1
|
Ou X, Yang J, Yang L, Zeng H, Shao L. Histone acetylation regulated by histone deacetylases during spermatogenesis. Andrology 2025; 13:706-717. [PMID: 39132925 DOI: 10.1111/andr.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Physical, chemical, and biological factors in the environment constantly influence in vivo and in vitro biological processes, including diverse histone modifications involved in cancer and metabolism. However, the intricate mechanisms of acetylation regulation remain poorly elucidated. In mammalian spermatogenesis, acetylation plays a crucial role in repairing double-strand DNA breaks, regulating gene transcription, and modulating various signaling pathways. RESULTS This review summarizes the histone acetylation sites in the mouse testis and provides a comprehensive overview of how histone acetylation is involved in different stages of spermatogenesis under the regulation by histone deacetylases. The regulatory functions of various class histone deacetylases during spermatogenesis and the crossroad between histone acetylation and other histone modifications are highlighted. It is imperative to understand the mechanisms of histone acetylation regulated by histone deacetylases in spermatogenesis, which facilitates to prevent and treat infertility-related diseases.
Collapse
Affiliation(s)
- Xiangying Ou
- Department of Occupational Health and Toxicology, Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Juan Yang
- Department of Occupational Health and Toxicology, Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Linfeng Yang
- Department of Occupational Health and Toxicology, Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| |
Collapse
|
2
|
Chakraborty S, Anand S, Wang X, Bhandari RK. Stable Transmission of DNA Methylation Epimutations from Germlines to the Liver and Their Association with Fatty Liver Disease in Medaka. RESEARCH SQUARE 2025:rs.3.rs-6010210. [PMID: 39989969 PMCID: PMC11844629 DOI: 10.21203/rs.3.rs-6010210/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background Environmental stressors can induce heritable traits in organisms across phyla, with distinct epigenetic alterations in gametes and phenotypic outcomes across several generations. However, the mechanisms underlying such intergenerational inheritance, mainly from the germline to the germline and from the germline to the soma, are enigmatic, given that postfertilization embryos and germline cells reprogram the epigenome in each generation to gain their cellular identity. Here, we report stable germline transmission of differential DNA methylation alterations (epimutations) and their associations with nonalcoholic fatty liver disease (NAFLD) in medaka exposed to a model estrogenic chemical but a ubiquitous environmental contaminant, bisphenol A (BPA). Results Ancestral BPA exposure in the F0 generation led to advanced NAFLD in the unexposed grandchildren generation (F2) of medaka. The F2 liver transcriptome and histopathology revealed a severe NAFLD phenotype in females. Whole-genome bisulfite sequencing of the sperm and liver revealed a gradual shift in promoter methylation from F0 sperm (hypomethylated) to F1 sperm (mix of hypo- and hypermethylated) and F2 liver (predominantly hypermethylated). Many differentially methylated promoters (DMPs) overlapped in F0 sperm, F1 sperm, and F2 liver, regardless of sex. In females, stable transmission of 1511 DMPs was found across three generations, which are associated with protein-coding genes, miRNAs, and others and linked to NAFLD and nonalcoholic steatohepatitis (NASH). Among them, 27 canonical genes maintained consistently hypermethylated promoters across three generations, with significant downregulation of their expression and enrichment in NAFLD-related pathways, mainly fat digestion, glycerolipid metabolism, and steroid biosynthesis. Conclusions The present results demonstrate stable inter- and transgenerational germline-to-germline and germline-to-soma transmission of environmentally induced DNA epimutations with F0 and F1 gametic epimutations, predicting the F2 liver phenotype-a clear transgenerational passage of the disease phenotype in medaka.
Collapse
|
3
|
Hong Z, Xu Y, Wu J. Bisphenol A: Epigenetic effects on the male reproductive system and male offspring. Reprod Toxicol 2024; 129:108656. [PMID: 39004383 DOI: 10.1016/j.reprotox.2024.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Bisphenol A (BPA) is a commonly used organic compound. Over the past decades, many studies have examined the mechanisms of BPA toxicity, with BPA-induced alterations in epigenetic modifications receiving considerable attention. Particularly in the male reproductive system, abnormal alterations in epigenetic markers can adversely affect reproductive function. Furthermore, these changes in epigenetic markers can be transmitted to offspring through the father. Here, we review the effects of BPA exposure on various epigenetic markers in the male reproductive system, including DNA methylation, histone modifications, and noncoding RNA, as well as associated changes in the male reproductive function. We also reviewed the effects of father's exposure to BPA on offspring epigenetic modification patterns.
