1
|
Chen H, An Y, Wang C, Zhou J. Circulating tumor DNA in colorectal cancer: biology, methods and applications. Discov Oncol 2025; 16:439. [PMID: 40167831 PMCID: PMC11961841 DOI: 10.1007/s12672-025-02220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
In the practice of colorectal cancer (CRC), traditional tumor tissue analysis is limited by intratumoral and intertumoral heterogeneity and its invasive nature. Circulating tumor DNA (ctDNA) analysis, a promising liquid biopsy approach, has been increasingly explored in clinical studies. Biologically, ctDNA is characterized by tumor-specific diversity and rapid clearance from circulation, enabling real-time, dynamic, and repeatable assessments. Technologically, PCR- and NGS-based downstream analysis methods have been developed and validated. However, variables in pre-analytical and analytical procedures underscores the need for standardized protocols. Compared with clinicopathology-based risk stratification, ctDNA-based molecular residual disease detection has demonstrated significant potential in guiding treatment decisions. Qualitative and quantitative changes in ctDNA have also shown predictive and prognostic value during neoadjuvant or adjuvant treatment, as well as in later-line treatment for metastatic CRC. Specific molecular aberrations in ctDNA can not only assist in identifying candidates for targeted therapies but also reveal resistance mechanisms. Additionally, emerging research is exploring the potential of ctDNA in early cancer detection. Overall, as a novel biomarker, ctDNA holds substantial promise in advancing clinical practice. This review focuses on the biological characteristics, pre-analytical variables, and downstream analysis methods of ctDNA and summarizes its role across various clinical scenarios in CRC.
Collapse
Affiliation(s)
- Han Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Shuaifuyuan, Beijing, 100730, China
| | - Yang An
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Shuaifuyuan, Beijing, 100730, China
| | - Chentong Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Shuaifuyuan, Beijing, 100730, China
| | - Jiaolin Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Shuaifuyuan, Beijing, 100730, China.
| |
Collapse
|
2
|
Čeri A, Somborac-Bačura A, Fabijanec M, Hulina-Tomašković A, Matusina M, Detel D, Verbanac D, Barišić K. Establishment of liquid biopsy procedure for the analysis of circulating cell free DNA, exosomes, RNA and proteins in colorectal cancer and adenoma patients. Sci Rep 2024; 14:26925. [PMID: 39506031 PMCID: PMC11541997 DOI: 10.1038/s41598-024-78497-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Liquid biopsy has an underexplored diagnostic potential in colorectal cancer (CRC). Sufficient quantity and quality of its elements (circulating cell-free DNA (ccfDNA), exosomes and exosomal RNA) are essential for accurate results. The present study aims to establish the optimal protocol for handling liquid biopsy samples. Samples were obtained by collecting peripheral blood from colorectal adenoma patients in CellSave tubes. Plasma was separated within six hours using differential centrifugation and aliquots stored at - 20/- 80 °C until further processing. Three methods for isolation of ccfDNA, and two combinations of kits for isolation of exosomes and exosomal RNA were tested. The quality and quantity of ccfDNA isolates were evaluated. Exosomes were characterised by determining size, concentration, and total and specific protein content. Expression of chosen microRNAs, miR-19a-3p and miR-92-3p, which have been implicated in CRC progression, were determined. The vacuum-column-based kit showed the highest quantities of isolated ccfDNA (P-value < 0.001). Kits for exosome isolation significantly differed in size (P-value = 0.016), concentration (P-value = 0.016) and protein content (P-value = 0.016). There was no significant difference in expressions of miR-19a-3p (P-value = 0.219) and miR-92a-3p (P-value = 0.094) between the two isolation kits. The new, adapted protocol described, enables simultaneous analysis of multiple elements when investigating potential biomarkers of CRC.
