1
|
Zhang T, He Y, Li C, Yao H, Zhang M, Li Y. Intelligent decoding platform for peptide sequences: SERS detection via high affinity self-assembled silver nanoparticles and machine learning analysis. Anal Chim Acta 2025; 1347:343797. [PMID: 40024661 DOI: 10.1016/j.aca.2025.343797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Peptides are compounds formed by the dehydration-condensation reaction of two or more amino acids which play an important role in the life functions of the organism. Changes in the structure of amino acids and peptides are vital for elucidating the process of disease development. However, the existing methods make it difficult to accurately recognize slight variations in peptide sequences, which becomes a difficult detection task. Therefore, the necessity of novel, accurate, comprehensive and deep strategies for peptide sequence identification is imperative. RESULTS Here, an intelligent decoding system was developed, which synthesized a substrate (Ag/BDHA) with high affinity and self-assembly capabilities by double reduction method and utilized surface-enhanced Raman scattering (SERS) to achieve label-free, high-affinity and accurate capturing of peptide sequences. The platform can recognize peptide chains with the same molecular weight but different amino acid sequences, filling the loopholes of mass spectroscopy. Interestingly, it can also distinguish peptide chains with different amino acid lengths, different amino acid positions and different amino acid mutations. And further combined with machine learning methods to simplify the output of detection results, including thermogram, confusion matrix, principal component analysis and hierarchical cluster analysis, which was more suitable for practical applications. More importantly, to explore the potential for application, real influenza A viruses were selected and analyzed and successfully identifying mutations and subtypes of viruses. SIGNIFICANCE In sum, the original, versatile and intelligent detection system based on surface-enhanced Raman scattering we proposed provides a promising method and strategy for the precise and valid analysis of different variations of peptide sequences, which is of great significance for explaining life processes, exploring disease pathogenesis, and developing innovative drugs.
Collapse
Affiliation(s)
- Ting Zhang
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China; Department of Inorganic Chemistry and Physical Chemistry, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Yingying He
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Chengming Li
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Huan Yao
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Mingxu Zhang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Yang Li
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China; Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Finland.
| |
Collapse
|
2
|
Sun N, Wang C, Yang S. Severe conduction block and cardiomyopathy associated with desminopathy. Cardiol Young 2025; 35:850-852. [PMID: 40083294 DOI: 10.1017/s1047951125000125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Desminopathy is a rare heritable cardiac and skeletal muscle disease caused by variants in the DES gene, which encodes the primary muscle-specific intermediate filament protein, known as desmin. Childhood-onset is commonly associated with severe early-onset myopathy and early death. Here, we reported an 11-year-old Chinese girl presenting with complete atrioventricular block and cardiomyopathy, without skeletal muscle involvement. Genetic analysis identified a de novo variant (c.152C > T/p.Ser51Phe) in the DES gene.
Collapse
Affiliation(s)
- Ningning Sun
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Shiwei Yang
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Fu X, Zhang F, Dong X, Pu L, Feng Y, Xu Y, Gao F, Liang T, Kang J, Sun H, Hong T, Liu Y, Zhou H, Jiang J, Yin D, Hu X, Wang DZ, Ding J, Chen J. Adapting cytoskeleton-mitochondria patterning with myocyte differentiation by promyogenic PRR33. Cell Death Differ 2025; 32:177-193. [PMID: 39147882 PMCID: PMC11742405 DOI: 10.1038/s41418-024-01363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Coordinated cytoskeleton-mitochondria organization during myogenesis is crucial for muscle development and function. Our understanding of the underlying regulatory mechanisms remains inadequate. Here, we identified a novel muscle-enriched protein, PRR33, which is upregulated during myogenesis and acts as a promyogenic factor. Depletion of Prr33 in C2C12 represses myoblast differentiation. Genetic deletion of Prr33 in mice reduces myofiber size and decreases muscle strength. The Prr33 mutant mice also exhibit impaired myogenesis and defects in muscle regeneration in response to injury. Interactome and transcriptome analyses reveal that PRR33 regulates cytoskeleton and mitochondrial function. Remarkably, PRR33 interacts with DESMIN, a key regulator of cytoskeleton-mitochondria organization in muscle cells. Abrogation of PRR33 in myocytes substantially abolishes the interaction of DESMIN filaments with mitochondria, leading to abnormal intracellular accumulation of DESMIN and mitochondrial disorganization/dysfunction in myofibers. Together, our findings demonstrate that PRR33 and DESMIN constitute an important regulatory module coordinating mitochondrial organization with muscle differentiation.
Collapse
Affiliation(s)
- Xuyang Fu
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Feng Zhang
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Xiaoxuan Dong
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Linbin Pu
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yan Feng
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yang Xu
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Gao
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Tian Liang
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Jianmeng Kang
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Hongke Sun
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Tingting Hong
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yunxia Liu
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hongmei Zhou
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jun Jiang
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Deling Yin
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xinyang Hu
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Da-Zhi Wang
- University of South Florida Health Heart Institute, Center for Regenerative Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33602, USA
| | - Jian Ding
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jinghai Chen
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| |
Collapse
|
4
|
Bulangalire N, Claeyssen C, Agbulut O, Cieniewski-Bernard C. Impact of MG132 induced-proteotoxic stress on αB-crystallin and desmin phosphorylation and O-GlcNAcylation and their partition towards cytoskeleton. Biochimie 2024; 226:121-135. [PMID: 38636798 DOI: 10.1016/j.biochi.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/19/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Small Heat Shock Proteins are considered as the first line of defense when proteostasis fails. Among them, αB-crystallin is expressed in striated muscles in which it interacts with desmin intermediate filaments to stabilize them, maintaining cytoskeleton's integrity and muscular functionalities. Desmin is a key actor for muscle health; its targeting by αB-crystallin is thus crucial, especially in stress conditions. αB-crystallin is phosphorylated and O-GlcNAcylated. Its phosphorylation increases consecutively to various stresses, correlated with its recruitment for cytoskeleton's safeguarding. However, phosphorylation as unique signal for cytoskeleton translocation remains controversial; indeed, O-GlcNAcylation was also proposed to be involved. Thus, there are still some gaps for a deeper comprehension of how αB-crystallin functions are finely regulated by post-translational modifications. Furthermore, desmin also bears both post-translational modifications; while desmin phosphorylation is closely linked to desmin intermediates filaments turnover, it is unclear whereas its O-GlcNAcylation could impact its proper function. In the herein paper, we aim at identifying whether phosphorylation and/or O-GlcNAcylation are involved in αB-crystallin targeting towards cytoskeleton in proteotoxic stress induced by proteasome inhibition in C2C12 myotubes. We demonstrated that proteotoxicity led to αB-crystallin's phosphorylation and O-GlcNAcylation patterns changes, both presenting a dynamic interplay depending on protein subfraction. Importantly, both post-translational modifications showed a spatio-temporal variation correlated with αB-crystallin translocation towards cytoskeleton. In contrast, we did not detect any change of desmin phosphorylation and O-GlcNAcylation. All together, these data strongly support that αB-crystallin phosphorylation/O-GlcNAcylation interplay rather than changes on desmin is a key regulator for its cytoskeleton translocation, preserving it towards stress.