Collapse
Affiliation(s)
- Zhilin Hong
- The center of clinical laboratory, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, PR China.
| | - Yingpei Xu
- Department of Reproductive Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, PR China
| | - Jinxiang Wu
- Department of reproductive medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, PR China.
| |
Collapse
|
4
|
Yu X, Xu J, Song B, Zhu R, Liu J, Liu YF, Ma YJ. The role of epigenetics in women's reproductive health: the impact of environmental factors. Front Endocrinol (Lausanne) 2024; 15:1399757. [PMID: 39345884 PMCID: PMC11427273 DOI: 10.3389/fendo.2024.1399757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
This paper explores the significant role of epigenetics in women's reproductive health, focusing on the impact of environmental factors. It highlights the crucial link between epigenetic modifications-such as DNA methylation and histones post-translational modifications-and reproductive health issues, including infertility and pregnancy complications. The paper reviews the influence of pollutants like PM2.5, heavy metals, and endocrine disruptors on gene expression through epigenetic mechanisms, emphasizing the need for understanding how dietary, lifestyle choices, and exposure to chemicals affect gene expression and reproductive health. Future research directions include deeper investigation into epigenetics in female reproductive health and leveraging gene editing to mitigate epigenetic changes for improving IVF success rates and managing reproductive disorders.
Collapse
Affiliation(s)
- Xinru Yu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiawei Xu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Bihan Song
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Runhe Zhu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Jiaxin Liu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Fan Liu
- Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Jie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
5
|
Wang J, Su C, Qian M, Wang X, Chen C, Liu Y, Liu W, Xiang Z, Xu B. Subchronic toxic effects of bisphenol A on the gut-liver-hormone axis in rats via intestinal flora and metabolism. Front Endocrinol (Lausanne) 2024; 15:1415216. [PMID: 39268238 PMCID: PMC11390593 DOI: 10.3389/fendo.2024.1415216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/30/2024] [Indexed: 09/15/2024] Open
Abstract
Background Bisphenol A (BPA), a characteristic endocrine disruptor, is a substance that seriously interferes with the human endocrine system and causes reproductive disorders and developmental abnormalities. However, its toxic effects on the gut-liver-hormone axis are still unclear. Method Male and female rats were exposed to BPA (300 mg/kg) by oral gavage for 60 consecutive days. H&E staining was used for histopathological evaluation, and the serum biochemical indexes were determined using an automatic analyzer. The 16S rRNA gene sequencing was used to detect the intestinal microbial diversity, and the GC-MS was used to analyze the contents of short-chain fatty acids (SCFAs) in colon contents. UPLC-QTOF MS was used to analyze the related metabolites. The ELISA method was used to assess the levels of serum inflammatory factors. Results Histopathological analysis indicated that the liver, heart, and testis were affected by BPA. There was a significant effect on alanine aminotransferase (ALT), triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL) in the male-BPA group (P < 0.05), and globulin (GLB), indirect bilirubin (IBIL), alkaline phosphatase (ALP), ALT, TG, TC, high-density lipoprotein (HDL), and creatinine (Cr) in the female-BPA group (P < 0.05). Metagenomics (16S rRNA gene sequencing) analysis indicated that BPA reduced the diversity and changed the composition of gut microbiota in rats significantly. Compared with the control and blank groups, the contents of caproic acid, isobutyric acid, isovaleric acid, and propanoic acid in the colon contents decreased in the male-BPA group (P < 0.05), and caproic acid, isobutyric acid, isovaleric acid, and valeric acid in the colon contents decreased in the female-BPA group (P < 0.05). Metabolomic analysis of the serum indicated that BPA could regulate bile acid levels, especially ursodeoxycholic acid (UDCA) and its conjugated forms. The contents of amino acids, hormones, and lipids were also significantly affected after exposure to BPA. The increase in interleukin-6 (IL-6), interleukin-23 (IL-23), and transforming growth factor-β (TGF-β) in the serum of the male-BPA group suggests that BPA exposure affects the immune system. Conclusion BPA exposure will cause toxicity to rats via disrupting the gut-liver-hormone axis.
