1
|
Jiang J, Li D, Cui D, Wan Y, Zhou P, Cui X, Yu H. Identification of a Novel Mitochondrial-Related Gene Signature for BMSCs in Osteoporosis Combining Single-Cell and Bulk Transcriptome Data. Biochem Genet 2025:10.1007/s10528-025-11099-y. [PMID: 40221950 DOI: 10.1007/s10528-025-11099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
Osteoporosis (OS) is a prevalent skeletal disorder characterized by reduced bone mass and increased fracture risk, often linked to compromised functions of bone mesenchymal stem cells (BMSCs). Mitochondrial dysfunction and aberrant mitophagy are implicated in OS pathogenesis. This study aimed to identify a novel mitochondrial-related gene signature in BMSCs from OS patients by integrating single-cell and bulk transcriptome data. We analyzed single-cell RNA sequencing data from GSE147287 and bulk transcriptome data from GSE35956 to identify differentially expressed mitochondrial-related genes (MRGs) in BMSCs between healthy individuals and OS patients. Key genes were identified using LASSO logistic regression and random forest algorithms, and their differential expression was validated by RT-qPCR, Western blot, and immunofluorescence. Functional assays, including osteogenic differentiation and β-galactosidase staining, were conducted following siRNA-mediated knockdown of DUT. We identified 28 differentially expressed MRGs, with four key genes (DUT, UQCR10, DNAJC4, and MRPL33) further confirmed. Electron microscopy scanning showed damage to BMSCs mitochondria and decreased osteogenic differentiation ability in OS. Silencing DUT significantly impairs the mitochondrial function and osteogenic differentiation ability of BMSCs, indicating its potential role in OS development. This study identifies a mitochondrial gene signature in BMSCs linked to osteoporosis, with DUT emerging as a key regulator. DUT silencing impairs mitochondrial function and osteogenic differentiation, suggesting it as a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Jishi Jiang
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China
| | - Dan Li
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China
| | - Di Cui
- Fuyang Medical College, Fuyang Normal University, Fuyang, Anhui, China
| | - Yunpeng Wan
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China
| | - Pinghui Zhou
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu University College, Bengbu, Anhui, China.
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China.
| | - Xilong Cui
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China.
| | - Haiyang Yu
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China.
| |
Collapse
|
2
|
Liu X, Feng J, Guo M, Chen C, Zhao T, Sun X, Zhang Y. Resetting the aging clock through epigenetic reprogramming: Insights from natural products. Pharmacol Ther 2025; 270:108850. [PMID: 40221101 DOI: 10.1016/j.pharmthera.2025.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/04/2024] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Epigenetic modifications play a critical role in regulating gene expression under various physiological and pathological conditions. Epigenetic modifications reprogramming is a recognized hallmark of aging and a key component of the aging clock used to differentiate between chronological and biological age. The potential for prospective diagnosis and regulatory capabilities position epigenetic modifications as an emerging drug target to extend longevity and alleviate age-related organ dysfunctions. In the past few decades, numerous preclinical studies have demonstrated the therapeutic potential of natural products in various human diseases, including aging, with some advancing to clinical trials and clinical application. This review highlights the discovery and recent advancements in the aging clock, as well as the potential use of natural products as anti-aging therapeutics by correcting disordered epigenetic reprogramming. Specifically, the focus is on the imbalance of histone modifications, alterations in DNA methylation patterns, disrupted ATP-dependent chromatin remodeling, and changes in RNA modifications. By exploring these areas, new insights can be gained into aging prediction and anti-aging interventions.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Jing Feng
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Madi Guo
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Chen Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Tong Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Xiuxiu Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China.
| |
Collapse
|
3
|
Huang M, Xing F, Hu Y, Sun F, Zhang C, Xv Z, Yang Y, Deng Q, Shi R, Li L, Zhu J, Xu F, Li D, Wang J. Causal inference study of plasma proteins and blood metabolites mediating the effect of obesity-related indicators on osteoporosis. Front Endocrinol (Lausanne) 2025; 16:1435295. [PMID: 40041284 PMCID: PMC11876022 DOI: 10.3389/fendo.2025.1435295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025] Open
Abstract
Background Osteoporosis and obesity are both major global public health problems. Observational studies have found that osteoporosis might be related to obesity. Mendelian randomization (MR) analysis could overcome the limitations of observational studies in assessing causal relationships. Objective This study aims to evaluate the causal potential relationship between obesity-related indicators and osteoporosis by using a two-sample MR analysis and to identify potential mediators. Method A total of 53 obesity-related indicators, 3,282 plasma protein lists, and 452 blood metabolite lists were downloaded from the public data set as instrumental variables, and the osteoporosis GWAS data of the MRC IEU Open GWAS database was used as the outcome indicators. Using two-sample univariate MR, multivariate MR, and intermediate MR, the causal relationship and mediating factors between obesity-related indicators and osteoporosis were identified. Results The IVW model results show that 31 obesity-related indicators may have a significant causal relationship with osteoporosis (P < 0.05), except for waist circumference (id: Ieu-a-71, OR = 1.00566); the remaining 30 indicators could reduce the risk of osteoporosis (OR: 0.983-0.996). A total of 25 plasma protein indicators may have a significant causal relationship with osteoporosis (P < 0.05), and 10 of them, such as ANKED46, KLRF1, and LPO, CA9 may have a protective effect on osteoporosis (OR: 0.996-0.999), while the other 15 such as ATP1B1, zinc finger protein 175, could increase the risk of osteoporosis (OR: 1.001-1.004). For blood metabolite indicators, except for alanine (id: Met a-469, OR: 1.071), the other six blood metabolite indicators including uridine and 1-linoleoylglycerophosphoethanolaminecan may have a protective effect on osteoporosis (P < 0.05, OR: 0.961-0.992). The direction of causal relationship of MR is all correct; the heterogeneity is all not significant and not affected by horizontal pleiotropy. Using multivariate and mediated MR analysis, it was found that the protective effect of obesity-related indicators against osteoporosis may be mediated by histone-lysine N-methyltransferase in plasma proteins and alanine in blood metabolites. Conclusion Obesity may confer a protective effect against osteoporosis, potentially mediated by EHMT2 in plasma proteins and alanine in blood metabolites. Further empirical research is required to fully elucidate the mechanisms behind the influence of obesity on osteoporosis. Interventions on obesity-related factors to reduce the risk of osteoporosis while controlling other adverse effects associated with obesity may require further research.