Collapse
Affiliation(s)
- Nathan Bulangalire
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France; CHU Lille, Université de Lille, F-59000, Lille, France; Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Charlotte Claeyssen
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France.
| |
Collapse
|
5
|
Geng L, Wang M, Wang K, Xu L, Li J, Liu F, Lu J. Desmin-related myopathy manifested by various types of arrhythmias: a case report and literature review. J Int Med Res 2024; 52:3000605241291741. [PMID: 39501717 PMCID: PMC11539263 DOI: 10.1177/03000605241291741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Desmin is a type III intermediate filament protein specifically expressed in muscle cells, which is encoded by the DES gene. Defects in the desmin protein and cytoskeletal instability may interfere with cardiac muscle conduction signals, a fundamental mechanism for arrhythmias in patients with desmin-related myopathy. This current case report presents a female patient in her early 20s who presented with early-onset complete atrioventricular block and complete left bundle branch block over the previous decade. More recently, she had developed ventricular tachycardia, ventricular fibrillation, atrial fibrillation and other arrhythmias. Echocardiography revealed non-compaction of the ventricular myocardium and pulmonary hypertension. Whole-exome sequencing analysis identified a heterozygous missense mutation in the DES gene: c.1216C>T (p.Arg406Trp). She was eventually diagnosed with arrhythmias due to desmin-related myopathy. A literature review of international databases was undertaken to summarise the clinical characteristics of the cardiac involvement associated with this DES gene mutation.
Collapse
Affiliation(s)
- Lu Geng
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mengxiao Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Keke Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Liang Xu
- Department of Cardiology, The 7 People’s Hospital of Zhengzhou, Zhengzhou, Henan Province, China
| | - Jiaqi Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Fan Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jingchao Lu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
6
|
Bekele BM, Gazzerro E, Schoenrath F, Falk V, Rost S, Hoerning S, Jelting Y, Zaum AK, Spuler S, Knierim J. Undetected Neuromuscular Disease in Patients after Heart Transplantation. Int J Mol Sci 2024; 25:7819. [PMID: 39063061 PMCID: PMC11277526 DOI: 10.3390/ijms25147819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Heart transplantation (HTX) improves the overall survival and functional status of end-stage heart failure patients with cardiomyopathies (CMPs). The majority of CMPs have genetic causes, and the overlap between CMPs and inherited myopathies is well documented. However, the long-term outcome in skeletal muscle function and possibility of an undiagnosed underlying genetic cause of both a cardiac and skeletal pathology remain unknown. (2) Thirty-nine patients were assessed using open and standardized interviews on muscle function, a quality-of-life (EuroQol EQ-5D-3L) questionnaire, and a physical examination (Medical Research Council Muscle scale). Whole-exome sequencing was completed in three stages for those with skeletal muscle weakness. (3) Seven patients (17.9%) reported new-onset muscle weakness and motor limitations. Objective muscle weakness in the upper and lower extremities was seen in four patients. In three of them, exome sequencing revealed pathogenic/likely pathogenic variants in the genes encoding nexilin, myosin heavy chain, titin, and SPG7. (4) Our findings support a positive long-term outcome of skeletal muscle function in HTX patients. However, 10% of patients showed clinical signs of myopathy due to a possible genetic cause. The integration of genetic testing and standardized neurological assessment of motor function during the peri-HTX period should be considered.
Collapse
Affiliation(s)
- Biniam Melese Bekele
- Muscle Research Unit, ECRC Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (B.M.B.); (E.G.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany (J.K.)
- Deutsches Herzzentrum der Charité—Medical Heart Center of Charité and German Heart Institute Berlin, Department of Cardiothoracic and Vascular Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Elisabetta Gazzerro
- Muscle Research Unit, ECRC Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (B.M.B.); (E.G.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Felix Schoenrath
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany (J.K.)
- Deutsches Herzzentrum der Charité—Medical Heart Center of Charité and German Heart Institute Berlin, Department of Cardiothoracic and Vascular Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, 13125 Berlin, Germany
| | - Volkmar Falk
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany (J.K.)
- Deutsches Herzzentrum der Charité—Medical Heart Center of Charité and German Heart Institute Berlin, Department of Cardiothoracic and Vascular Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, 13125 Berlin, Germany
- Translational Cardiovascular Technologies, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Simone Rost
- Institute for Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Selina Hoerning
- Institute for Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Yvonne Jelting
- Institute for Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Ann-Kathrin Zaum
- Institute for Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Simone Spuler
- Muscle Research Unit, ECRC Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (B.M.B.); (E.G.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jan Knierim
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany (J.K.)
- Sana Paulinenkrankenhaus, Department of Internal Medicine and Cardiology, Dickensweg 25-39, 14055 Berlin, Germany
| |
Collapse
|
7
|
Politano L. Is Cardiac Transplantation Still a Contraindication in Patients with Muscular Dystrophy-Related End-Stage Dilated Cardiomyopathy? A Systematic Review. Int J Mol Sci 2024; 25:5289. [PMID: 38791328 PMCID: PMC11121328 DOI: 10.3390/ijms25105289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Inherited muscular diseases (MDs) are genetic degenerative disorders typically caused by mutations in a single gene that affect striated muscle and result in progressive weakness and wasting in affected individuals. Cardiac muscle can also be involved with some variability that depends on the genetic basis of the MD (Muscular Dystrophy) phenotype. Heart involvement can manifest with two main clinical pictures: left ventricular systolic dysfunction with evolution towards dilated cardiomyopathy and refractory heart failure, or the presence of conduction system defects and serious life-threatening ventricular arrhythmias. The two pictures can coexist. In these cases, heart transplantation (HTx) is considered the most appropriate option in patients who are not responders to the optimized standard therapeutic protocols. However, cardiac transplant is still considered a relative contraindication in patients with inherited muscle disorders and end-stage cardiomyopathies. High operative risk related to muscle impairment and potential graft involvement secondary to the underlying myopathy have been the two main reasons implicated in the generalized reluctance to consider cardiac transplant as a viable option. We report an overview of cardiac involvement in MDs and its possible association with the underlying molecular defect, as well as a systematic review of HTx outcomes in patients with MD-related end-stage dilated cardiomyopathy, published so far in the literature.