Collapse
Affiliation(s)
- Jiaqi Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
- Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang, China
| | - Ce Su
- Pharmacy Department, Shenyang Tenth People's Hospital, Shenyang, China
| | - Mingqin Qian
- Department of Ultrasound, People's Hospital of Liaoning Province, Shenyang, China
| | - Xin Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
- Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang, China
| | - Changlan Chen
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Yangcheng Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
- Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang, China
| | - Wei Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Zheng Xiang
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
- Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang, China
| | - Baoli Xu
- Department of Pharmacy, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
6
|
Habibi E, Miller MR, Schreier A, Campbell MA, Hung TC, Gille D, Baerwald M, Finger AJ. Single generation epigenetic change in captivity and reinforcement in subsequent generations in a delta smelt (Hypomesus transpacificus) conservation hatchery. Mol Ecol 2024; 33:e17449. [PMID: 38967124 DOI: 10.1111/mec.17449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
A refugial population of the endangered delta smelt (Hypomesus transpacificus) has been maintained at the Fish Conservation and Culture Laboratory (FCCL) at UC Davis since 2008. Despite intense genetic management, fitness differences between wild and cultured fish have been observed at the FCCL. To investigate the molecular underpinnings of hatchery domestication, we used whole-genome bisulfite sequencing to quantify epigenetic differences between wild and hatchery-origin delta smelt. Differentially methylated regions (DMRs) were identified from 104 individuals by comparing the methylation patterns in different generations of hatchery fish (G1, G2, G3) with their wild parents (G0). We discovered a total of 132 significant DMRs (p < .05) between G0 and G1, 132 significant DMRs between G0 and G2, and 201 significant DMRs between G0 and G3. Our results demonstrate substantial differences in methylation patterns emerged between the wild and hatchery-reared fish in the early generations in the hatchery, with a higher proportion of hypermethylated DMRs in hatchery-reared fish. The rearing environment was found to be a stronger predictor of individual clustering based on methylation patterns than family, sex or generation. Our study indicates a reinforcement of the epigenetic status with successive generations in the hatchery environment, as evidenced by an increase in methylation in hypermethylated DMRs and a decrease in methylation in hypomethylated DMRs over time. Lastly, our results demonstrated heterogeneity in inherited methylation pattern in families across generations. These insights highlight the long-term consequences of hatchery practices on the epigenetic landscape, potentially impacting wild fish populations.
Collapse
Affiliation(s)
- Ensieh Habibi
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Michael R Miller
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Andrea Schreier
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Matthew A Campbell
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Tien-Chieh Hung
- Fish Conservation and Culture Laboratory, Biological and Agricultural Engineering Department, University of California Davis, Davis, California, USA
| | - Daphne Gille
- California Department of Water Resources, Division of Integrated Science and Engineering, West Sacramento, California, USA
| | - Melinda Baerwald
- California Department of Water Resources, Division of Integrated Science and Engineering, West Sacramento, California, USA
| | - Amanda J Finger
- Department of Animal Science, University of California Davis, Davis, California, USA
| |
Collapse
|
7
|
Giommi C, Lombó M, Habibi HR, Rossi G, Basili D, Mangiaterra S, Ladisa C, Chemello G, Carnevali O, Maradonna F. The probiotic SLAB51 as agent to counteract BPA toxicity on zebrafish gut microbiota -liver-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169303. [PMID: 38135076 DOI: 10.1016/j.scitotenv.2023.169303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
A plethora of studies have so far described the toxic effects of bisphenol A (BPA) on organism health, highlighting the urgent need to find new strategies not only to reduce the presence of this toxicant but also to counteract its adverse effects. In this context, probiotics emerged as a potential tool since they promote organism welfare. Using a multidisciplinary approach, this study explores the effects of SLAB51 dietary administration to counteract BPA toxicity using zebrafish as a model. Adult males and females were maintained under standard conditions (control group; C), exposed for 28 days via the water to an environmental relevant dose of BPA (10 μg/L; BPA), dietary treated with SLAB51 (109 CFU/g of body weight; P) and co-treated with BPA plus SLAB51 (BPA + P). In the gut, exposure to BPA resulted in altered architecture in both males and females, with females also experiencing an increase of pathogenic bacterial species. Co-administration of BPA + P led to the restoration of normal gut architecture, favored beneficial bacteria colonization, and decreased the abundance of pathogenic species. In the liver, male BPA exposure led to steatosis and glycogen depletion, which was partially mitigated by SLAB51 co-administration. In contrast, in females exposed to BPA, the lack of steatosis along with the greater glycogen depletion, suggested an increase in energy demand as supported by the metabolomic phenotype. The analysis of liver metabolites in BPA + P males revealed increased levels of anserine and reduced levels of glutamine, which could lie behind the counteraction of the brain histopathological damage caused by BPA. In BPA + P females, a reduction of retinoic acid was found in the liver, suggesting an increase in retinoids responsible for BPA detoxification. Overall, these results demonstrate that SLAB51 exerts its beneficial effects on the gut microbiota-brain-liver axis through distinct molecular pathways, effectively mitigating the pleiotropic toxicity of BPA.
