1
|
Peng L, Li K, Li D, Zuo X, Zhan L, Chen M, Gong M, Sun W, Xu E. The p75 neurotrophin receptor attenuates secondary thalamic damage after cortical infarction by promoting angiogenesis. CNS Neurosci Ther 2024; 30:e14875. [PMID: 39072998 DOI: 10.1111/cns.14875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Angiogenesis is crucial in neuroprotection of secondary thalamic injury after cortical infarction. The p75 neurotrophin receptor (p75NTR) plays a key role in activating angiogenesis. However, the effects of p75NTR on angiogenesis in the thalamus after cortical infarction are largely unknown. Herein we investigate whether p75NTR facilitates angiogenesis to attenuate secondary thalamic damage via activating hypoxia-inducible factor 1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathway mediated by Von Hippel-Lindau (VHL) after distal middle cerebral artery occlusion (dMCAO). METHODS The male rat model of dMCAO was established. The effects of p75NTR on the angiogenesis was evaluated using RNA-sequencing, immunohistochemistry, western blot, quantitative real-time polymerase chain reaction, magnetic resonance imaging, behavior tests, viral and pharmacological interventions. RESULTS We found that the p75NTR and vessel density were decreased in ipsilateral thalamus after dMCAO. The p75NTR-VHL interaction was reduced, which promoted the ubiquitination degradation of HIF-1α and reduced VEGF expression after dMCAO. Notably, p75NTR overexpression restrained the ubiquitination degradation of HIF-1α by inhibiting VHL-HIF-1α interaction, further promoted angiogenesis, increased cerebral blood flow of ipsilateral thalamus and improved neurological function after dMCAO. CONCLUSION For the first time, we highlighted that the enhancement of p75NTR-VHL interaction promoted angiogenesis in attenuating secondary thalamic damage after dMCAO.
Collapse
Affiliation(s)
- Linhui Peng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kongping Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Neurology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dan Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xialin Zuo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lixuan Zhan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meiyan Chen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ming Gong
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weiwen Sun
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - En Xu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Mirzahosseini G, Adam JM, Nasoohi S, El-Remessy AB, Ishrat T. Lost in Translation: Neurotrophins Biology and Function in the Neurovascular Unit. Neuroscientist 2023; 29:694-714. [PMID: 35769016 DOI: 10.1177/10738584221104982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The neurovascular unit (NVU) refers to the functional building unit of the brain and the retina, where neurons, glia, and microvasculature orchestrate to meet the demand of the retina's and brain's function. Neurotrophins (NTs) are structural families of secreted proteins and are known for exerting neurotrophic effects on neuronal differentiation, survival, neurite outgrowth, synaptic formation, and plasticity. NTs include several molecules, such as nerve growth factor, brain-derived neurotrophic factor, NT-3, NT-4, and their precursors. Furthermore, NTs are involved in signaling pathways such as inflammation, apoptosis, and angiogenesis in a nonneuronal cell type. Interestingly, NTs and the precursors can bind and activate the p75 neurotrophin receptor (p75NTR) at low and high affinity. Mature NTs bind their cognate tropomyosin/tyrosine-regulated kinase receptors, crucial for maintenance and neuronal development in the brain and retina axis. Activation of p75NTR results in neuronal apoptosis and cell death, while tropomysin receptor kinase upregulation contributes to differentiation and cell growth. Recent findings indicate that modulation of NTs and their receptors contribute to neurovascular dysfunction in the NVU. Several chronic metabolic and acute ischemic diseases affect the NVU, including diabetic and ischemic retinopathy for the retina, as well as stroke, acute encephalitis, and traumatic brain injury for the brain. This work aims to review the current evidence through published literature studying the impact of NTs and their receptors, including the p75NTR receptor, on the injured and healthy brain-retina axis.