Collapse
Affiliation(s)
- Luisa Politano
- Cardiomyology and Medical Genetics, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
8
|
Geryk M, Charpentier F. Pathophysiological mechanisms of cardiomyopathies induced by desmin gene variants located in the C-Terminus of segment 2B. J Cell Physiol 2024; 239:e31254. [PMID: 38501553 DOI: 10.1002/jcp.31254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Desmin, the most abundant intermediate filament in cardiomyocytes, plays a key role in maintaining cardiomyocyte structure by interconnecting intracellular organelles, and facilitating cardiomyocyte interactions with the extracellular matrix and neighboring cardiomyocytes. As a consequence, mutations in the desmin gene (DES) can lead to desminopathies, a group of diseases characterized by variable and often severe cardiomyopathies along with skeletal muscle disorders. The basic desmin intermediate filament structure is composed of four segments separated by linkers that further assemble into dimers, tetramers and eventually unit-length filaments that compact radially to give the final form of the filament. Each step in this process is critical for proper filament formation and allow specific interactions within the cell. Mutations within the desmin gene can disrupt filament formation, as seen by aggregate formation, and thus have severe cardiac and skeletal outcomes, depending on the locus of the mutation. The focus of this review is to outline the cardiac molecular consequences of mutations located in the C-terminal part of segment 2B. This region is crucial for ensuring proper desmin filament formation and is a known hotspot for mutations that significantly impact cardiac function.
Collapse
Affiliation(s)
- Michelle Geryk
- Nantes Université, CNRS, INSERM, L'institut du thorax, Nantes, F-44000, France
| | - Flavien Charpentier
- Nantes Université, CNRS, INSERM, L'institut du thorax, Nantes, F-44000, France
| |
Collapse
|
9
|
Chen L, Chen Y, Wang M, Lai L, Zheng L, Lu H. Ursolic acid alleviates cancer cachexia by inhibiting STAT3 signaling pathways in C2C12 myotube and CT26 tumor-bearing mouse model. Eur J Pharmacol 2024; 969:176429. [PMID: 38423241 DOI: 10.1016/j.ejphar.2024.176429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Cancer cachexia, a multi-organ disorder resulting from tumor and immune system interactions, prominently features muscle wasting and affects the survival of patients with cancer. Ursolic acid (UA) is known for its antioxidant, anti-inflammatory, and anticancer properties. However, its impact on cancer cachexia remains unexplored. This study aimed to assess the efficacy of UA in addressing muscle atrophy and organ dysfunction in cancer cachexia and reveal the mechanisms involved. UA dose-dependently ameliorated C2C12 myotube atrophy. Mechanistically, it inhibited the expression of muscle-specific RING finger containing protein 1 (MURF1) and the phosphorylation of signal transducer and activator of transcription 3 (STAT3), and upregulated the mRNA or protein levels of myogenic differentiation antigen and myogenin in cultured C2C12 myotubes treated with conditioned medium. In vivo, UA protected CT26 tumor-bearing mice against loss of body weight, as well as increased skeletal muscle and epididymal fat without affecting tumor growth. Additionally, UA increased food intake in CT26 tumor-bearing mice. The mRNA expression of tumor necrosis-α and interleukin 6 was significantly downregulated in the intestine, gastrocnemius, and heart tissues following 38 d UA administration. UA treatment reversed the levels of myocardial function indicators, including creatine kinase, creatine kinase-MB, lactate dehydrogenase, car-dial troponin T, and glutathione. Finally, UA treatment significantly inhibited the expression of MURF1, the phosphorylation of nuclear factor kappa-B p65, and STAT3 in the gastrocnemius muscle and heart tissues of cachexic mice. Our findings suggest that UA is a promising natural compound for developing dietary supplements for cancer cachexia therapy owing to its anti-catabolic effects.
Collapse
Affiliation(s)
- Li Chen
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| | - Yan Chen
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Mengxia Wang
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Linglin Lai
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Linbo Zheng
- Department Traditional Chinese Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Huiqin Lu
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| |
Collapse
|
10
|
Pradeau-Phélut L, Etienne-Manneville S. Cytoskeletal crosstalk: A focus on intermediate filaments. Curr Opin Cell Biol 2024; 87:102325. [PMID: 38359728 DOI: 10.1016/j.ceb.2024.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 02/17/2024]
Abstract
The cytoskeleton, comprising actin microfilaments, microtubules, and intermediate filaments, is crucial for cell motility and tissue integrity. While prior studies largely focused on individual cytoskeletal networks, recent research underscores the interconnected nature of these systems in fundamental cellular functions like adhesion, migration, and division. Understanding the coordination of these distinct networks in both time and space is essential. This review synthesizes current findings on the intricate interplay between these networks, emphasizing the pivotal role of intermediate filaments. Notably, these filaments engage in extensive crosstalk with microfilaments and microtubules through direct molecular interactions, cytoskeletal linkers, and molecular motors that form molecular bridges, as well as via more complex regulation of intracellular signaling.
Collapse
Affiliation(s)
- Lucas Pradeau-Phélut
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur - CNRS UMR 3691, Université Paris-Cité, Équipe Labellisée Ligue Nationale Contre le Cancer 2023, 25 rue du Docteur Roux, F-75015, Paris, France; Sorbonne Université, Collège Doctoral, 4 place Jussieu, F-75005 Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur - CNRS UMR 3691, Université Paris-Cité, Équipe Labellisée Ligue Nationale Contre le Cancer 2023, 25 rue du Docteur Roux, F-75015, Paris, France.
| |
Collapse
|
11
|
Gui LK, Liu HJ, Jin LJ, Peng XC. Krüpple-like factors in cardiomyopathy: emerging player and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1342173. [PMID: 38516000 PMCID: PMC10955087 DOI: 10.3389/fcvm.2024.1342173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiomyopathy, a heterogeneous pathological condition characterized by changes in cardiac structure or function, represents a significant risk factor for the prevalence and mortality of cardiovascular disease (CVD). Research conducted over the years has led to the modification of definition and classification of cardiomyopathy. Herein, we reviewed seven of the most common types of cardiomyopathies, including Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), diabetic cardiomyopathy, Dilated Cardiomyopathy (DCM), desmin-associated cardiomyopathy, Hypertrophic Cardiomyopathy (HCM), Ischemic Cardiomyopathy (ICM), and obesity cardiomyopathy, focusing on their definitions, epidemiology, and influencing factors. Cardiomyopathies manifest in various ways ranging from microscopic alterations in cardiomyocytes, to tissue hypoperfusion, cardiac failure, and arrhythmias caused by electrical conduction abnormalities. As pleiotropic Transcription Factors (TFs), the Krüppel-Like Factors (KLFs), a family of zinc finger proteins, are involved in regulating the setting and development of cardiomyopathies, and play critical roles in associated biological processes, including Oxidative Stress (OS), inflammatory reactions, myocardial hypertrophy and fibrosis, and cellular autophagy and apoptosis, particularly in diabetic cardiomyopathy. However, research into KLFs in cardiomyopathy is still in its early stages, and the pathophysiologic mechanisms of some KLF members in various types of cardiomyopathies remain unclear. This article reviews the roles and recent research advances in KLFs, specifically those targeting and regulating several cardiomyopathy-associated processes.