Collapse
Affiliation(s)
- Maomao Huang
- Rehabilitation Medicine Department, The Affiliated Hospital Of Southwest Medical University, Luzhou, China
- Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, China
- Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou Science and Technology Bureau, Luzhou, China
| | - Fei Xing
- Rehabilitation Medicine Department, The Affiliated Hospital Of Southwest Medical University, Luzhou, China
- Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou Science and Technology Bureau, Luzhou, China
| | - Yue Hu
- Rehabilitation Medicine Department, The Affiliated Hospital Of Southwest Medical University, Luzhou, China
| | - Fuhua Sun
- Rehabilitation Medicine Department, The Affiliated Hospital Of Southwest Medical University, Luzhou, China
- Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou Science and Technology Bureau, Luzhou, China
| | - Chi Zhang
- Rehabilitation Medicine Department, The Affiliated Hospital Of Southwest Medical University, Luzhou, China
- Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, China
- Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou Science and Technology Bureau, Luzhou, China
| | - Zhangyu Xv
- Rehabilitation Medicine Department, The Affiliated Hospital Of Southwest Medical University, Luzhou, China
| | - Yue Yang
- Rehabilitation Medicine Department, The Affiliated Hospital Of Southwest Medical University, Luzhou, China
| | - Qi Deng
- Rehabilitation Medicine Department, The Affiliated Hospital Of Southwest Medical University, Luzhou, China
| | - Ronglan Shi
- Rehabilitation Medicine Department, The Affiliated Hospital Of Southwest Medical University, Luzhou, China
| | - Lei Li
- Rehabilitation Medicine Department, The Affiliated Hospital Of Southwest Medical University, Luzhou, China
| | - Jiayi Zhu
- Rehabilitation Medicine Department, The Affiliated Hospital Of Southwest Medical University, Luzhou, China
| | - Fangyuan Xu
- Rehabilitation Medicine Department, The Affiliated Hospital Of Southwest Medical University, Luzhou, China
| | - Dan Li
- Rehabilitation Medicine Department, The Affiliated Hospital Of Southwest Medical University, Luzhou, China
- Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou Science and Technology Bureau, Luzhou, China
| | - Jianxiong Wang
- Rehabilitation Medicine Department, The Affiliated Hospital Of Southwest Medical University, Luzhou, China
- Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, China
- Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou Science and Technology Bureau, Luzhou, China
| |
Collapse
|
4
|
Wei Y, Qian H, Zhang X, Wang J, Yan H, Xiao N, Zeng S, Chen B, Yang Q, Lu H, Xie J, Xie Z, Qin D, Li Z. Progress in multi-omics studies of osteoarthritis. Biomark Res 2025; 13:26. [PMID: 39934890 DOI: 10.1186/s40364-025-00732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
Osteoarthritis (OA), a ubiquitous degenerative joint disorder, is marked by pain and disability, profoundly impacting patients' quality of life. As the population ages, the global prevalence of OA is escalating. Omics technologies have become instrumental in investigating complex diseases like OA, offering comprehensive insights into its pathogenesis and progression by uncovering disease-specific alterations across genomics, transcriptomics, proteomics, and metabolomics levels. In this review, we systematically analyzed and summarized the application and recent achievements of omics technologies in OA research by scouring relevant literature in databases such as PubMed. These studies have shed light on new potential therapeutic targets and biomarkers, charting fresh avenues for OA diagnosis and treatment. Furthermore, in our discussion, we highlighted the immense potential of spatial omics technologies in unraveling the molecular mechanisms of OA and in the development of novel therapeutic strategies, proposing future research directions and challenges. Collectively, this study encapsulates the pivotal advances in current OA research and prospects for future investigation, providing invaluable references for a deeper understanding and treatment of OA. This review aims to synthesize the recent progress of omics technologies in the realm of OA, aspiring to furnish theoretical foundations and research orientations for more profound studies of OA in the future.
Collapse
Affiliation(s)
- Yuanyuan Wei
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - He Qian
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiaoyu Zhang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jian Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Heguo Yan
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Niqin Xiao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sanjin Zeng
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bingbing Chen
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qianqian Yang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Hongting Lu
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jing Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhaohu Xie
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Zhaofu Li
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| |
Collapse
|
5
|
Zhang Q, Zhao YX, Li LF, Fan QQ, Huang BB, Du HZ, Li C, Li W. Metabolism-Related Adipokines and Metabolic Diseases: Their Role in Osteoarthritis. J Inflamm Res 2025; 18:1207-1233. [PMID: 39886385 PMCID: PMC11780177 DOI: 10.2147/jir.s499835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/31/2024] [Indexed: 02/01/2025] Open
Abstract
Osteoarthritis (OA) affects several joints but tends to be more prevalent in those that are weight-bearing, such as the knees, which are the most heavily loaded joints in the body. The incidence and disability rates of OA have continued to increase and seriously jeopardise the quality of life of middle-aged and older adults. However, OA is more than just a wear and tear disease; its aetiology is complex, and its pathogenesis is poorly understood. Metabolic syndrome (MetS) has emerged as a critical driver of OA development. This condition contributes to the formation of a distinct phenotype, termed metabolic syndrome-associated osteoarthritis (MetS-OA),which differs from other metabolically related diseases by its unique pathophysiological mechanisms and clinical presentation. As key mediators of MetS, metabolic adipokines such as leptin, lipocalin, and resistin regulate inflammation and bone metabolism through distinct or synergistic signaling pathways. Their modulation of inflammatory responses and bone remodeling processes plays a critical role in the pathogenesis and progression of OA. Due to their central role in regulating inflammation and bone remodeling, metabolic adipokines not only deepen our understanding of MetS-OA pathogenesis but also represent promising targets for novel therapeutic strategies that could slow disease progression and improve clinical outcomes in affected patients.
Collapse
Affiliation(s)
- Qian Zhang
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Yi Xuan Zhao
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Long Fei Li
- Cerebrovascular Disease Ward, The First People’s Hospital of Ping Ding Shan, Pingdingshan, Henan, People’s Republic of China
| | - Qian Qian Fan
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Bin Bin Huang
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Hong Zhen Du
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Chen Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Wei Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| |
Collapse
|
6
|
Chen N, Zhang J, Yin C, Liao Y, Song L, Hu T, Pan X. Abnormal methylation of Mill1 gene regulates osteogenic differentiation involved in various phenotypes of skeletal fluorosis in rats and methionine intervention. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117519. [PMID: 39674021 DOI: 10.1016/j.ecoenv.2024.117519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Excessive fluoride intake can lead to skeletal fluorosis. Nutritional differences in the same fluoride-exposed environment result in osteosclerosis, osteoporosis, and osteomalacia. DNA methylation has been found to be involved in skeletal fluorosis and is influenced by environment and nutrition. In a previous study, we screened eight genes with differential methylation associated with various phenotypes of skeletal fluorosis. By combining gene functions, Mill1 gene was selected for subsequent experiments. First, we found that the Mill1 gene was hypomethylated and upregulated in osteosclerosis skeletal fluorosis, whereas it was hypermethylated and downregulated in osteoporosis/osteomalacia skeletal fluorosis. Similar results were obtained in the cell experiments. Subsequently, we validated the regulation of Mill1 gene methylation using DNMT1 and TET2 enzyme inhibitors. Furthermore, we knockdown and overexpression experiments confirmed its downregulation inhibited osteogenic differentiation, whereas osteogenic differentiation was promoted by its overexpression. These findings imply that abnormal methylation of the Mill1 gene triggered by fluoride under diverse nutritional conditions, regulates its expression and participates in osteogenic differentiation, potentially resulting in various phenotypes of skeletal fluorosis. Eventually, we use methionine for interventions both in vivo and in vitro. The results indicated that under normal nutrition and fluoride exposure followed by methionine intervention, the methylation levels of the Mill1 gene increased, whereas its high expression and enhanced osteogenic differentiation were restrained. This study offers a theoretical foundation for understanding the mechanism behind the various phenotypes of skeletal fluorosis through the perspective of DNA methylation and for employing nutrients to intervene in skeletal fluorosis.