Collapse
Affiliation(s)
- Andrea Čeri
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia.
| | - Anita Somborac-Bačura
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| | - Marija Fabijanec
- Centre for Applied Medical Biochemistry, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| | - Andrea Hulina-Tomašković
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| | - Marko Matusina
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| | - Dijana Detel
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, University of Rijeka Faculty of Medicine, Rijeka, 51000, Croatia
| | - Donatella Verbanac
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| | - Karmela Barišić
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| |
Collapse
|
3
|
Bonilla CE, Montenegro P, O’Connor JM, Hernando-Requejo O, Aranda E, Pinto Llerena J, Llontop A, Gallardo Escobar J, Díaz Romero MDC, Bautista Hernández Y, Graña Suárez B, Batagelj EJ, Wali Mushtaq A, García-Foncillas J. Ibero-American Consensus Review and Incorporation of New Biomarkers for Clinical Practice in Colorectal Cancer. Cancers (Basel) 2023; 15:4373. [PMID: 37686649 PMCID: PMC10487247 DOI: 10.3390/cancers15174373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Advances in genomic technologies have significantly improved the management of colorectal cancer (CRC). Several biomarkers have been identified in CRC that enable personalization in the use of biologic agents that have shown to enhance the clinical outcomes of patients. However, technologies used for their determination generate massive amounts of information that can be difficult for the clinician to interpret and use adequately. Through several discussion meetings, a group of oncology experts from Spain and several Latin American countries reviewed the latest literature to provide practical recommendations on the determination of biomarkers in CRC based on their clinical experience. The article also describes the importance of looking for additional prognostic biomarkers and the use of histopathology to establish an adequate molecular classification. Present and future of immunotherapy biomarkers in CRC patients are also discussed, together with several techniques for marker determination, including liquid biopsy, next-generation sequencing (NGS), polymerase chain reaction (PCR), and fecal immunohistochemical tests. Finally, the role of Molecular Tumor Boards in the diagnosis and treatment of CRC is described. All of this information will allow us to highlight the importance of biomarker determination in CRC.
Collapse
Affiliation(s)
- Carlos Eduardo Bonilla
- Fundación CTIC—Centro de Tratamiento e Investigación sobre Cáncer, Bogotá 1681442, Colombia
| | - Paola Montenegro
- Institución AUNA OncoSalud e Instituto Nacional de Enfermedades Neoplásicas, Lima 15023, Peru
| | | | | | - Enrique Aranda
- Departamento de Oncología Médica, Hospital Reina Sofía, IMIBIC, UCO, CIBERONC, 14004 Cordoba, Spain;
| | | | - Alejandra Llontop
- Instituto de Oncología Ángel H. Roffo, Ciudad Autónoma de Buenos Aires C1437FBG, Argentina
| | | | | | | | - Begoña Graña Suárez
- Servicio de Oncología Médica, Hospital Universitario de A Coruña, Servicio Galego de Saúde (SERGAS), 15006 A Coruña, Spain;
| | | | | | - Jesús García-Foncillas
- Hospital Universitario Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Petrik J, Verbanac D, Fabijanec M, Hulina-Tomašković A, Čeri A, Somborac-Bačura A, Petlevski R, Grdić Rajković M, Rumora L, Krušlin B, Štefanović M, Ljubičić N, Baršić N, Hanžek A, Bočkor L, Ćelap I, Demirović A, Barišić K. Circulating Tumor Cells in Colorectal Cancer: Detection Systems and Clinical Utility. Int J Mol Sci 2022; 23:13582. [PMID: 36362369 PMCID: PMC9654465 DOI: 10.3390/ijms232113582] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. The high mortality from CRC is mainly related to metastasis affecting distant organs and their function. Dissemination of tumor cells from the primary tumor and hematogeneous spread are considered crucial in the formation of tumor metastases. The analysis of circulating tumor cells (CTCs) and CTC clusters in the blood can be used for the early detection of invasive cancer. Moreover, CTCs have a prognostic significance in the monitoring of a malignant disease or the response to chemotherapy. This work presents an overview of the research conducted on CTCs with the aim of finding suitable detection systems and assessing the possibility of clinical applications in patients with CRC.