Collapse
Affiliation(s)
- Le-Kun Gui
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Huang-Jun Liu
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Li-Jun Jin
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
12
|
Cenni V, Evangelisti C, Santi S, Sabatelli P, Neri S, Cavallo M, Lattanzi G, Mattioli E. Desmin and Plectin Recruitment to the Nucleus and Nuclei Orientation Are Lost in Emery-Dreifuss Muscular Dystrophy Myoblasts Subjected to Mechanical Stimulation. Cells 2024; 13:162. [PMID: 38247853 PMCID: PMC10814836 DOI: 10.3390/cells13020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
In muscle cells subjected to mechanical stimulation, LINC complex and cytoskeletal proteins are basic to preserve cellular architecture and maintain nuclei orientation and positioning. In this context, the role of lamin A/C remains mostly elusive. This study demonstrates that in human myoblasts subjected to mechanical stretching, lamin A/C recruits desmin and plectin to the nuclear periphery, allowing a proper spatial orientation of the nuclei. Interestingly, in Emery-Dreifuss Muscular Dystrophy (EDMD2) myoblasts exposed to mechanical stretching, the recruitment of desmin and plectin to the nucleus and nuclear orientation were impaired, suggesting that a functional lamin A/C is crucial for the response to mechanical strain. While describing a new mechanism of action headed by lamin A/C, these findings show a structural alteration that could be involved in the onset of the muscle defects observed in muscular laminopathies.
Collapse
Affiliation(s)
- Vittoria Cenni
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, 40136 Bologna, Italy; (V.C.); (S.S.); (P.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Camilla Evangelisti
- Cellular Signalling Laboratory, Department of Biochemical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy;
| | - Spartaco Santi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, 40136 Bologna, Italy; (V.C.); (S.S.); (P.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Patrizia Sabatelli
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, 40136 Bologna, Italy; (V.C.); (S.S.); (P.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Simona Neri
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Marco Cavallo
- Shoulder-Elbow Surgery Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, 40136 Bologna, Italy; (V.C.); (S.S.); (P.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Elisabetta Mattioli
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, 40136 Bologna, Italy; (V.C.); (S.S.); (P.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
13
|
Li Q, Hao M, Zhu J, Yi L, Cheng W, Xie Y, Zhao S. Comparison of differentially expressed genes in longissimus dorsi muscle of Diannan small ears, Wujin and landrace pigs using RNA-seq. Front Vet Sci 2024; 10:1296208. [PMID: 38249550 PMCID: PMC10796741 DOI: 10.3389/fvets.2023.1296208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Pig growth is an important economic trait that involves the co-regulation of multiple genes and related signaling pathways. High-throughput sequencing has become a powerful technology for establishing the transcriptome profiles and can be used to screen genome-wide differentially expressed genes (DEGs). In order to elucidate the molecular mechanism underlying muscle growth, this study adopted RNA sequencing (RNA-seq) to identify and compare DEGs at the genetic level in the longissimus dorsi muscle (LDM) between two indigenous Chinese pig breeds (Diannan small ears [DSE] pig and Wujin pig [WJ]) and one introduced pig breed (Landrace pig [LP]). Methods Animals under study were from two Chinese indigenous pig breeds (DSE pig, n = 3; WJ pig, n = 3) and one introduced pig breed (LP, n = 3) were used for RNA sequencing (RNA-seq) to identify and compare the expression levels of DEGs in the LDM. Then, functional annotation, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Protein-Protein Interaction (PPI) network analysis were performed on these DEGs. Then, functional annotation, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Protein-Protein Interaction (PPI) network analysis were performed on these DEGs. Results The results revealed that for the DSE, WJ, and LP libraries, more than 66, 65, and 71 million clean reads were generated by transcriptome sequencing, respectively. A total of 11,213 genes were identified in the LDM tissue of these pig breeds, of which 7,127 were co-expressed in the muscle tissue of the three samples. In total, 441 and 339 DEGs were identified between DSE vs. WJ and LP vs. DSE in the study, with 254, 193 up-regulated genes and 187, 193 down-regulated genes in DSE compared to WJ and LP. GO analysis and KEGG signaling pathway analysis showed that DEGs are significantly related to contractile fiber, sarcolemma, and dystrophin-associated glycoprotein complex, myofibril, sarcolemma, and myosin II complex, Glycolysis/Gluconeogenesis, Propanoate metabolism, and Pyruvate metabolism, etc. In combination with functional annotation of DEGs, key genes such as ENO3 and JUN were identified by PPI network analysis. Discussion In conclusion, the present study revealed key genes including DES, FLNC, PSMD1, PSMD6, PSME4, PSMB4, RPL11, RPL13A, ROS23, RPS29, MYH1, MYL9, MYL12B, TPM1, TPM4, ENO3, PGK1, PKM2, GPI, and the unannotated new gene ENSSSCG00000020769 and related signaling pathways that influence the difference in muscle growth and could provide a theoretical basis for improving pig muscle growth traits in the future.
Collapse
Affiliation(s)
- Qiuyan Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Meilin Hao
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Junhong Zhu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Lanlan Yi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Wenjie Cheng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yuxiao Xie
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Sumei Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
14
|
Krumbein M, Oberman F, Cinnamon Y, Golomb M, May D, Vainer G, Belzer V, Meir K, Fridman I, Haybaeck J, Poelzl G, Kehat I, Beeri R, Kessler SM, Yisraeli JK. RNA binding protein IGF2BP2 expression is induced by stress in the heart and mediates dilated cardiomyopathy. Commun Biol 2023; 6:1229. [PMID: 38052926 PMCID: PMC10698010 DOI: 10.1038/s42003-023-05547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
The IGF2BP family of RNA binding proteins consists of three paralogs that regulate intracellular RNA localization, RNA stability, and translational control. Although IGF2BP1 and 3 are oncofetal proteins, IGF2BP2 expression is maintained in many tissues, including the heart, into adulthood. IGF2BP2 is upregulated in cardiomyocytes during cardiac stress and remodeling and returns to normal levels in recovering hearts. We wondered whether IGF2BP2 might play an adaptive role during cardiac stress and recovery. Enhanced expression of an IGF2BP2 transgene in a conditional, inducible mouse line leads to dilated cardiomyopathy (DCM) and death within 3-4 weeks in newborn or adult hearts. Downregulation of the transgene after 2 weeks, however, rescues these mice, with complete recovery by 12 weeks. Hearts overexpressing IGF2BP2 downregulate sarcomeric and mitochondrial proteins and have fragmented mitochondria and elongated, thinner sarcomeres. IGF2BP2 is also upregulated in DCM or myocardial infarction patients. These results suggest that IGF2BP2 may be an attractive target for therapeutic intervention in cardiomyopathies.