Collapse
Affiliation(s)
- Niannian Chen
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Jing Zhang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Congyu Yin
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Yudan Liao
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Lei Song
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Ting Hu
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Xueli Pan
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
7
|
Li Q, Wang J, Zhao C. From Genomics to Metabolomics: Molecular Insights into Osteoporosis for Enhanced Diagnostic and Therapeutic Approaches. Biomedicines 2024; 12:2389. [PMID: 39457701 PMCID: PMC11505085 DOI: 10.3390/biomedicines12102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Osteoporosis (OP) is a prevalent skeletal disorder characterized by decreased bone mineral density (BMD) and increased fracture risk. The advancements in omics technologies-genomics, transcriptomics, proteomics, and metabolomics-have provided significant insights into the molecular mechanisms driving OP. These technologies offer critical perspectives on genetic predispositions, gene expression regulation, protein signatures, and metabolic alterations, enabling the identification of novel biomarkers for diagnosis and therapeutic targets. This review underscores the potential of these multi-omics approaches to bridge the gap between basic research and clinical applications, paving the way for precision medicine in OP management. By integrating these technologies, researchers can contribute to improved diagnostics, preventative strategies, and treatments for patients suffering from OP and related conditions.
Collapse
Affiliation(s)
- Qingmei Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Congzhe Zhao
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| |
Collapse
|
8
|
Yalaev B, Deev R, Tyurin A, Salakhov R, Smirnov K, Eremkina A, Mokrysheva N, Minniakhmetov I, Khusainova R. MicroRNA binding site variants-new potential markers of primary osteoporosis in men and women. Front Genet 2024; 15:1470310. [PMID: 39411371 PMCID: PMC11473367 DOI: 10.3389/fgene.2024.1470310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction The identification of significant DNA markers of primary osteoporosis may gain new insights by studying genome regions involved in mechanisms of epigenetic regulation through interactions with microRNAs. Methods The authors searched for associations of polymorphic variants of microRNA binding sites of mRNA target genes and polymorphic loci of microRNA genes with primary osteoporosis in a cohort of women and men from the Volga-Ural region of Russia (N = 1.177). Results Using case-control association analysis, the authors found that rs1061947 (COL1A1), rs10793442 (ZNF239), rs6854081 (FGF2), and rs11614913 (miR-196a) were associated with osteoporotic fractures; rs5854 (MMP1) and rs2910164 (miR-146a) were associated with low bone mineral density; and rs10098470 (TPD52), rs11540149 (VDR), rs1042673 (SOX9), rs1054204 (SPARC), and rs1712 (FBXO5) were markers of both fractures and low bone mineral density. Among the identified associations, ethno specific trends were found, as well as sex-specific associations. Prognostic models were developed, among which the model for predicting osteoporosis in general in women (Area Under Curve = 0.909) achieved the highest level of predictive value. Thus, the potential role of polymorphic variants of microRNA binding sites in the development of primary osteoporosis in men and women from the Volga-Ural region of Russia was demonstrated.
Collapse
Affiliation(s)
- Bulat Yalaev
- Laboratory of Genomic Medicine, Endocrinology Research Centre, Moscow, Russia
| | - Roman Deev
- Laboratory of Genomic Medicine, Endocrinology Research Centre, Moscow, Russia
| | - Anton Tyurin
- Internal Medicine Department, Bashkir State Medical University, Ufa, Russia
| | - Ramil Salakhov
- Laboratory of Genomic Medicine, Endocrinology Research Centre, Moscow, Russia
| | - Kirill Smirnov
- Laboratory of Genomic Medicine, Endocrinology Research Centre, Moscow, Russia
| | - Anna Eremkina
- Laboratory of Genomic Medicine, Endocrinology Research Centre, Moscow, Russia
| | - Natalia Mokrysheva
- Laboratory of Genomic Medicine, Endocrinology Research Centre, Moscow, Russia
| | - Ildar Minniakhmetov
- Laboratory of Genomic Medicine, Endocrinology Research Centre, Moscow, Russia
| | - Rita Khusainova
- Laboratory of Genomic Medicine, Endocrinology Research Centre, Moscow, Russia
- Internal Medicine Department, Bashkir State Medical University, Ufa, Russia
| |
Collapse
|
9
|
Xiang T, Yang C, Deng Z, Sun D, Luo F, Chen Y. Krüppel-like factors family in health and disease. MedComm (Beijing) 2024; 5:e723. [PMID: 39263604 PMCID: PMC11387732 DOI: 10.1002/mco2.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Krüppel-like factors (KLFs) are a family of basic transcription factors with three conserved Cys2/His2 zinc finger domains located in their C-terminal regions. It is acknowledged that KLFs exert complicated effects on cell proliferation, differentiation, survival, and responses to stimuli. Dysregulation of KLFs is associated with a range of diseases including cardiovascular disorders, metabolic diseases, autoimmune conditions, cancer, and neurodegenerative diseases. Their multidimensional roles in modulating critical pathways underscore the significance in both physiological and pathological contexts. Recent research also emphasizes their crucial involvement and complex interplay in the skeletal system. Despite the substantial progress in understanding KLFs and their roles in various cellular processes, several research gaps remain. Here, we elucidated the multifaceted capabilities of KLFs on body health and diseases via various compliable signaling pathways. The associations between KLFs and cellular energy metabolism and epigenetic modification during bone reconstruction have also been summarized. This review helps us better understand the coupling effects and their pivotal functions in multiple systems and detailed mechanisms of bone remodeling and develop potential therapeutic strategies for the clinical treatment of pathological diseases by targeting the KLF family.