Collapse
Affiliation(s)
- Golnoush Mirzahosseini
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Justin Mark Adam
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
3
|
Umar AK. Stem Cell's Secretome Delivery Systems. Adv Pharm Bull 2023; 13:244-258. [PMID: 37342369 PMCID: PMC10278206 DOI: 10.34172/apb.2023.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 10/05/2021] [Accepted: 12/31/2021] [Indexed: 09/01/2023] Open
Abstract
Stem cells' secretome contains biomolecules that are ready to give therapeutic activities. However, the biomolecules should not be administered directly because of their in vivo instability. They can be degraded by enzymes or seep into other tissues. There have been some advancements in localized and stabilized secretome delivery systems, which have increased their effectiveness. Fibrous, in situ, or viscoelastic hydrogel, sponge-scaffold, bead powder/ suspension, and bio-mimetic coating can maintain secretome retention in the target tissue and prolong the therapy by sustained release. Porosity, young's modulus, surface charge, interfacial interaction, particle size, adhesiveness, water absorption ability, in situ gel/film, and viscoelasticity of the preparation significantly affect the quality, quantity, and efficacy of the secretome. Therefore, the dosage forms, base materials, and characteristics of each system need to be examined to develop a more optimal secretome delivery system. This article discusses the clinical obstacles and potential solutions for secretome delivery, characterization of delivery systems, and devices used or potentially used in secretome delivery for therapeutic applications. This article concludes that secretome delivery for various organ therapies necessitates the use of different delivery systems and bases. Coating, muco-, and cell-adhesive systems are required for systemic delivery and to prevent metabolism. The lyophilized form is required for inhalational delivery, and the lipophilic system can deliver secretomes across the blood-brain barrier. Nano-sized encapsulation and surface-modified systems can deliver secretome to the liver and kidney. These dosage forms can be administered using devices such as a sprayer, eye drop, inhaler, syringe, and implant to improve their efficacy through dosing, direct delivery to target tissues, preserving stability and sterility, and reducing the immune response.
Collapse
Affiliation(s)
- Abd. Kakhar Umar
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| |
Collapse
|
4
|
Subirada PV, Tovo A, Vaglienti MV, Luna Pinto JD, Saragovi HU, Sánchez MC, Anastasía A, Barcelona PF. Etiological Roles of p75 NTR in a Mouse Model of Wet Age-Related Macular Degeneration. Cells 2023; 12:cells12020297. [PMID: 36672232 PMCID: PMC9856885 DOI: 10.3390/cells12020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Choroidal neovascularization (CNV) is a pathological angiogenesis of the choroidal plexus of the retina and is a key feature in the wet form of age-related macular degeneration. Mononuclear phagocytic cells (MPCs) are known to accumulate in the subretinal space, generating a chronic inflammatory state that promotes the growth of the choroidal neovasculature. However, how the MPCs are recruited and activated to promote CNV pathology is not fully understood. Using genetic and pharmacological tools in a mouse model of laser-induced CNV, we demonstrate a role for the p75 neurotrophin receptor (p75NTR) in the recruitment of MPCs, in glial activation, and in vascular alterations. After laser injury, expression of p75NTR is increased in activated Muller glial cells near the CNV area in the retina and the retinal pigmented epithelium (RPE)-choroid. In p75NTR knockout mice (p75NTR KO) with CNV, there is significantly reduced recruitment of MPCs, reduced glial activation, reduced CNV area, and the retinal function is preserved, as compared to wild type mice with CNV. Notably, a single intravitreal injection of a pharmacological p75NTR antagonist in wild type mice with CNV phenocopied the results of the p75NTR KO mice. Our results demonstrate that p75NTR is etiological in the development of CNV.