Collapse
Affiliation(s)
- Miriam Krumbein
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Froma Oberman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Cinnamon
- Institute of Animal Science, Agricultural Research Organization, The Volcani Institute, Rishon Lezion, Israel
| | | | - Dalit May
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Shaare Zedek Medical Center, Jerusalem, Israel
- Clalit Health Service, Jerusalem, Israel
| | - Gilad Vainer
- Department of Pathology, Hadassah Medical Center, Jerusalem, Israel
| | - Vitali Belzer
- Department of Pathology, Hadassah Medical Center, Jerusalem, Israel
| | - Karen Meir
- Department of Pathology, Hadassah Medical Center, Jerusalem, Israel
| | - Irina Fridman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Johannes Haybaeck
- Institut für Pathologie, Neuropathologie und Molekularpathologie, Medical University Innsbruck, Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Gerhard Poelzl
- Department of Cardiology and Angiology, Medical University Innsbruck, Innsbruck, Austria
| | - Izhak Kehat
- Department of Physiology and Biophysics, The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Bat Galim, Haifa, Israel
| | - Ronen Beeri
- Department of Cardiology, Hadassah Medical Center, Jerusalem, Israel
| | - Sonja M Kessler
- Experimental Pharmacology for Natural Sciences, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | - Joel K Yisraeli
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
15
|
Wang S, Zhang Z, He J, Liu J, Guo X, Chu H, Xu H, Wang Y. Comprehensive review on gene mutations contributing to dilated cardiomyopathy. Front Cardiovasc Med 2023; 10:1296389. [PMID: 38107262 PMCID: PMC10722203 DOI: 10.3389/fcvm.2023.1296389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is one of the most common primary myocardial diseases. However, to this day, it remains an enigmatic cardiovascular disease (CVD) characterized by ventricular dilatation, which leads to myocardial contractile dysfunction. It is the most common cause of chronic congestive heart failure and the most frequent indication for heart transplantation in young individuals. Genetics and various other factors play significant roles in the progression of dilated cardiomyopathy, and variants in more than 50 genes have been associated with the disease. However, the etiology of a large number of cases remains elusive. Numerous studies have been conducted on the genetic causes of dilated cardiomyopathy. These genetic studies suggest that mutations in genes for fibronectin, cytoskeletal proteins, and myosin in cardiomyocytes play a key role in the development of DCM. In this review, we provide a comprehensive description of the genetic basis, mechanisms, and research advances in genes that have been strongly associated with DCM based on evidence-based medicine. We also emphasize the important role of gene sequencing in therapy for potential early diagnosis and improved clinical management of DCM.
Collapse
Affiliation(s)
- Shipeng Wang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhiyu Zhang
- Department of Cardiovascular Medicine, The Second People's Hospital of Yibin, Yibin, China
| | - Jiahuan He
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Junqian Liu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xia Guo
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Haoxuan Chu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Hanchi Xu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yushi Wang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Karabinos A. The long protostomic-type cytoplasmic intermediate filament (cIF) protein in Branchiostoma supports the phylogenetic transition between the protostomic- and the chordate-type cIFs. PROTOPLASMA 2023; 260:1493-1500. [PMID: 37209173 DOI: 10.1007/s00709-023-01865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
We identified 23 and 20 cytoplasmic IF (cIF) genes in the two Branchiostoma belcheri and Branchiostoma lanceolatum cephalochordates, respectively. Combining these results with earlier data on the related Branchiostoma floridae, the following conclusions can be drawn. First, the Branchiostoma N4 protein with a long lamin-like coil 1B segment is the only protostomic-type cIF found so far in any analysed chordate or vertebrate organism. Second, Branchiostoma is the only organism known so far containing both the long protostomic- and the short chordate-prototypes of cIFs. This finding provides so far missing molecular evidence for the phylogenetic transition between the protostomic- and the chordate-type IF sequences at the base of the cephalochordates and vertebrates. Third, this finding also brings some support for another hypothesis, that the long protostomic-type cIF is subjected to evolutionary constraints in order to preclude inappropriate interactions with lamin and that the latter complexes might be prevented by a several heptad-long rod deletion, which released the selective constraints on it and promoted, at least in part, its expansion in nematodes, cephalochordates, and in vertebrates. Finally, here-presented data confirmed our previous results that cephalochordates do not have any vertebrate type III or type IV IF homolog.
Collapse
Affiliation(s)
- Anton Karabinos
- Medirex, a.s., Kosice, Magnezitarska 2/C, 04013, Kosice, Slovakia.
| |
Collapse
|
17
|
Tadros HJ, Miyake CY, Kearney DL, Kim JJ, Denfield SW. The Many Faces of Arrhythmogenic Cardiomyopathy: An Overview. Appl Clin Genet 2023; 16:181-203. [PMID: 37933265 PMCID: PMC10625769 DOI: 10.2147/tacg.s383446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a disease that involves electromechanical uncoupling of cardiomyocytes. This leads to characteristic histologic changes that ultimately lead to the arrhythmogenic clinical features of the disease. Initially thought to affect the right ventricle predominantly, more recent data show that it can affect both the ventricles or the left ventricle alone. Throughout the recent era, diagnostic modalities and criteria for AC have continued to evolve and our understanding of its clinical features in different age groups as well as the genotype to the phenotype correlations have improved. In this review, we set out to detail the epidemiology, etiologies, presentations, evaluation, and management of AC across the age continuum.
Collapse
Affiliation(s)
- Hanna J Tadros
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Christina Y Miyake
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Debra L Kearney
- Department of Pathology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey J Kim
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Susan W Denfield
- Department of Pediatrics, Division of Pediatric Cardiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
18
|
Brown SJ, Šoltić D, Synowsky SA, Shirran SL, Chilcott E, Shorrock HK, Gillingwater TH, Yáñez-Muñoz RJ, Schneider B, Bowerman M, Fuller HR. AAV9-mediated SMN gene therapy rescues cardiac desmin but not lamin A/C and elastin dysregulation in Smn2B/- spinal muscular atrophy mice. Hum Mol Genet 2023; 32:2950-2965. [PMID: 37498175 PMCID: PMC10549791 DOI: 10.1093/hmg/ddad121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023] Open
Abstract
Structural, functional and molecular cardiac defects have been reported in spinal muscular atrophy (SMA) patients and mouse models. Previous quantitative proteomics analyses demonstrated widespread molecular defects in the severe Taiwanese SMA mouse model. Whether such changes are conserved across different mouse models, including less severe forms of the disease, has yet to be established. Here, using the same high-resolution proteomics approach in the less-severe Smn2B/- SMA mouse model, 277 proteins were found to be differentially abundant at a symptomatic timepoint (post-natal day (P) 18), 50 of which were similarly dysregulated in severe Taiwanese SMA mice. Bioinformatics analysis linked many of the differentially abundant proteins to cardiovascular development and function, with intermediate filaments highlighted as an enriched cellular compartment in both datasets. Lamin A/C was increased in the cardiac tissue, whereas another intermediate filament protein, desmin, was reduced. The extracellular matrix (ECM) protein, elastin, was also robustly decreased in the heart of Smn2B/- mice. AAV9-SMN1-mediated gene therapy rectified low levels of survival motor neuron protein and restored desmin levels in heart tissues of Smn2B/- mice. In contrast, AAV9-SMN1 therapy failed to correct lamin A/C or elastin levels. Intermediate filament proteins and the ECM have key roles in cardiac function and their dysregulation may explain cardiac impairment in SMA, especially since mutations in genes encoding these proteins cause other diseases with cardiac aberration. Cardiac pathology may need to be considered in the long-term care of SMA patients, as it is unclear whether currently available treatments can fully rescue peripheral pathology in SMA.