Collapse
Affiliation(s)
- Tingwen Xiang
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Chuan Yang
- Department of Biomedical Materials Science Third Military Medical University (Army Medical University) Chongqing China
| | - Zihan Deng
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Dong Sun
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Fei Luo
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Yueqi Chen
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
- Department of Orthopedics Chinese PLA 76th Army Corps Hospital Xining China
| |
Collapse
|
10
|
Amroodi MN, Maghsoudloo M, Amiri S, Mokhtari K, Mohseni P, Pourmarjani A, Jamali B, Khosroshahi EM, Asadi S, Tabrizian P, Entezari M, Hashemi M, Wan R. Unraveling the molecular and immunological landscape: Exploring signaling pathways in osteoporosis. Biomed Pharmacother 2024; 177:116954. [PMID: 38906027 DOI: 10.1016/j.biopha.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Osteoporosis, characterized by compromised bone density and microarchitecture, represents a significant global health challenge, particularly in aging populations. This comprehensive review delves into the intricate signaling pathways implicated in the pathogenesis of osteoporosis, providing valuable insights into the pivotal role of signal transduction in maintaining bone homeostasis. The exploration encompasses cellular signaling pathways such as Wnt, Notch, JAK/STAT, NF-κB, and TGF-β, all of which play crucial roles in bone remodeling. The dysregulation of these pathways is a contributing factor to osteoporosis, necessitating a profound understanding of their complexities to unveil the molecular mechanisms underlying bone loss. The review highlights the pathological significance of disrupted signaling in osteoporosis, emphasizing how these deviations impact the functionality of osteoblasts and osteoclasts, ultimately resulting in heightened bone resorption and compromised bone formation. A nuanced analysis of the intricate crosstalk between these pathways is provided to underscore their relevance in the pathophysiology of osteoporosis. Furthermore, the study addresses some of the most crucial long non-coding RNAs (lncRNAs) associated with osteoporosis, adding an additional layer of academic depth to the exploration of immune system involvement in various types of osteoporosis. Finally, we propose that SKP1 can serve as a potential biomarker in osteoporosis.
Collapse
Affiliation(s)
- Morteza Nakhaei Amroodi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shayan Amiri
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parnaz Mohseni
- Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Pourmarjani
- Department of Pediatrics, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behdokht Jamali
- Department of microbiology and genetics, kherad Institute of higher education, Busheher, lran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Tabrizian
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, department of orthopedic, school of medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
11
|
Chen J, Yang X, Li Q, Ma J, Li H, Wang L, Chen Z, Quan Z. Inhibiting DNA methyltransferase DNMT3B confers protection against ferroptosis in nucleus pulposus and ameliorates intervertebral disc degeneration via upregulating SLC40A1. Free Radic Biol Med 2024; 220:139-153. [PMID: 38705495 DOI: 10.1016/j.freeradbiomed.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Epigenetic changes are important considerations for degenerative diseases. DNA methylation regulates crucial genes by epigenetic mechanism, impacting cell function and fate. DNA presents hypermethylation in degenerated nucleus pulposus (NP) tissue, but its role in intervertebral disc degeneration (IVDD) remains elusive. This study aimed to demonstrate that methyltransferase mediated hypermethylation was responsible for IVDD by integrative bioinformatics and experimental verification. Methyltransferase DNMT3B was highly expressed in severely degenerated NP tissue (involving human and rats) and in-vitro degenerated human NP cells (NPCs). Bioinformatics elucidated that hypermethylated genes were enriched in oxidative stress and ferroptosis, and the ferroptosis suppressor gene SLC40A1 was identified with lower expression and higher methylation in severely degenerated human NP tissue. Cell culture using human NPCs showed that DNMT3B induced ferroptosis and oxidative stress in NPCs by downregulating SLC40A1, promoting a degenerative cell phenotype. An in-vivo rat IVDD model showed that DNA methyltransferase inhibitor 5-AZA alleviated puncture-induced IVDD. Taken together, DNA methyltransferase DNMT3B aggravates ferroptosis and oxidative stress in NPCs via regulating SLC40A1. Epigenetic mechanism within DNA methylation is a promising therapeutic biomarker for IVDD.
Collapse
Affiliation(s)
- Jiaxing Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Xinyu Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Qiaochu Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Jingjin Ma
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Huanhuan Li
- Department of Emergency, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Linbang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Zhiyu Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Zhengxue Quan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
12
|
Baradaran Mahdavi S, Javadirad SM, Rafieian M, Poursafa P, Azimian Zavareh V, Daniali SS, Heidari-Beni M, Goodarzi-Khoigani M, Vahdatpour B, Mirhendi H, Kelishadi R. A procedure for DNA methylation assessment in osteoporosis-related gene promoters of umbilical cord blood: A study on the Prospective Epidemiological Research Studies in Iran (PERSIAN) birth cohort. BIOIMPACTS : BI 2024; 15:30095. [PMID: 40161946 PMCID: PMC11954747 DOI: 10.34172/bi.30095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 01/02/2024] [Indexed: 04/02/2025]
Abstract
Introduction It is believed that DNA methylation can modify disease susceptibility in response to environmental factors as early as the perinatal period. In this study, we aimed to present a streamlined DNA methylation analysis procedure for osteoporosis-related gene promoters in the umbilical cord blood. Methods The Prospective Epidemiological Research Studies in Iran (PERSIAN) birth cohort was established in 2016. In this study, a total of 300 umbilical cord blood samples were collected at the time of delivery. For all samples, DNA was extracted and converted using sodium bisulfite. Multiple primer sets were designed for Wnt1, Wnt10b, β-catenin, OPG, and RANKL gene promoters in the online MethPrimer platform. Next, bisulfite sequencing PCR (BSP), as the gold standard method for exploring methylated and unmethylated cytosines, was performed in a gradient-controlled setting. The PCR products were then purified and directly sequenced. Subsequently, the chromatograms were interpreted. Results For Wnt10b, β-catenin, and OPG genes, the converted DNA could be successfully amplified. The frequency of acceptable chromatograms for analysis was 195 for Wnt10b (195/300, 0.65%), 198 for β-catenin (198/300, 0.66%), and 50 for OPG (50/50, 100%). Conclusion BSP can be efficiently used to investigate the methylation of target gene promoters in umbilical cord blood DNA.
Collapse
Affiliation(s)
- Sadegh Baradaran Mahdavi
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Morteza Javadirad
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mahsa Rafieian
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parnian Poursafa
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Seyede Shahrbanoo Daniali
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahar Heidari-Beni
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoomeh Goodarzi-Khoigani
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Vahdatpour
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Mirhendi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Wang Y, Huang X, Zhang Q, Cheng C, Qin Z, Lu L, Huang Q. The osteoporosis susceptibility SNP rs188303909 at 2q14.2 regulates EN1 expression by modulating DNA methylation and E2F6 binding. J Mol Med (Berl) 2024; 102:273-284. [PMID: 38153509 DOI: 10.1007/s00109-023-02412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
EN1 encodes a homeodomain-containing transcription factor and is a determinant of bone density and fracture. Previous powerful genome-wide association studies (GWASs) have identified multiple single-nucleotide polymorphisms (SNPs) near EN1 at 2q14.2 locus for osteoporosis, but the causal SNPs and functional mechanisms underlying these associations are poorly understood. The target genes regulated by the transcription factor EN1 are also unclear. In this study, we identified rs188303909, a functional CpG-SNP, as a causal SNP for osteoporosis at 2q14.2 through the integration of functional and epigenomic analyses. Functional experiments demonstrated that unmethylated rs188303909 acted as a strong allele-specific distal enhancer to regulate EN1 expression by modifying the binding of transcription factor E2F6, but rs188303909 methylation attenuated the active effect of E2F6 on EN1 expression. Importantly, transcription factor EN1 could differentially bind osteoporosis GWAS lead SNPs rs4869739-T and rs4355801-G to upregulate CCDC170 and COLEC10 expression, thus promoting bone formation. Our study provided a mechanistic insight into expression regulation of the osteoporosis susceptibility gene EN1, which could be a potential therapeutic target for osteoporosis precision medicine. KEY MESSAGES: CpG-SNP rs188303909 is a causal SNP at the osteoporosis susceptibility locus 2q14.2. Rs188303909 distally regulates EN1 expression by modulating DNA methylation and E2F6 binding. EN1 upregulates CCDC170 and COLEC10 expression through osteoporosis GWAS lead SNPs rs4869739 and rs4355801.