Collapse
Affiliation(s)
- Christian Giommi
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy.
| | - Marta Lombó
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy; Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, 24071 León, Spain.
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica (MC), Italy.
| | - Danilo Basili
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Sara Mangiaterra
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica (MC), Italy.
| | - Claudia Ladisa
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Giulia Chemello
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy.
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy.
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy.
| |
Collapse
|
8
|
Wang C, Xu J, Luo S, Huang J, Ji D, Qiu X, Song X, Cao X, Niu C, Zeng X, Zhang Z, Ma Y, Chen J, Chen D, Zhong X, Wei Y. Parental Exposure to Environmentally Relevant Concentrations of Bisphenol-A Bis(diphenyl phosphate) Impairs Vascular Development in Offspring through DNA/RNA Methylation-Dependent Transmission. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16176-16189. [PMID: 37847870 DOI: 10.1021/acs.est.3c03579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Bisphenol-A bis(diphenyl phosphate) (BDP) has been increasingly detected in indoor environmental and human samples. Little is known about its developmental toxicity, particularly the intergenerational effects of parental exposure. In this study, adult zebrafish were exposed to BDP at 30-30,000 ng/L for 28 days, with results showing that exposure did not cause a transfer of BDP or its metabolites to offspring. Vascular morphometric profiling revealed that parental exposure to BDP at 30 and 300 ng/L exerted significant effects on the vascular development of offspring, encompassing diverse alterations in multiple types of blood vessels. N6-Methyladenosine (m6A) methylated RNA immunoprecipitation sequencing of larvae in the 300 ng/L group revealed 378 hypomethylated and 350 hypermethylated m6A peaks that were identified in mRNA transcripts of genes crucial for vascular development, including the Notch/Vegf signaling pathway. Concomitant changes in 5 methylcytosine (m5C) DNA methylation and gene expression of m6A modulators (alkbh5, kiaa1429, and ythdf1) were observed in both parental gonads and offspring exposed to BDP. These results reveal that parental exposure to low concentrations of BDP caused offspring vascular disorders by interfering with DNA and RNA methylation, uncovering a unique DNA-RNA modification pattern in the intergenerational transmission of BDP's developmental toxicity.
Collapse
Affiliation(s)
- Can Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, California 92521, United States
| | - Jinkun Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shili Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiajing Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Di Ji
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuelin Qiu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xin Song
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaolian Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Congying Niu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiangyu Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhuyi Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ya Ma
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Junzhou Chen
- School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
9
|
Endocrine-Disrupting Effects of Bisphenol A on the Cardiovascular System: A Review. J Xenobiot 2022; 12:181-213. [PMID: 35893265 PMCID: PMC9326625 DOI: 10.3390/jox12030015] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Currently, the plastic monomer and plasticizer bisphenol A (BPA) is one of the most widely used chemicals. BPA is present in polycarbonate plastics and epoxy resins, commonly used in food storage and industrial or medical products. However, the use of this synthetic compound is a growing concern, as BPA is an endocrine-disrupting compound and can bind mainly to estrogen receptors, interfering with different functions at the cardiovascular level. Several studies have investigated the disruptive effects of BPA; however, its cardiotoxicity remains unclear. Therefore, this review’s purpose is to address the most recent studies on the implications of BPA on the cardiovascular system. Our findings suggest that BPA impairs cardiac excitability through intracellular mechanisms, involving the inhibition of the main ion channels, changes in Ca2+ handling, the induction of oxidative stress, and epigenetic modifications. Our data support that BPA exposure increases the risk of developing cardiovascular diseases (CVDs) including atherosclerosis and its risk factors such as hypertension and diabetes. Furthermore, BPA exposure is also particularly harmful in pregnancy, promoting the development of hypertensive disorders during pregnancy. In summary, BPA exposure compromises human health, promoting the development and progression of CVDs and risk factors. Further studies are needed to clarify the human health effects of BPA-induced cardiotoxicity.