Collapse
Affiliation(s)
- Sharon J Brown
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Darija Šoltić
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Silvia A Synowsky
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, St Andrews KY16 9ST, UK
| | - Sally L Shirran
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, St Andrews KY16 9ST, UK
| | - Ellie Chilcott
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Hannah K Shorrock
- Edinburgh Medical School: Biomedical Sciences, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Bernard Schneider
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Melissa Bowerman
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
- School of Medicine, Keele University, Keele ST5 5BG, UK
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| |
Collapse
|
19
|
Chua CJ, Morrissette-McAlmon J, Tung L, Boheler KR. Understanding Arrhythmogenic Cardiomyopathy: Advances through the Use of Human Pluripotent Stem Cell Models. Genes (Basel) 2023; 14:1864. [PMID: 37895213 PMCID: PMC10606441 DOI: 10.3390/genes14101864] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiomyopathies (CMPs) represent a significant healthcare burden and are a major cause of heart failure leading to premature death. Several CMPs are now recognized to have a strong genetic basis, including arrhythmogenic cardiomyopathy (ACM), which predisposes patients to arrhythmic episodes. Variants in one of the five genes (PKP2, JUP, DSC2, DSG2, and DSP) encoding proteins of the desmosome are known to cause a subset of ACM, which we classify as desmosome-related ACM (dACM). Phenotypically, this disease may lead to sudden cardiac death in young athletes and, during late stages, is often accompanied by myocardial fibrofatty infiltrates. While the pathogenicity of the desmosome genes has been well established through animal studies and limited supplies of primary human cells, these systems have drawbacks that limit their utility and relevance to understanding human disease. Human induced pluripotent stem cells (hiPSCs) have emerged as a powerful tool for modeling ACM in vitro that can overcome these challenges, as they represent a reproducible and scalable source of cardiomyocytes (CMs) that recapitulate patient phenotypes. In this review, we provide an overview of dACM, summarize findings in other model systems linking desmosome proteins with this disease, and provide an up-to-date summary of the work that has been conducted in hiPSC-cardiomyocyte (hiPSC-CM) models of dACM. In the context of the hiPSC-CM model system, we highlight novel findings that have contributed to our understanding of disease and enumerate the limitations, prospects, and directions for research to consider towards future progress.
Collapse
Affiliation(s)
- Christianne J. Chua
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Justin Morrissette-McAlmon
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Kenneth R. Boheler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Coscarella IL, Landim-Vieira M, Rastegarpouyani H, Chase PB, Irianto J, Pinto JR. Nucleus Mechanosensing in Cardiomyocytes. Int J Mol Sci 2023; 24:13341. [PMID: 37686151 PMCID: PMC10487505 DOI: 10.3390/ijms241713341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Cardiac muscle contraction is distinct from the contraction of other muscle types. The heart continuously undergoes contraction-relaxation cycles throughout an animal's lifespan. It must respond to constantly varying physical and energetic burdens over the short term on a beat-to-beat basis and relies on different mechanisms over the long term. Muscle contractility is based on actin and myosin interactions that are regulated by cytoplasmic calcium ions. Genetic variants of sarcomeric proteins can lead to the pathophysiological development of cardiac dysfunction. The sarcomere is physically connected to other cytoskeletal components. Actin filaments, microtubules and desmin proteins are responsible for these interactions. Therefore, mechanical as well as biochemical signals from sarcomeric contractions are transmitted to and sensed by other parts of the cardiomyocyte, particularly the nucleus which can respond to these stimuli. Proteins anchored to the nuclear envelope display a broad response which remodels the structure of the nucleus. In this review, we examine the central aspects of mechanotransduction in the cardiomyocyte where the transmission of mechanical signals to the nucleus can result in changes in gene expression and nucleus morphology. The correlation of nucleus sensing and dysfunction of sarcomeric proteins may assist the understanding of a wide range of functional responses in the progress of cardiomyopathic diseases.
Collapse
Affiliation(s)
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Hosna Rastegarpouyani
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Institute for Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jerome Irianto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
21
|
Kim HJ, Lee PCW, Hong JH. Overview of cellular homeostasis-associated nuclear envelope lamins and associated input signals. Front Cell Dev Biol 2023; 11:1173514. [PMID: 37250905 PMCID: PMC10213260 DOI: 10.3389/fcell.2023.1173514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
With the discovery of the role of the nuclear envelope protein lamin in human genetic diseases, further diverse roles of lamins have been elucidated. The roles of lamins have been addressed in cellular homeostasis including gene regulation, cell cycle, cellular senescence, adipogenesis, bone remodeling as well as modulation of cancer biology. Features of laminopathies line with oxidative stress-associated cellular senescence, differentiation, and longevity and share with downstream of aging-oxidative stress. Thus, in this review, we highlighted various roles of lamin as key molecule of nuclear maintenance, specially lamin-A/C, and mutated LMNA gene clearly reveal aging-related genetic phenotypes, such as enhanced differentiation, adipogenesis, and osteoporosis. The modulatory roles of lamin-A/C in stem cell differentiation, skin, cardiac regulation, and oncology have also been elucidated. In addition to recent advances in laminopathies, we highlighted for the first kinase-dependent nuclear lamin biology and recently developed modulatory mechanisms or effector signals of lamin regulation. Advanced knowledge of the lamin-A/C proteins as diverse signaling modulators might be biological key to unlocking the complex signaling of aging-related human diseases and homeostasis in cellular process.
Collapse
Affiliation(s)
- Hyeong Jae Kim
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Peter C. W. Lee
- Lung Cancer Research Center, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Jeong Hee Hong
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
22
|
Saunders J, Sikder K, Phillips E, Ishwar A, Mothy D, Margulies KB, Choi JC. Med25 Limits Master Regulators That Govern Adipogenesis. Int J Mol Sci 2023; 24:6155. [PMID: 37047128 PMCID: PMC10093881 DOI: 10.3390/ijms24076155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Mediator 25 (Med25) is a member of the mediator complex that relays signals from transcription factors to the RNA polymerase II machinery. Multiple transcription factors, particularly those involved in lipid metabolism, utilize the mediator complex, but how Med25 is involved in this context is unclear. We previously identified Med25 in a translatome screen of adult cardiomyocytes (CMs) in a novel cell type-specific model of LMNA cardiomyopathy. In this study, we show that Med25 upregulation is coincident with myocardial lipid accumulation. To ascertain the role of Med25 in lipid accumulation, we utilized iPSC-derived and neonatal CMs to recapitulate the in vivo phenotype by depleting lamins A and C (lamin A/C) in vitro. Although lamin A/C depletion elicits lipid accumulation, this effect appears to be mediated by divergent mechanisms dependent on the CM developmental state. To directly investigate Med25 in lipid accumulation, we induced adipogenesis in Med25-silenced 3T3-L1 preadipocytes and detected enhanced lipid accumulation. Assessment of pertinent mediators driving adipogenesis revealed that C/EBPα and PPARγ are super-induced by Med25 silencing. Our results indicate that Med25 limits adipogenic potential by suppressing the levels of master regulators that govern adipogenesis. Furthermore, we caution the use of early-developmental-stage cardiomyocytes to model adult-stage cells, particularly for dissecting metabolic perturbations emanating from LMNA mutations.