Collapse
Affiliation(s)
| | - Albana Tovo
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - María Victoria Vaglienti
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | | | - Horacio Uri Saragovi
- Lady Davis Research Institute-Jewish General Hospital, Center for Experimental Therapeutics, Department of Pharmacology and Therapeutics, Department of Ophthalmology and Vision Sciences, McGill University, Montreal, QC H3T 1E2, Canada
| | - Maria Cecilia Sánchez
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Agustín Anastasía
- Instituto Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba 5016, Argentina
- Correspondence: (A.A.); (P.F.B.)
| | - Pablo Federico Barcelona
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Correspondence: (A.A.); (P.F.B.)
| |
Collapse
|
5
|
The p75 neurotrophin receptor inhibitor, LM11A-31, ameliorates acute stroke injury and modulates astrocytic proNGF. Exp Neurol 2023; 359:114161. [PMID: 35787888 DOI: 10.1016/j.expneurol.2022.114161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 12/30/2022]
Abstract
The precursor form of nerve growth factor (proNGF) is essential to maintain NGF survival signaling. ProNGF is also among endogenous ligands for p75 neurotrophin receptor (p75ntr). Mounting evidence implies that p75ntr signaling contributes to neural damage in ischemic stroke. The present study examines the therapeutic effect of the p75ntr modulator LM11A-31. Adult mice underwent transient distal middle cerebral artery occlusion (t-dMCAO) followed by LM11A-31 treatment (25 mg/kg, i.p., twice daily) either for 72 h post-injury (acute phase) or afterward till two weeks post-stroke (subacute phase). LM11A-31 reduced blood-brain barrier permeability, cerebral tissue injury, and sensorimotor function in the acute phase of stroke. Ischemic brain samples showed repressed proNGF/P75ntr signaling and Caspase 3 activation in LM11A-31 treated mice, where we observed less reactive microglia and IL-1β production. LM11A-31 (20-80 nM) also mitigated neural injury induced by oxygen-glucose deprivation (OGD) in sandwich co-cultures of primary cortical neurons (PCN) and astrocytes. This concurred with JNK/PARP downregulation and reduced caspase-3 cleavage in the PCNs and was associated with repressed proNGF generation in astrocytes. Further in vitro experiments indicated human proNGF suppresses the pro-inflammatory phenotype in microglial cultures, as determined by a sharp decline in HMGB-1 production and moderate arginase-1 upregulation. Despite significant protection in acute stroke, LM11A-31 treatment did not improve cortical atrophy and sensorimotor function in the subacute phase. Our findings provide preclinical evidence supporting LM11A-31 as a promising therapy for acute stroke injury. Further investigations may elucidate if reduced astrocytic proNGF, an endogenous reservoir of pro-neurotrophins, may restrict the therapeutic window.
Collapse
|
6
|
Xiong LL, Chen L, Deng IB, Zhou XF, Wang TH. P75 neurotrophin receptor as a therapeutic target for drug development to treat neurological diseases. Eur J Neurosci 2022; 56:5299-5318. [PMID: 36017737 DOI: 10.1111/ejn.15810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
The interaction of neurotrophins with their receptors is involved in the pathogenesis and progression of various neurological diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal cord injury and acute and chronic cerebral damage. The p75 neurotrophin receptor (p75NTR) plays a pivotal role in the development of neurological dysfunctions as a result of its high expression, abnormal processing and signalling. Therefore, p75NTR represents as a vital therapeutic target for the treatment of neurodegeneration, neuropsychiatric disorders and cerebrovascular insufficiency. This review summarizes the current research progress on the p75NTR signalling in neurological deficits. We also summarize the present therapeutic approaches by genetically and pharmacologically targeting p75NTR for the attenuation of pathological changes. Based on the evolving knowledge, the role of p75NTR in the regulation of tau hyperphosphorylation, Aβ metabolism, the degeneration of motor neurons and dopaminergic neurons has been discussed. Its position as a biomarker to evaluate the severity of diseases and as a druggable target for drug development has also been elucidated. Several prototype small molecule compounds were introduced to be crucial in neuronal survival and functional recovery via targeting p75NTR. These small molecule compounds represent desirable agents in attenuating neurodegeneration and cell death as they abolish activation-induced neurotoxicity of neurotrophins via modulating p75NTR signalling. More comprehensive and in-depth investigations on p75NTR-based drug development are required to shed light on effective treatment of numerous neurological disorders.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China.,Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li Chen