Collapse
Affiliation(s)
- Ya Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinyao Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Qiongdan Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Chen Cheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Zixuan Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Li Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Qingyang Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| |
Collapse
|
14
|
Tang L, Zhang YY, Liu WJ, Fu Q, Zhao J, Liu YB. DNA methylation of promoter region inhibits galectin-1 expression in BMSCs of aged mice. Am J Physiol Cell Physiol 2024; 326:C429-C441. [PMID: 38105757 DOI: 10.1152/ajpcell.00334.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Senile osteoporosis increases fracture risks. Bone marrow stromal cells (BMSCs) are sensitive to aging. Deep insights into BMSCs aging are vital to elucidate the mechanisms underlying age-related bone loss. Recent advances showed that osteoporosis is associated with aberrant DNA methylation of many susceptible genes. Galectin-1 (Gal-1) has been proposed as a mediator of BMSCs functions. In our previous study, we showed that Gal-1 was downregulated in aged BMSCs and global deletion of Gal-1 in mice caused bone loss via impaired osteogenesis potential of BMSCs. Gal-1 promoter is featured by CpG islands. However, there are no reports concerning the DNA methylation status in Gal-1 promoter during osteoporosis. In the current study, we sought to investigate the role of DNA methylation in Gal-1 downregulation in aged BMSCs. The potential for anti-bone loss therapy based on modulating DNA methylation is explored. Our results showed that Dnmt3b-mediated Gal-1 promoter DNA hypermethylation plays an important role in Gal-1 downregulation in aged BMSCs, which inhibited β-catenin binding on Gal-1 promoter. Bone loss of aged mice was alleviated in response to in vivo deletion of Dnmt3b from BMSCs. Finally, when bone marrow of young wild-type (WT) mice or young Dnmt3bPrx1-Cre mice was transplanted into aged WT mice, Gal-1 level in serum and trabecular bone mass were elevated in recipient aged WT mice. Our study will benefit for deeper insights into the regulation mechanisms of Gal-1 expression in BMSCs during osteoporosis development, and for the discovery of new therapeutic targets for osteoporosis via modulating DNA methylation status.NEW & NOTEWORTHY There is Dnmt3b-mediated DNA methylation in Gal-1 promoter in aged bone marrow stromal cell (BMSC). DNA methylation causes Gal-1 downregulation and osteogenesis attenuation of aged BMSC. DNA methylation blocks β-catenin binding on Gal-1 promoter. Bone loss of aged mice is alleviated by in vivo deletion of Dnmt3b from BMSC.
Collapse
Affiliation(s)
- Liang Tang
- Department of Orthopedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yang-Yang Zhang
- Department of Orthopedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wen-Jun Liu
- Department of Orthopedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jian Zhao
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Yan-Bin Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Wang Z, Wang W, Zuo B, Lu H. Identification of potential pathogenic genes related to osteoporosis and osteoarthritis. Technol Health Care 2024; 32:4431-4444. [PMID: 39213112 PMCID: PMC11613085 DOI: 10.3233/thc-240574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Osteoarthritis (OA) and osteoporosis (OS) are the most common orthopedic diseases. OBJECTIVE To identify important genes as biomarkers for the pathogenesis of OA and OS. METHODS Microarray data for OA and OS were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between the OA and healthy control groups and between the OS and healthy control groups were identified using the Limma software package. Overlapping hub DEGs were selected using MCC, MNC, DEGREE, and EPC. Weighted gene co-expression network analysis (WGCNA) was used to mine OA- and OS-related modules. Shared hub DEGs were identified, human microRNA disease database was used to screen microRNAs associated with OA and OS, and an miRNA-target gene network was constructed. Finally, the expression of shared hub DEGs was evaluated. RESULTS A total of 104 overlapping DEGs were identified in both the OA and OS groups, which were mainly related to inflammatory biological processes, such as the Akt and TNF signaling pathways Forty-six hub DEGs were identified using MCC, MNC, DEGREE, and EPC modules using different algorithms. Seven modules with 392 genes that highly correlated with disease were identified in the WGCNA. Furthermore, 10 shared hub DEGs were identified between the OA and OS groups, including OGN, FAP, COL6A3, THBS4, IGFBP2, LRRC15, DDR2, RND3, EFNB2, and CD48. A network consisting of 8 shared hub DEGs and 55 miRNAs was constructed. Furthermore, CD48 was significantly upregulated in the OA and OS groups, whereas EFNB2, DR2, COL6A3, and RND3 were significantly downregulated in OA and OS. Other hub DEGs were significantly upregulated in OA and downregulated in OS. CONCLUSIONS The ten genes may be promising biomarkers for modulating the development of both OA and OS.
Collapse
Affiliation(s)
| | | | - Bin Zuo
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hua Lu
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Zhou Q, Liu J, Xin L, Hu Y, Qi Y. The Diagnostic Features of Peripheral Blood Biomarkers in Identifying Osteoarthritis Individuals: Machine Learning Strategies and Clinical Evidence. Curr Comput Aided Drug Des 2024; 20:928-942. [PMID: 37594094 DOI: 10.2174/1573409920666230818092427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND People with osteoarthritis place a huge burden on society. Early diagnosis is essential to prevent disease progression and to select the best treatment strategy more effectively. In this study, the aim was to examine the diagnostic features and clinical value of peripheral blood biomarkers for osteoarthritis. OBJECTIVE The goal of this project was to investigate the diagnostic features of peripheral blood and immune cell infiltration in osteoarthritis (OA). METHODS Two eligible datasets (GSE63359 and GSE48556) were obtained from the GEO database to discern differentially expressed genes (DEGs). The machine learning strategy was employed to filtrate diagnostic biomarkers for OA. Additional verification was implemented by collecting clinical samples of OA. The CIBERSORT website estimated relative subsets of RNA transcripts to evaluate the immune-inflammatory states of OA. The link between specific DEGs and clinical immune-inflammatory markers was found by correlation analysis. RESULTS Overall, 67 robust DEGs were identified. The nuclear receptor subfamily 2 group C member 2 (NR2C2), transcription factor 4 (TCF4), stromal antigen 1 (STAG1), and interleukin 18 receptor accessory protein (IL18RAP) were identified as effective diagnostic markers of OA in peripheral blood. All four diagnostic markers showed significant increases in expression in OA. Analysis of immune cell infiltration revealed that macrophages are involved in the occurrence of OA. Candidate diagnostic markers were correlated with clinical immune-inflammatory indicators of OA patients. CONCLUSION We highlight that DEGs associated with immune inflammation (NR2C2, TCF4, STAG1, and IL18RAP) may be potential biomarkers for peripheral blood in OA, which are also associated with clinical immune-inflammatory indicators.