Collapse
Affiliation(s)
- Jasmine Saunders
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kunal Sikder
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Elizabeth Phillips
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Anurag Ishwar
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David Mothy
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kenneth B. Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason C. Choi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
23
|
Wang Y, Dobreva G. Epigenetics in LMNA-Related Cardiomyopathy. Cells 2023; 12:cells12050783. [PMID: 36899919 PMCID: PMC10001118 DOI: 10.3390/cells12050783] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Mutations in the gene for lamin A/C (LMNA) cause a diverse range of diseases known as laminopathies. LMNA-related cardiomyopathy is a common inherited heart disease and is highly penetrant with a poor prognosis. In the past years, numerous investigations using mouse models, stem cell technologies, and patient samples have characterized the phenotypic diversity caused by specific LMNA variants and contributed to understanding the molecular mechanisms underlying the pathogenesis of heart disease. As a component of the nuclear envelope, LMNA regulates nuclear mechanostability and function, chromatin organization, and gene transcription. This review will focus on the different cardiomyopathies caused by LMNA mutations, address the role of LMNA in chromatin organization and gene regulation, and discuss how these processes go awry in heart disease.
Collapse
Affiliation(s)
- Yinuo Wang
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), 68167 Mannheim, Germany
- Correspondence: (Y.W.); (G.D.)
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), 68167 Mannheim, Germany
- Correspondence: (Y.W.); (G.D.)
| |
Collapse
|
24
|
Qiu R, Wang S, Lin D, He Y, Huang S, Wu B, Li H, Wang M, Zheng F. Mice harboring a R133L heterozygous mutation in LMNA exhibited ectopic lipid accumulation, aging, and mitochondrial dysfunction in adipose tissue. FASEB J 2023; 37:e22730. [PMID: 36583724 DOI: 10.1096/fj.202201252rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
The LMNA gene encodes for the nuclear envelope proteins lamin A and C (lamin A/C). A novel R133L heterozygous mutation in the LMNA gene causes atypical progeria syndrome (APS). However, the underlying mechanism remains unclear. Here, we used transgenic mice (LmnaR133L/+ mice) that expressed a heterozygous LMNA R133L mutation and 3T3-L1 cell lines with stable overexpression of LMNA R133L (by lentiviral transduction) as in vivo and in vitro models to investigate the mechanisms of LMNA R133L mutations that mediate the APS phenotype. We found that a heterozygous R133L mutation in LMNA induced most of the metabolic disturbances seen in patients with this mutation, including ectopic lipid accumulation, limited subcutaneous adipose tissue (SAT) expansion, and insulin resistance. Mitochondrial dysfunction and senescence promote ectopic lipid accumulation and insulin resistance. In addition, the FLAG-mediated pull-down capture followed by mass spectrometry assay showed that p160 Myb-binding protein (P160 MBP; Mybbp1 a $$ a $$ ), the critical transcriptional repressor of PGC-1α, was bound to lamin A/C. Increased Mybbp1 a $$ a $$ levels in tissues and greater Mybbp1 a $$ a $$ -lamin A/C binding in nuclear inhibit PGC-1α activity and promotes mitochondrial dysfunction. Our findings confirm that the novel R133L heterozygous mutation in the LMNA gene caused APS are associated with marked mitochondrial respiratory chain impairment, which were induced by decreased PGC-1α levels correlating with increased Mybbp1a levels in nuclear, and a senescence phenotype of the subcutaneous fat.
Collapse
Affiliation(s)
- Ruojun Qiu
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuo Wang
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dingyi Lin
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yingzi He
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shaohan Huang
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beibei Wu
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Li
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Min Wang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Fenping Zheng
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Onore ME, Savarese M, Picillo E, Passamano L, Nigro V, Politano L. Bi-Allelic DES Gene Variants Causing Autosomal Recessive Myofibrillar Myopathies Affecting Both Skeletal Muscles and Cardiac Function. Int J Mol Sci 2022; 23:ijms232415906. [PMID: 36555543 PMCID: PMC9785402 DOI: 10.3390/ijms232415906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Mutations in the human desmin gene (DES) may cause both autosomal dominant and recessive cardiomyopathies leading to heart failure, arrhythmias and atrio-ventricular blocks, or progressive myopathies. Cardiac conduction disorders, arrhythmias and cardiomyopathies usually associated with progressive myopathy are the main manifestations of autosomal dominant desminopathies, due to mono-allelic pathogenic variants. The recessive forms, due to bi-allelic variants, are very rare and exhibit variable phenotypes in which premature sudden cardiac death could also occur in the first or second decade of life. We describe a further case of autosomal recessive desminopathy in an Italian boy born of consanguineous parents, who developed progressive myopathy at age 12, and dilated cardiomyopathy four years later and died of intractable heart failure at age 17. Next Generation Sequencing (NGS) analysis identified the homozygous loss-of-function variant c.634C>T; p.Arg212*, which was likely inherited from both parents. Furthermore, we performed a comparison of clinical and genetic results observed in our patient with those of cases so far reported in the literature.
Collapse
Affiliation(s)
- Maria Elena Onore
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Marco Savarese
- Folkhälsan Research Center, 00280 Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00280 Helsinki, Finland
| | - Esther Picillo
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Luigia Passamano
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Vincenzo Nigro
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Luisa Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
- Correspondence:
| |
Collapse
|
26
|
The N-Terminal Part of the 1A Domain of Desmin Is a Hot Spot Region for Putative Pathogenic DES Mutations Affecting Filament Assembly. Cells 2022; 11:cells11233906. [PMID: 36497166 PMCID: PMC9738904 DOI: 10.3390/cells11233906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Desmin is the major intermediate filament protein of all three muscle cell types, and connects different cell organelles and multi-protein complexes such as the cardiac desmosomes. Several pathogenic mutations in the DES gene cause different skeletal and cardiac myopathies. However, the significance of the majority of DES missense variants is currently unknown, since functional data are lacking. To determine whether desmin missense mutations within the highly conserved 1A coil domain cause a filament assembly defect, we generated a set of variants with unknown significance and systematically analyzed the filament assembly using confocal microscopy in transfected SW-13, H9c2 cells and cardiomyocytes derived from induced pluripotent stem cells. We found that mutations in the N-terminal part of the 1A coil domain affect filament assembly, leading to cytoplasmic desmin aggregation. In contrast, mutant desmin in the C-terminal part of the 1A coil domain forms filamentous structures comparable to wild-type desmin. Our findings suggest that the N-terminal part of the 1A coil domain is a hot spot for pathogenic desmin mutations, which affect desmin filament assembly. This study may have relevance for the genetic counselling of patients carrying variants in the 1A coil domain of the DES gene.