Collapse
|
10
|
Pang L, Jiang X, Lian X, Chen J, Song EF, Jin LG, Xia ZY, Ma HC, Cai Y. Caloric restriction-mimetics for the reduction of heart failure risk in aging heart: with consideration of gender-related differences. Mil Med Res 2022; 9:33. [PMID: 35786219 PMCID: PMC9252041 DOI: 10.1186/s40779-022-00389-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
The literature is full of claims regarding the consumption of polyphenol or polyamine-rich foods that offer some protection from developing cardiovascular disease (CVD). This is achieved by preventing cardiac hypertrophy and protecting blood vessels through improving the function of endothelium. However, do these interventions work in the aged human hearts? Cardiac aging is accompanied by an increase in left ventricular hypertrophy, along with diastolic and systolic dysfunction. It also confers significant cardiovascular risks for both sexes. The incidence and prevalence of CVD increase sharply at an earlier age in men than women. Furthermore, the patterns of heart failure differ between sexes, as do the lifetime risk factors. Do caloric restriction (CR)-mimetics, rich in polyphenol or polyamine, delay or reverse cardiac aging equally in both men and women? This review will discuss three areas: (1) mechanisms underlying age-related cardiac remodeling; (2) gender-related differences and potential mechanisms underlying diminished cardiac response in older men and women; (3) we select a few polyphenol or polyamine rich compounds as the CR-mimetics, such as resveratrol, quercetin, curcumin, epigallocatechin gallate and spermidine, due to their capability to extend health-span and induce autophagy. We outline their abilities and issues on retarding aging in animal hearts and preventing CVD in humans. We discuss the confounding factors that should be considered for developing therapeutic strategies against cardiac aging in humans.
Collapse
Affiliation(s)
- Lei Pang
- Department of Anesthesiology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Xi Jiang
- Health Promotion Center, the First Hospital of Jilin University, Changchun, 130021, China
| | - Xin Lian
- Department of Urology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Jie Chen
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512000, Guangdong, China
| | - Er-Fei Song
- Department of Metabolic and Bariatric Surgery, Jinan University First Affiliated Hospital, Guangzhou, 510630, China.,Department of Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Lei-Gang Jin
- Department of Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China.,State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Zheng-Yuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Hai-Chun Ma
- Department of Anesthesiology, the First Hospital of Jilin University, Changchun, 130021, China.
| | - Yin Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
11
|
Kim B, Choi Y. The Development, Differentiation, and Toxicity in Reproduction. Int J Mol Sci 2022; 23:ijms23137183. [PMID: 35806199 PMCID: PMC9266829 DOI: 10.3390/ijms23137183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Byeongseok Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
- Humanized Pig Center, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-450-3969
| |
Collapse
|
12
|
Terrazas-Salgado L, García-Gasca A, Betancourt-Lozano M, Llera-Herrera R, Alvarado-Cruz I, Yáñez-Rivera B. Epigenetic Transgenerational Modifications Induced by Xenobiotic Exposure in Zebrafish. Front Cell Dev Biol 2022; 10:832982. [PMID: 35281093 PMCID: PMC8914061 DOI: 10.3389/fcell.2022.832982] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Zebrafish (Danio rerio) is a well-established vertebrate model in ecotoxicology research that responds to a wide range of xenobiotics such as pesticides, drugs, and endocrine-disrupting compounds. The epigenome can interact with the environment and transform internal and/or external signals into phenotypic responses through changes in gene transcription. Environmental exposures can also generate epigenetic variations in offspring even by indirect exposure. In this review, we address the advantages of using zebrafish as an experimental animal model to study transgenerational epigenetic processes upon exposure to xenobiotics. We focused mostly on DNA methylation, although studies on post-translational modifications of histones, and non-coding RNAs related to xenobiotic exposure in zebrafish are also discussed. A revision of the methods used to study epigenetic changes in zebrafish revealed the relevance and reproducibility for epigenetics-related research. PubMed and Google Scholar databases were consulted for original research articles published from 2013 to date, by using six keywords: zebrafish, epigenetics, exposure, parental, transgenerational, and F2. From 499 articles identified, 92 were considered, of which 14 were selected as included F2 and epigenetic mechanisms. Current knowledge regarding the effect of xenobiotics on DNA methylation, histone modifications, and changes in non-coding RNAs expressed in F2 is summarized, along with key experimental design considerations to characterize transgenerational effects.