Collapse
Affiliation(s)
- Qiao Zhou
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China
- Department of Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230061, China
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
- The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Jian Liu
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
| | - Ling Xin
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
| | - Yuedi Hu
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
- The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yajun Qi
- Institute of Rheumatism Prevention and Treatment of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Hefei, Anhui, 230031, China
- The First Clinical School of Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| |
Collapse
|
17
|
Gasperini B, Falvino A, Piccirilli E, Tarantino U, Botta A, Visconti VV. Methylation of the Vitamin D Receptor Gene in Human Disorders. Int J Mol Sci 2023; 25:107. [PMID: 38203278 PMCID: PMC10779104 DOI: 10.3390/ijms25010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The Vitamin D Receptor (VDR) mediates the actions of 1,25-Dihydroxvitamin D3 (1,25(OH)2D3), which has important roles in bone homeostasis, growth/differentiation of cells, immune functions, and reduction of inflammation. Emerging evidences suggest that epigenetic modifications of the VDR gene, particularly DNA methylation, may contribute to the onset and progression of many human disorders. This review aims to summarize the available information on the role of VDR methylation signatures in different pathological contexts, including autoimmune diseases, infectious diseases, cancer, and others. The reversible nature of DNA methylation could enable the development of therapeutic strategies, offering new avenues for the management of these worldwide diseases.
Collapse
Affiliation(s)
- Beatrice Gasperini
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (B.G.); (A.F.); (V.V.V.)
| | - Angela Falvino
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (B.G.); (A.F.); (V.V.V.)
| | - Eleonora Piccirilli
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.P.); (U.T.)
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.P.); (U.T.)
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (B.G.); (A.F.); (V.V.V.)
| | - Virginia Veronica Visconti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (B.G.); (A.F.); (V.V.V.)
| |
Collapse
|
18
|
Xiao D, Fang L, Liu Z, He Y, Ying J, Qin H, Lu A, Shi M, Li T, Zhang B, Guan J, Wang C, Abu-Amer Y, Shen J. DNA methylation-mediated Rbpjk suppression protects against fracture nonunion caused by systemic inflammation. J Clin Invest 2023; 134:e168558. [PMID: 38051594 PMCID: PMC10849763 DOI: 10.1172/jci168558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
Challenging skeletal repairs are frequently seen in patients experiencing systemic inflammation. To tackle the complexity and heterogeneity of the skeletal repair process, we performed single-cell RNA sequencing and revealed that progenitor cells were one of the major lineages responsive to elevated inflammation and this response adversely affected progenitor differentiation by upregulation of Rbpjk in fracture nonunion. We then validated the interplay between inflammation (via constitutive activation of Ikk2, Ikk2ca) and Rbpjk specifically in progenitors by using genetic animal models. Focusing on epigenetic regulation, we identified Rbpjk as a direct target of Dnmt3b. Mechanistically, inflammation decreased Dnmt3b expression in progenitor cells, consequently leading to Rbpjk upregulation via hypomethylation within its promoter region. We also showed that Dnmt3b loss-of-function mice phenotypically recapitulated the fracture repair defects observed in Ikk2ca-transgenic mice, whereas Dnmt3b-transgenic mice alleviated fracture repair defects induced by Ikk2ca. Moreover, Rbpjk ablation restored fracture repair in both Ikk2ca mice and Dnmt3b loss-of-function mice. Altogether, this work elucidates a common mechanism involving a NF-κB/Dnmt3b/Rbpjk axis within the context of inflamed bone regeneration. Building on this mechanistic insight, we applied local treatment with epigenetically modified progenitor cells in a previously established mouse model of inflammation-mediated fracture nonunion and showed a functional restoration of bone regeneration under inflammatory conditions through an increase in progenitor differentiation potential.
Collapse
Affiliation(s)
- Ding Xiao
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liang Fang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Zhongting Liu
- Department of Mechanical Engineering & Materials Sciences, School of Engineering and
| | - Yonghua He
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Jun Ying
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Haocheng Qin
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Aiwu Lu
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Meng Shi
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Jianjun Guan
- Department of Mechanical Engineering & Materials Sciences, School of Engineering and
| | - Cuicui Wang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- Shriners Hospital for Children, St. Louis, Missouri, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
19
|
Liang X, Shi W, Zhang X, Pang R, Zhang K, Xu Q, Xu C, Wan X, Cui W, Li D, Jiang Z, Liu Z, Li H, Zhang H, Li Z. Causal association of epigenetic aging and osteoporosis: a bidirectional Mendelian randomization study. BMC Med Genomics 2023; 16:275. [PMID: 37919683 PMCID: PMC10623745 DOI: 10.1186/s12920-023-01708-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND The relationship between aging and osteoporosis is well established. However, the relationship between the body's physiological age, i.e. epigenetic age, and osteoporosis is not known. Our goal is to analyze the bidirectional causal relationship between epigenetic clocks and osteoporosis using a bidirectional Mendelian randomization study. METHODS We used SNPs closely associated with GrimAge, Hannum, PhenoAge, and HorvathAge in epigenetic age and SNPs closely associated with femoral neck bone mineral density, lumbar spine bone mineral density, and forearm bone mineral density as instrumental variables, respectively, using the inverse variance weighting method and several other MR methods to assess the bidirectional causal relationship between epigenetic age and osteoporosis. RESULT There was no evidence of a clear causal relationship of epigenetic age (GrimAge, Hannum, PhenoAge, and HorvathAge) on femoral neck bone mineral density, lumbar spine bone mineral density, and forearm bone mineral density. In reverse Mendelian randomization analysis showed a significant causal effect of lumbar spine bone mineral density on GrimAge: odds ratio (OR) = 0.692, 95% confidence interval (CI) = (0.538-0.890), p = 0.004. The results suggest that a decrease in lumbar spine bone mineral density promotes an acceleration of GrimAge. CONCLUSION There was no significant bidirectional causal relationship between epigenetic age and osteoporosis A decrease in lumbar spine bone density may lead to an acceleration of the epigenetic clock "GrimAge". Our study provides partial evidence for a bidirectional causal effect between epigenetic age and Osteoporosis.