Collapse
|
27
|
2020 Editor’s Choice Articles in the “Cell Nuclei: Function, Transport and Receptors” Section. Cells 2022; 11:cells11172625. [PMID: 36078033 PMCID: PMC9454793 DOI: 10.3390/cells11172625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
In 2020, a total of 106 original research articles, 84 reviews, and 1 other paper were published within the “Cell Nuclei: Function, Transport and Receptors” section [...]
Collapse
|
28
|
Genetic Background and Clinical Features in Arrhythmogenic Left Ventricular Cardiomyopathy: A Systematic Review. J Clin Med 2022; 11:jcm11154313. [PMID: 35893404 PMCID: PMC9332695 DOI: 10.3390/jcm11154313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 12/16/2022] Open
Abstract
In recent years a phenotypic variant of Arrhythmogenic cardiomyopathy has been described, characterized by predominant left ventricular (LV) involvement with no or minor right ventricular abnormalities, referred to as Arrhythmogenic left ventricular cardiomyopathy (ALVC). Different disease-genes have been identified in this form, such as Desmoplakin (DSP), Filamin C (FLNC), Phospholamban (PLN) and Desmin (DES). The main purpose of this critical systematic review was to assess the level of knowledge on genetic background and clinical features of ALVC. A search (updated to April 2022) was run in the PubMed, Scopus, and Web of Science electronic databases. The search terms used were “arrhythmogenic left ventricular cardiomyopathy” OR “arrhythmogenic cardiomyopathy” and “gene” OR “arrhythmogenic dysplasia” and “gene”. The most represented disease-gene turned out to be DSP, accounting for half of published cases, followed by FLNC. Overall, ECG abnormalities were reported in 58% of patients. Major ventricular arrhythmias were recorded in 26% of cases; an ICD was implanted in 29% of patients. A total of 6% of patients showed heart failure symptoms, and 15% had myocarditis-like episodes. DSP is confirmed to be the most represented disease-gene in ALVC patients. An analysis of reported clinical features of ALVC patients show an important degree of electrical instability, which frequently required an ICD implant. Moreover, myocarditis-like episodes are common.
Collapse
|
29
|
Recent Advances in Intermediate Filaments-Volume 1. Int J Mol Sci 2022; 23:ijms23105308. [PMID: 35628119 PMCID: PMC9141557 DOI: 10.3390/ijms23105308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022] Open
|
30
|
Brodehl A, Hain C, Flottmann F, Ratnavadivel S, Gaertner A, Klauke B, Kalinowski J, Körperich H, Gummert J, Paluszkiewicz L, Deutsch MA, Milting H. The Desmin Mutation DES-c.735G>C Causes Severe Restrictive Cardiomyopathy by Inducing In-Frame Skipping of Exon-3. Biomedicines 2021; 9:biomedicines9101400. [PMID: 34680517 PMCID: PMC8533191 DOI: 10.3390/biomedicines9101400] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 02/02/2023] Open
Abstract
Currently, little is known about the genetic background of restrictive cardiomyopathy (RCM). Herein, we screened an index patient with RCM in combination with atrial fibrillation using a next generation sequencing (NGS) approach and identified the heterozygous mutation DES-c.735G>C. As DES-c.735G>C affects the last base pair of exon-3, it is unknown whether putative missense or splice site mutations are caused. Therefore, we applied nanopore amplicon sequencing revealing the expression of a transcript without exon-3 in the explanted myocardial tissue of the index patient. Western blot analysis verified this finding at the protein level. In addition, we performed cell culture experiments revealing an abnormal cytoplasmic aggregation of the truncated desmin form (p.D214-E245del) but not of the missense variant (p.E245D). In conclusion, we show that DES-c.735G>C causes a splicing defect leading to exon-3 skipping of the DES gene. DES-c.735G>C can be classified as a pathogenic mutation associated with RCM and atrial fibrillation. In the future, this finding might have relevance for the genetic understanding of similar cases.
Collapse
Affiliation(s)
- Andreas Brodehl
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
- Correspondence: (A.B.); (H.M.); Tel.: +49-(0)5731-973530 (A.B.); +49-(0)5731-973510 (H.M.)
| | - Carsten Hain
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, D-33615 Bielefeld, Germany; (C.H.); (J.K.)
| | - Franziska Flottmann
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
| | - Sandra Ratnavadivel
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
| | - Anna Gaertner
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
| | - Bärbel Klauke
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
- Clinic for General and Interventional Cardiology/Angiology, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, D-33615 Bielefeld, Germany; (C.H.); (J.K.)
| | - Hermann Körperich
- Heart and Diabetes Center NRW, Institute for Radiology, Nuclear Medicine and Molecular Imaging, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany;
| | - Jan Gummert
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
- Heart and Diabetes Center NRW, Department of Thoracic and Cardiovascular Surgery, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (L.P.); (M.-A.D.)
| | - Lech Paluszkiewicz
- Heart and Diabetes Center NRW, Department of Thoracic and Cardiovascular Surgery, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (L.P.); (M.-A.D.)
| | - Marcus-André Deutsch
- Heart and Diabetes Center NRW, Department of Thoracic and Cardiovascular Surgery, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (L.P.); (M.-A.D.)
| | - Hendrik Milting
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany; (F.F.); (S.R.); (A.G.); (B.K.); (J.G.)
- Correspondence: (A.B.); (H.M.); Tel.: +49-(0)5731-973530 (A.B.); +49-(0)5731-973510 (H.M.)
| |
Collapse
|
31
|
Gerull B, Brodehl A. Insights Into Genetics and Pathophysiology of Arrhythmogenic Cardiomyopathy. Curr Heart Fail Rep 2021; 18:378-390. [PMID: 34478111 PMCID: PMC8616880 DOI: 10.1007/s11897-021-00532-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Purpose of Review Arrhythmogenic cardiomyopathy (ACM) is a genetic disease characterized by life-threatening ventricular arrhythmias and sudden cardiac death (SCD) in apparently healthy young adults. Mutations in genes encoding for cellular junctions can be found in about half of the patients. However, disease onset and severity, risk of arrhythmias, and outcome are highly variable and drug-targeted treatment is currently unavailable. Recent Findings This review focuses on advances in clinical risk stratification, genetic etiology, and pathophysiological concepts. The desmosome is the central part of the disease, but other intercalated disc and associated structural proteins not only broaden the genetic spectrum but also provide novel molecular and cellular insights into the pathogenesis of ACM. Signaling pathways and the role of inflammation will be discussed and targets for novel therapeutic approaches outlined. Summary Genetic discoveries and experimental-driven preclinical research contributed significantly to the understanding of ACM towards mutation- and pathway-specific personalized medicine.
Collapse
Affiliation(s)
- Brenda Gerull
- Comprehensive Heart Failure Center (CHFC), Department of Medicine I, University Clinic Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany.
| | - Andreas Brodehl
- Heart and Diabetes Center NRW, Erich and Hanna Klessmann Institute, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany
| |
Collapse
|