Collapse
Affiliation(s)
- József Petrik
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Donatella Verbanac
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Marija Fabijanec
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Andrea Hulina-Tomašković
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Andrea Čeri
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Anita Somborac-Bačura
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Roberta Petlevski
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Marija Grdić Rajković
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Lada Rumora
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Božo Krušlin
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
- Department of Pathology and Cytology “Ljudevit Jurak”, University Hospital Centre “Sestre milosrdnice”, University of Zagreb, Vinogradska 29, 10000 Zagreb, Croatia
| | - Mario Štefanović
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
- Department of Clinical Chemistry, University Hospital Centre “Sestre milosrdnice”, University of Zagreb, Vinogradska 29, 10000 Zagreb, Croatia
| | - Neven Ljubičić
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
- Department of Internal Medicine, University Hospital Centre “Sestre milosrdnice”, Division of Gastroenterology and Hepatology, University of Zagreb, Vinogradska 29, 10000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, Gundulićeva 5, 10000 Zagreb, Croatia
| | - Neven Baršić
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
- Department of Internal Medicine, University Hospital Centre “Sestre milosrdnice”, Division of Gastroenterology and Hepatology, University of Zagreb, Vinogradska 29, 10000 Zagreb, Croatia
| | - Antonija Hanžek
- UPR CHROME, University of Nimes, 7 Place Gabriel Peri, 30000 Nîmes, France
| | - Luka Bočkor
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia
| | - Ivana Ćelap
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Alma Demirović
- Department of Pathology and Cytology “Ljudevit Jurak”, University Hospital Centre “Sestre milosrdnice”, University of Zagreb, Vinogradska 29, 10000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, Gundulićeva 5, 10000 Zagreb, Croatia
| | - Karmela Barišić
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Small Extracellular Vesicles: Key Forces Mediating the Development and Metastasis of Colorectal Cancer. Cells 2022; 11:cells11111780. [PMID: 35681475 PMCID: PMC9179504 DOI: 10.3390/cells11111780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, and its incidence and mortality rates have been increasing annually in recent years. A variety of different small extracellular vesicles (sEVs) are important mediators of intercellular communication and have an important role in tumor metastasis and progression. The development and metastasis of CRC are closely linked to tumor-cell-derived sEVs, non-tumor-cell-derived sEVs, and intestinal-microbiota-derived sEVs. Numerous studies have shown that the tumor microenvironment (TME) is a key component in the regulation of CRC proliferation, development, and metastasis. These sEVs can create a TME conducive to CRC growth and metastasis by forming an immunosuppressive microenvironment, remodeling the extracellular matrix, and promoting tumor cell metabolism. Therefore, in this paper, we review the role of different types of sEVs in colorectal cancer development and metastasis. Furthermore, based on the properties of sEVs, we further discuss the use of sEVs as early biomarkers for colorectal cancer diagnosis and the potential for their use in the treatment of CRC.
Collapse
|
6
|
CD26 Deficiency Controls Macrophage Polarization Markers and Signal Transducers during Colitis Development and Resolution. Int J Mol Sci 2022; 23:ijms23105506. [PMID: 35628317 PMCID: PMC9141856 DOI: 10.3390/ijms23105506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 01/25/2023] Open
Abstract
Ulcerative colitis (UC) is a multifactorial condition characterized by a destructive immune response that failed to be attenuated by common regulatory mechanisms which reduce inflammation and promote mucosa healing. The inhibition of CD26, a multifunctional glycoprotein that controls the immune response via its dipeptidyl peptidase (DP) 4 enzyme activity, was proven to have beneficial effects in various autoimmune inflammatory diseases. The polarization of macrophages into either pro-inflammatory M1 or anti-inflammatory M2 subclass is a key intersection that mediates the immune-inflammatory process in UC. Hence, we hypothesized that the deficiency of CD26 affects that process in the dextran sulfate sodium (DSS)-induced model of UC. We found that mRNA expression of M2 markers arginase 1 and Fizz were increased, while the expression of M1 marker inducible NO synthase was downregulated in CD26−/− mice. Decreased STAT1 mRNA, as well as upregulated pSTAT6 and pSTAT3, additionally support the demonstrated activation of M2 macrophages under CD26 deficiency. Finally, we investigated DP8 and DP9, proteins with DP4-like activity, and found that CD26 deficiency is not a key factor for the noted upregulation of their expression in UC. In conclusion, we demonstrate that CD26 deficiency regulates macrophage polarization toward the anti-inflammatory M2 phenotype, which is driven by STAT6/STAT3 signaling pathways. This process is additionally enhanced by the reduction of M1 differentiation via the suppression of proinflammatory STAT1. Therefore, further studies should investigate the clinical potential of CD26 inhibitors in the treatment of UC.
Collapse
|