Collapse
Affiliation(s)
- Xinyu Liang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Wei Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Xinglong Zhang
- Department of Orthopedics, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, People's Republic of China
| | - Ran Pang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Department of Orthopedics, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, People's Republic of China
| | - Kai Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Qian Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Chunlei Xu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Xin Wan
- Department of Orthopedics, Tian-Jin Union Medical Centre, Nankai University People's Hospital, Tianjin, China
| | - Wenhao Cui
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- R&D Center, Youjia (Hangzhou) Biomedical Technology Co., Ltd, Hangzhou, China
| | - Dong Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Zhaohui Jiang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Department of Orthopaedic, Wenzhou Central Hospital, Wenzhou, China
| | - Zhengxuan Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Hui Li
- Department of Orthopedics, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, People's Republic of China
| | - Huafeng Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| | - Zhijun Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
20
|
Zhivodernikov IV, Kirichenko TV, Markina YV, Postnov AY, Markin AM. Molecular and Cellular Mechanisms of Osteoporosis. Int J Mol Sci 2023; 24:15772. [PMID: 37958752 PMCID: PMC10648156 DOI: 10.3390/ijms242115772] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Osteoporosis is a widespread systemic disease characterized by a decrease in bone mass and an imbalance of the microarchitecture of bone tissue. Experimental and clinical studies devoted to investigating the main pathogenetic mechanisms of osteoporosis revealed the important role of estrogen deficiency, inflammation, oxidative stress, cellular senescence, and epigenetic factors in the development of bone resorption due to osteoclastogenesis, and decreased mineralization of bone tissue and bone formation due to reduced function of osteoblasts caused by apoptosis and age-depended differentiation of osteoblast precursors into adipocytes. The current review was conducted to describe the basic mechanisms of the development of osteoporosis at molecular and cellular levels and to elucidate the most promising therapeutic strategies of pathogenetic therapy of osteoporosis based on articles cited in PubMed up to September 2023.
Collapse
Affiliation(s)
| | | | - Yuliya V. Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia; (I.V.Z.); (T.V.K.); (A.Y.P.); (A.M.M.)
| | | | | |
Collapse
|
21
|
Huang G, Li W, Zhong Y, Liao W, Zhang Z. Mendelian randomization to evaluate the causal relationship between liver enzymes and the risk of six specific bone and joint-related diseases. Front Immunol 2023; 14:1195553. [PMID: 37662902 PMCID: PMC10469508 DOI: 10.3389/fimmu.2023.1195553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Background Studies of liver dysfunction in relation to bone and joint-related diseases are scarce, and its causality remains unclear. Our objective was to investigate whether serum liver enzymes are causally associated with bone and joint-related diseases using Mendelian randomization (MR) designs. Methods Genetic data on serum liver enzymes (alkaline phosphatase (ALP); alanine transaminase (ALT); gamma-glutamyl transferase (GGT)) and six common bone and joint-related diseases (rheumatoid arthritis (RA), osteoporosis, osteoarthritis (OA), ankylosing spondylitis, psoriatic arthritis, and gout) were derived from independent genome-wide association studies of European ancestry. The inverse variance-weighted (IVW) method was applied for the main causal estimate. Complementary sensitivity analyses and reverse causal analyses were utilized to confirm the robustness of the results. Results Using the IVW method, the positive causality between ALP and the risk of osteoporosis diagnosed by bone mineral density (BMD) at different sites was indicated (femoral neck, lumbar spine, and total body BMD, odds ratio (OR) [95% CI], 0.40 [0.23-0.69], 0.35 [0.19-0.67], and 0.33 [0.22-0.51], respectively). ALP was also linked to a higher risk of RA (OR [95% CI], 6.26 [1.69-23.51]). Evidence of potential harmful effects of higher levels of ALT on the risk of hip and knee OA was acquired (OR [95% CI], 2.48 [1.39-4.41] and 3.07 [1.49-6.30], respectively). No causal relationship was observed between GGT and these bone and joint-related diseases. The study also found that BMD were all negatively linked to ALP levels (OR [95% CI] for TBMD, FN-BMD, and LS-BMD: 0.993 [0.991-0.995], 0.993 [0.988-0.998], and 0.993 [0.989, 0.998], respectively) in the reverse causal analysis. The results were replicated via sensitivity analysis in the validation process. Conclusions Our study revealed a significant association between liver function and bone and joint-related diseases.
Collapse
Affiliation(s)
- Guiwu Huang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Wenchang Li
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Yonglie Zhong
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiming Liao
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Zhiqi Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Baradaran Mahdavi S, Kelishadi R. DNA methylation as a potential mediator between environmental pollutants and osteoporosis; a current hypothesis. BIOIMPACTS : BI 2023; 13:521-523. [PMID: 38022380 PMCID: PMC10676528 DOI: 10.34172/bi.2023.27717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/31/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Sadegh Baradaran Mahdavi
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
23
|
Zhang G, Liu Z, Li Z, Zhang B, Yao P, Qiao Y. Therapeutic approach of natural products that treat osteoporosis by targeting epigenetic modulation. Front Genet 2023; 14:1182363. [PMID: 37287533 PMCID: PMC10242146 DOI: 10.3389/fgene.2023.1182363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/26/2023] [Indexed: 06/09/2023] Open
Abstract
Osteoporosis (OP) is a metabolic disease that affects bone, resulting in a progressive decrease in bone mass, quality, and micro-architectural degeneration. Natural products have become popular for managing OP in recent years due to their minimal adverse side effects and suitability for prolonged use compared to chemically synthesized products. These natural products are known to modulate multiple OP-related gene expressions, making epigenetics an important tool for optimal therapeutic development. In this study, we investigated the role of epigenetics in OP and reviewed existing research on using natural products for OP management. Our analysis identified around twenty natural products involved in epigenetics-based OP modulation, and we discussed potential mechanisms. These findings highlight the clinical significance of natural products and their potential as novel anti-OP therapeutics.
Collapse
Affiliation(s)
- Guokai Zhang
- Binzhou Hospital of Traditional Chinese Medicine, Binzhou, China
| | - Zhenying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihan Li
- The First Affiliated Hospital of Shandong First Medical University Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Bing Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pengyu Yao
- Shandong Laboratory of Engineering Technology Suzhou Biomedical Engineering and Technology Chinese Academy of Sciences, Jinan, China
- Jinan Guoke Medical Engineering and Technology Development Company, Jinan, China
| | - Yun Qiao
- Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
24
|
Regulation of human ZNF687, a gene associated with Paget's disease of bone. Int J Biochem Cell Biol 2023; 154:106332. [PMID: 36372390 DOI: 10.1016/j.biocel.2022.106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Mutations in Zinc finger 687 (ZNF687) were associated with Paget's disease of bone (PDB), a disease characterized by increased bone resorption and excessive bone formation. It was suggested that ZNF687 plays a role in bone differentiation and development. However, the mechanisms involved in ZNF687 regulation remain unknown. This study aimed to obtain novel knowledge regarding ZNF687 transcriptional and epigenetic regulation. Through in silico analysis, we hypothesized three ZNF687 promoter regions located upstream exon 1 A, 1B, and 1 C and denominated promoter regions 1, 2, and 3, respectively. Their functionality was confirmed by luciferase activity assays and positive/negative regulatory regions were identified using promoter deletions constructs. In silico analysis revealed a high density of CpG islands in these promoter regions and in vitro methylation suppressed promoters' activity. Using bioinformatic approaches, bone-associated transcription factor binding sites containing CpG dinucleotides were identified, including those for NFκB, PU.1, DLX5, and SOX9. By co-transfection in HEK293 and hFOB cells, we found that DLX5 specifically activated ZNF687 promoter region 1, and its methylation impaired DLX5-driven promoter stimulation. NFκB repressed and activated promoter regions 1 and 2, respectively, and these activities were affected by methylation. PU.1 induced ZNF687 promoter region 1 which was affected by methylation. SOX9 differentially regulated ZNF687 promoters in HEK293 and hFOB cells that were impaired after methylation. In conclusion, this study provides novel insights into ZNF687 regulation by demonstrating that NFκB, PU.1, DLX5, and SOX9 are regulators of ZNF687 promoters, and DNA methylation influences their activity. The contribution of the dysregulation of these mechanisms in PDB should be further elucidated.