Collapse
Affiliation(s)
| | | | | | - Raúl Llera-Herrera
- Instituto de Ciencias del Mar y Limnología—Unidad Académica Mazatlán, Universidad Nacional Autónoma de México, Mazatlán, Mexico
| | - Isabel Alvarado-Cruz
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, AZ, United States
| | - Beatriz Yáñez-Rivera
- Centro de Investigación en Alimentación y Desarrollo, A. C., Mazatlán, Mexico
- Consejo Nacional de Ciencia y Tecnología, México, Mexico
- *Correspondence: Beatriz Yáñez-Rivera,
| |
Collapse
|
13
|
Ma X, Fan Y, Xiao W, Ding X, Hu W, Xia Y. Glufosinate-Ammonium Induced Aberrant Histone Modifications in Mouse Sperm Are Concordant With Transcriptome in Preimplantation Embryos. Front Physiol 2022; 12:819856. [PMID: 35145430 PMCID: PMC8821811 DOI: 10.3389/fphys.2021.819856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/31/2021] [Indexed: 11/15/2022] Open
Abstract
Glufosinate-ammonium (GLA) is a widely used herbicide with emerging concern over its male reproductive toxicity. Abnormalities in sperm histone modification induced by GLA exposure observed in our previous study aroused our interest in whether such alterations could further affect embryonic gene expression. Here we administered adult male mice with 0.2 mg/kg⋅day of GLA for 5 weeks to collect their sperm or 4-cell embryos after copulation. Cleavage Under Targets and Tagmentation (CUT&Tag) sequencing showed alterations of sperm H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 acetylation (H3K27ac), which are active histone modification marks involved in embryo development, while RNA sequencing identified differentially expressed genes in 4-cell embryos. Differentially H3K4me3 and H3K27ac occupied regions were mainly distributed at the gene promoters and putative enhancers, and were enriched in pathways related to the immune system and nervous system. Integrative analysis of these sequencing data showed that genes such as Mgl2 with increased H3K4me3 and H3K27ac in sperm were up-regulated in embryos, and vice versa for genes such as Dcn. Additionally, differentially occupied H3K4me3 and H3K27ac in sperm were linked to gene expression changes in both paternal and maternal alleles of 4-cell embryos. In conclusion, GLA-induced changes in sperm H3K4me3 and H3K27ac are concordant with gene expression in preimplantation embryos, which might further affect embryo development and offspring health.
Collapse
Affiliation(s)
- Xuan Ma
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yun Fan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Microbes and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenwen Xiao
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xingwang Ding
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Escarda-Castro E, Herráez MP, Lombó M. Effects of bisphenol A exposure during cardiac cell differentiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117567. [PMID: 34126515 DOI: 10.1016/j.envpol.2021.117567] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/21/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Heart development requires a precise temporal regulation of gene expression in cardiomyoblasts. Therefore, the transcriptional changes in differentiating cells can lead to congenital heart diseases. Although the genetic mutations underlie most of these alterations, exposure to environmental contaminants, such as bisphenol A (BPA), has been recently considered as a risk factor as well. In this study we investigated the genotoxic and epigenotoxic effects of BPA throughout cardiomyocyte differentiation. H9c2 cells (rat myoblasts) were exposed to 10 and 30 μM BPA before and during the last two days of cardiac-driven differentiation. Then, we have analysed the phenotypic and molecular modifications (at transcriptional, genetic and epigenetic level). The results showed that treated myoblasts developed a skeletal muscle cell-like phenotype. The transcriptional changes induced by BPA in genes codifying proteins involved in heart differentiation and function depend on the window of exposure to BPA. The exposure before differentiation repressed the expression of heart transcription factors (Hand2 and Gata4), whereas exposure during differentiation reduced the expression of cardiac-specific genes (Tnnt2, Myom2, Sln, and Atp2a1). Additionally, significant effects were observed regarding DNA damage and histone acetylation levels after the two periods of BPA exposure: in cells exposed to the toxicant the percentage of DNA repair foci (formed by the co-localization of γH2AX and 53BP1) increased in a dose-dependent manner, whereas the treatment with the toxicant triggered a decrease in the epigenetic marks H3K9ac and H3K27ac. Our in vitro results reveal that BPA seriously interferes with the process of cardiomyocyte differentiation, which could be related to the reported in vivo effects of this toxicant on cardiogenesis.
Collapse
Affiliation(s)
- Enrique Escarda-Castro
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - María Paz Herráez
- Department of Molecular Biology, Faculty of Biology, University of León, Campus Vegazana s/n, León, 24071, Spain
| | - Marta Lombó
- Department of Animal Reproduction, INIA, Av. Puerta de Hierro, 18, Madrid, Spain.
| |
Collapse
|