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Isaac Bul Deng
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Xin-Fu Zhou
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ting-Hua Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Modulation of Mesenchymal Stem Cells for Enhanced Therapeutic Utility in Ischemic Vascular Diseases. Int J Mol Sci 2021; 23:ijms23010249. [PMID: 35008675 PMCID: PMC8745455 DOI: 10.3390/ijms23010249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells are multipotent stem cells isolated from various tissue sources, including but not limited to bone marrow, adipose, umbilical cord, and Wharton Jelly. Although cell-mediated mechanisms have been reported, the therapeutic effect of MSCs is now recognized to be primarily mediated via paracrine effects through the secretion of bioactive molecules, known as the “secretome”. The regenerative benefit of the secretome has been attributed to trophic factors and cytokines that play neuroprotective, anti-angiogenic/pro-angiogenic, anti-inflammatory, and immune-modulatory roles. The advancement of autologous MSCs therapy can be hindered when introduced back into a hostile/disease environment. Barriers include impaired endogenous MSCs function, limited post-transplantation cell viability, and altered immune-modulatory efficiency. Although secretome-based therapeutics have gained popularity, many translational hurdles, including the heterogeneity of MSCs, limited proliferation potential, and the complex nature of the secretome, have impeded the progress. This review will discuss the experimental and clinical impact of restoring the functional capabilities of MSCs prior to transplantation and the progress in secretome therapies involving extracellular vesicles. Modulation and utilization of MSCs–secretome are most likely to serve as an effective strategy for promoting their ultimate success as therapeutic modulators.
Collapse
|
8
|
Li L, Cheng D, An X, Liao G, Zhong L, Liu J, Chen Y, Yuan Y, Lu Y. Mesenchymal stem cells transplantation attenuates hyperuricemic nephropathy in rats. Int Immunopharmacol 2021; 99:108000. [PMID: 34352566 DOI: 10.1016/j.intimp.2021.108000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cells (MSCs), due to their multi-directional differentiation, paracrine and immunomodulation potentials, and the capacity of homing to target organ, have been reported to facilitate regeneration and repair of kidney and improve kidney function in acute or chronic kidney injury. The present study was aimed to evaluate whether MSCs could have a protective effect in hyperuricemic nephropathy (HN) and the underlying mechanisms. A rat HN model was established by oral administration of a mixture of potassium oxonate (PO, 1.5 g/kg) and adenine (Ad, 50 mg/kg) daily for 4 weeks. For MSCs treatment, MSCs (3 × 106 cells/kg per week) were injected via tail vein from the 2nd week for 3 times. The results showed that along with the elevated uric acid (UA) in HN rats, creatinine (CREA), blood urea nitrogen (BUN), microalbuminuria (MAU) and 24-hour urinary protein levels were significantly increased comparing with the normal control rats, while decreased after MSCs treatment. Moreover, the mRNA levels of inflammation and fibrosis-related gene were reduced in UA + MSCs group. Consistently, hematoxylin-eosin (HE) staining results showed the destruction of kidney structure and fibrosis were significantly alleviated after MSCs administration. Similarly, in vitro, NRK-52Es cells were treated with high concentration UA (10 mg/dL) in the presence of MSCs, and we found that MSCs co-culture could inhibited UA-induced cell injury, characterized as improvement of cell viability and proliferation, inhibition of apoptosis, inflammation, and fibrosis. Collectively, MSCs treatment could effectively attenuate UA-induced renal injury, and thus it might be a potential therapy to hyperuricemia-related renal diseases.
Collapse
Affiliation(s)
- Lan Li
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dongqi Cheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xingxing An
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China; Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Zhong
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China; Department of Clinical and Experimental Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|