Collapse
|
25
|
Chronic Pain in Musculoskeletal Diseases: Do You Know Your Enemy? J Clin Med 2022; 11:jcm11092609. [PMID: 35566735 PMCID: PMC9101840 DOI: 10.3390/jcm11092609] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal pain is a condition that characterises several diseases and represents a constantly growing issue with enormous socio-economic burdens, highlighting the importance of developing treatment algorithms appropriate to the patient’s needs and effective management strategies. Indeed, the algic condition must be assessed and treated independently of the underlying pathological process since it has an extremely negative impact on the emotional and psychic aspects of the individual, leading to isolation and depression. A full understanding of the pathophysiological mechanisms involved in nociceptive stimulation and central sensitization is an important step in improving approaches to musculoskeletal pain. In this context, the bidirectional relationship between immune cells and neurons involved in nociception could represent a key point in the understanding of these mechanisms. Therefore, we provide an updated overview of the magnitude of the musculoskeletal pain problem, in terms of prevalence and costs, and summarise the role of the most important molecular players involved in the development and maintenance of pain. Finally, based on the pathophysiological mechanisms, we propose a model, called the “musculoskeletal pain cycle”, which could be a useful tool to counteract resignation to the algic condition and provide a starting point for developing a treatment algorithm for the patient with musculoskeletal pain.
Collapse
|
26
|
Xiang Q, Zhao Y, Lin J, Jiang S, Li W. Epigenetic modifications in spinal ligament aging. Ageing Res Rev 2022; 77:101598. [PMID: 35218968 DOI: 10.1016/j.arr.2022.101598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023]
Abstract
Spinal stenosis is a common degenerative spine disorder in the aged population and the spinal ligament aging is a main contributor to this chronic disease. However, the underlying mechanisms of spinal ligament aging remain unclear. Epigenetics is the study of heritable and reversible changes in the function of a gene or genome that occur without any alteration in the primary DNA sequence. Epigenetic alterations have been demonstrated to play crucial roles in age-related diseases and conditions, and they are recently studied as biomarkers and therapeutic targets in the field of cancer research. The main epigenetic modifications, including DNA methylation alteration, histone modifications as well as dysregulated noncoding RNA modulation, have all been implicated in spinal ligament aging diseases. DNA methylation modulates the expression of critical genes including WNT5A, GDNF, ACSM5, miR-497 and miR-195 during spinal ligament degeneration. Histone modifications widely affect gene expression and obvious histone modification abnormalities have been found in spinal ligament aging. MicroRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) exert crucial regulating effects on spinal ligament aging conditions via targeting various osteogenic or fibrogenic differentiation related genes. To our knowledge, there is no systematic review yet to summarize the involvement of epigenetic mechanisms of spinal ligament aging in degenerative spinal diseases. In this study, we systematically discussed the different epigenetic modifications and their potential functions in spinal ligament aging process.
Collapse
|
27
|
Ji W, Sun X. Methyl-CpG-binding protein 2 promotes osteogenic differentiation of bone marrow mesenchymal stem cells through regulating forkhead box F1/Wnt/β-Catenin axis. Bioengineered 2022; 13:583-592. [PMID: 34967263 PMCID: PMC8805827 DOI: 10.1080/21655979.2021.2012357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/17/2023] Open
Abstract
Postmenopausal osteoporosis is characterized by inadequate bone formation of osteoblasts and excessive bone resorption of osteoclasts. Bone marrow mesenchymal stem cells (BMSCs), with the potential of osteogenic differentiation, have been widely used in the bone tissues engineering for the treatment of bone diseases, including postmenopausal osteoporosis. Methyl-CpG-binding protein 2 (MECP2) has been reported to be implicated in bone formation during the development of Rett syndrome. However, the influence of MeCP2 on osteogenic differentiation of BMSCs during osteoporosis remains unclear. Firstly, mice model with estrogen deficiency-induced osteoporosis was established through ovariectomy (OVX). MeCP2 was found to be down-regulated in bone tissues and BMSCs of OVX-induced osteoporosis mice. Secondly, over-expression of MeCP2 enhanced the calcium deposition of BMSCs isolated from the OVX-induced osteoporosis mice. Moreover, expression of osteogenic biomarkers including alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), collagen type I alpha 1 (COL1A1), and osteocalcin (OCN) was increased in BMSCs by overexpression of MeCP2. Thirdly, over-expression of MeCP2 reduced protein expression of forkhead box F1 (FOXF1) and adenomatous polyposis coli (APC), while enhanced Wnt5a and β-catenin expression in BMSCs. Over-expression of FOXF1 attenuated MeCP2 over-expression-induced decrease of FOXF1 and APC, as well as increase of Wnt5a and β-catenin. Finally, the increased calcium deposition, protein expression of ALP, RUNX2COL1A1 and OCN induced by concomitant overexpression of MeCP2 were also restored by FOXF1 over-expression. In conclusion, MeCP2 promoted osteogenic differentiation of BMSCs through regulating FOXF1/Wnt/β-Catenin axis to attenuate osteoporosis. MeCP2 over-expression reduced FOXF1 to promote the activation of Wnt5a/β-Catenin and promote osteogenic differentiation of BMSCs during the prevention of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Weiqin Ji
- Department of Endocrinology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiaotong Sun
- Department of Traumatic Orthopedics, Zaozhuang Municipal Hospital, Zaozhuang, Shandong Province, China
| |
Collapse
|
28
|
Arias C, Salazar LA. Autophagy and Polyphenols in Osteoarthritis: A Focus on Epigenetic Regulation. Int J Mol Sci 2021; 23:ijms23010421. [PMID: 35008847 PMCID: PMC8745146 DOI: 10.3390/ijms23010421] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an intracellular mechanism that maintains cellular homeostasis in different tissues. This process declines in cartilage due to aging, which is correlated with osteoarthritis (OA), a multifactorial and degenerative joint disease. Several studies show that microRNAs regulate different steps of autophagy but only a few of them participate in OA. Therefore, epigenetic modifications could represent a therapeutic opportunity during the development of OA. Besides, polyphenols are bioactive components with great potential to counteract diseases, which could reverse altered epigenetic regulation and modify autophagy in cartilage. This review aims to analyze epigenetic mechanisms that are currently associated with autophagy in OA, and to evaluate whether polyphenols are used to reverse the epigenetic alterations generated by aging in the autophagy pathway.
Collapse
Affiliation(s)
- Consuelo Arias
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile;
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile;
- Interuniversity Center for Healthy Aging (ICHA), Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence: ; Tel.: +56-45-259-6724
| |
Collapse
|