1
|
Bhardwaj S, Bulluss M, D'Aubeterre A, Derakhshani A, Penner R, Mahajan M, Mahajan VB, Dufour A. Integrating the analysis of human biopsies using post-translational modifications proteomics. Protein Sci 2024; 33:e4979. [PMID: 38533548 DOI: 10.1002/pro.4979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024]
Abstract
Proteome diversities and their biological functions are significantly amplified by post-translational modifications (PTMs) of proteins. Shotgun proteomics, which does not typically survey PTMs, provides an incomplete picture of the complexity of human biopsies in health and disease. Recent advances in mass spectrometry-based proteomic techniques that enrich and study PTMs are helping to uncover molecular detail from the cellular level to system-wide functions, including how the microbiome impacts human diseases. Protein heterogeneity and disease complexity are challenging factors that make it difficult to characterize and treat disease. The search for clinical biomarkers to characterize disease mechanisms and complexity related to patient diagnoses and treatment has proven challenging. Knowledge of PTMs is fundamentally lacking. Characterization of complex human samples that clarify the role of PTMs and the microbiome in human diseases will result in new discoveries. This review highlights the key role of proteomic techniques used to characterize unknown biological functions of PTMs derived from complex human biopsies. Through the integration of diverse methods used to profile PTMs, this review explores the genetic regulation of proteoforms, cells of origin expressing specific proteins, and several bioactive PTMs and their subsequent analyses by liquid chromatography and tandem mass spectrometry.
Collapse
Affiliation(s)
- Sonali Bhardwaj
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mitchell Bulluss
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ana D'Aubeterre
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Afshin Derakhshani
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Regan Penner
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - MaryAnn Mahajan
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California, USA
| | - Vinit B Mahajan
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, USA
| | - Antoine Dufour
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Das N, Menon NG, de Almeida LGN, Woods PS, Heynen ML, Jay GD, Caffery B, Jones L, Krawetz R, Schmidt TA, Dufour A. Proteomics Analysis of Tears and Saliva From Sjogren's Syndrome Patients. Front Pharmacol 2021; 12:787193. [PMID: 34950038 PMCID: PMC8689002 DOI: 10.3389/fphar.2021.787193] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
Sjogren's syndrome (SS) is characterized by dysfunctional mucous membranes and dysregulated moisture-secreting glands resulting in various symptoms, including dry mouth and dry eyes. Here, we wanted to profile and compare the tear and saliva proteomes of SS patients to healthy controls. Tear and saliva samples were collected and subjected to an isotopic dimethylation labeling shotgun proteomics workflow to identify alterations in protein levels. In tear samples, we identified 83 upregulated and 112 downregulated proteins. Pathway enrichment analysis of the changing proteins by Metascape identified leukocyte transendothelial migration, neutrophil degranulation, and post-translation protein phosphorylation in tears of SS patients. In healthy controls' tears, an enrichment for proteins related to glycolysis, amino acid metabolism and apoptotic signaling pathway were identified. In saliva, we identified 108 upregulated and 45 downregulated proteins. Altered pathways in SS patients' saliva included cornification, sensory perception to taste and neutrophil degranulation. In healthy controls' saliva, an enrichment for proteins related to JAK-STAT signaling after interleukin-12 stimulation, phagocytosis and glycolysis in senescence were identified. Dysregulated protease activity is implicated in the initiation of inflammation and immune cell recruitment in SS. We identified 20 proteases and protease inhibitors in tears and 18 in saliva which are differentially expressed between SS patients and healthy controls. Next, we quantified endogenous proteoglycan 4 (PRG4), a mucin-like glycoprotein, in tear wash and saliva samples via a bead-based immune assay. We identified decreased levels of PRG4 in SS patients' tear wash compared to normal samples. Conversely, in saliva, we found elevated levels of PRG4 concentration and visualized PRG4 expression in human parotid gland via immunohistological staining. These findings will improve our mechanistic understanding of the disease and changes in SS patients' protein expression will help identify new potential drug targets. PRG4 is among the promising targets, which we identified here, in saliva, for the first time.
Collapse
Affiliation(s)
- Nabangshu Das
- Departments of Physiology and Pharmacology and Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute, University of Calgary, Calgary, AB, Canada
| | - Nikhil G. Menon
- Department of Biomedical Engineering, School of Dental Medicine, UConn Health, Farmington, CT, United States
| | - Luiz G. N. de Almeida
- Departments of Physiology and Pharmacology and Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute, University of Calgary, Calgary, AB, Canada
| | - Paige S. Woods
- Department of Emergency Medicine, Warren Alpert Medical School and School of Engineering, Brown University, Providence, RI, United States
| | - Miriam L. Heynen
- Centre for Ocular Research and Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Gregory D. Jay
- Department of Emergency Medicine, Warren Alpert Medical School and School of Engineering, Brown University, Providence, RI, United States
| | | | - Lyndon Jones
- Centre for Ocular Research and Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Roman Krawetz
- McCaig Institute, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Tannin A. Schmidt
- McCaig Institute, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, School of Dental Medicine, UConn Health, Farmington, CT, United States
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|