in osteoarthritis by inhibition of pathologically overexpressed pyruvate dehydrogenase kinases. Metab Eng 2022; 72:116-132. [DOI: 10.1016/j.ymben.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
|
10
|
Chen Y, Wang Y, Luo SC, Zheng X, Kankala RK, Wang SB, Chen AZ. Advances in Engineered Three-Dimensional (3D) Body Articulation Unit Models. Drug Des Devel Ther 2022; 16:213-235. [PMID: 35087267 PMCID: PMC8789231 DOI: 10.2147/dddt.s344036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
Indeed, the body articulation units, commonly referred to as body joints, play significant roles in the musculoskeletal system, enabling body flexibility. Nevertheless, these articulation units suffer from several pathological conditions, such as osteoarthritis (OA), rheumatoid arthritis (RA), ankylosing spondylitis, gout, and psoriatic arthritis. There exist several treatment modalities based on the utilization of anti-inflammatory and analgesic drugs, which can reduce or control the pathophysiological symptoms. Despite the success, these treatment modalities suffer from major shortcomings of enormous cost and poor recovery, limiting their applicability and requiring promising strategies. To address these limitations, several engineering strategies have been emerged as promising solutions in fabricating the body articulation as unit models towards local articulation repair for tissue regeneration and high-throughput screening for drug development. In this article, we present challenges related to the selection of biomaterials (natural and synthetic sources), construction of 3D articulation models (scaffold-free, scaffold-based, and organ-on-a-chip), architectural designs (microfluidics, bioprinting, electrospinning, and biomineralization), and the type of culture conditions (growth factors and active peptides). Then, we emphasize the applicability of these articulation units for emerging biomedical applications of drug screening and tissue repair/regeneration. In conclusion, we put forward the challenges and difficulties for the further clinical application of the in vitro 3D articulation unit models in terms of the long-term high activity of the models.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| | - Ying Wang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510080, Guangdong, People’s Republic of China
| | - Sheng-Chang Luo
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| | - Xiang Zheng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| |
Collapse
|
11
|
Fracture Healing Research-Shift towards In Vitro Modeling? Biomedicines 2021; 9:biomedicines9070748. [PMID: 34203470 PMCID: PMC8301383 DOI: 10.3390/biomedicines9070748] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 01/07/2023] Open
Abstract
Fractures are one of the most frequently occurring traumatic events worldwide. Approximately 10% of fractures lead to bone healing disorders, resulting in strain for affected patients and enormous costs for society. In order to shed light into underlying mechanisms of bone regeneration (habitual or disturbed), and to develop new therapeutic strategies, various in vivo, ex vivo and in vitro models can be applied. Undeniably, in vivo models include the systemic and biological situation. However, transferability towards the human patient along with ethical concerns regarding in vivo models have to be considered. Fostered by enormous technical improvements, such as bioreactors, on-a-chip-technologies and bone tissue engineering, sophisticated in vitro models are of rising interest. These models offer the possibility to use human cells from individual donors, complex cell systems and 3D models, therefore bridging the transferability gap, providing a platform for the introduction of personalized precision medicine and finally sparing animals. Facing diverse processes during fracture healing and thus various scientific opportunities, the reliability of results oftentimes depends on the choice of an appropriate model. Hence, we here focus on categorizing available models with respect to the requirements of the scientific approach.
Collapse
|