1
|
Tiika RJ, Yang H, Cui G, Ma Y, Boamah S, Li Y, Duan H. Identification and Analysis of Cuticular Wax Biosynthesis Related Genes in Salicornia europaea Under NaCl Treatment. Int J Mol Sci 2025; 26:2632. [PMID: 40141273 PMCID: PMC11942154 DOI: 10.3390/ijms26062632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Salinity is a major environmental factor that adversely affects plant growth and production. Cuticular wax protects plants against external environmental stress. The relationship between cuticular wax biosynthesis and salt tolerance remains unclear in Salicornia europaea. This study examined the cuticle thickness, wax load, morphology, composition, and the expression of cuticular wax biosynthesis gene identification and expression. The results showed that 600 mM NaCl treatment enhanced the cuticle thickness and total wax load; crystal wax structures were also observed after NaCl treatment. The cuticular wax was mainly composed of fatty acids, alcohols, alkenes, and esters. The alcohol class accounted for the largest proportion, with docosanol (C25H54OSi) being the main specific alcohol compound, followed by fatty acids and alkanes. After a sequence database search, six fatty acyl-CoA reductases (FARs), sixteen wax synthase/diacylglycerol acyltransferases (WS/DGATs), three fatty alcohol oxidases (FAOs), five eceriferums (CERs), and eight mid-chain alkanes (MAHs) were identified as the putative wax biosynthesis enzymes. Their expression analysis revealed a differential response to 100 and 600 mM NaCl treatment and reached the highest level at 12 h or 48 h. The genes that were evidently upregulated with higher fold changes under salinity, such as SeFAR1, SeFAR2, and SeFAR3 are implied to synthesize primary alcohols, and SeWSs convert the primary alcohols to wax esters; SeCER1 and SeCER3 are also supposed to catalyze the conversion of aldehydes to alkanes while SeMAH7 catalyze alkanes to secondary alcohols in S. europaea in response to NaCl treatment. This study demonstrated that both the decarbonylation and acyl-reduction wax biosynthesis pathways may not be independent from each other.
Collapse
Affiliation(s)
- Richard John Tiika
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (R.J.T.); (Y.M.)
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.Y.); (G.C.)
| | - Hongshan Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.Y.); (G.C.)
| | - Guangxin Cui
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.Y.); (G.C.)
| | - Yanjun Ma
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (R.J.T.); (Y.M.)
| | - Solomon Boamah
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yi Li
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (R.J.T.); (Y.M.)
| | - Huirong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (H.Y.); (G.C.)
| |
Collapse
|
2
|
Mao WT, Hsu WH, Song JL, Yang CH. The HD-ZIP II Gene PaHAT14 Increases Cuticle Deposition by Downregulating ERF Gene PaERF105 in Phalaenopsis. PLANT & CELL PHYSIOLOGY 2024; 65:1751-1768. [PMID: 38985662 DOI: 10.1093/pcp/pcae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
To analyze the genes involved in orchid floral development, a homeodomain-leucine zipper II gene PaHAT14, which is specifically and highly expressed in perianth during early flower development, was identified from Phalaenopsis. Transgenic Arabidopsis plants expressing 35S::PaHAT14 and 35S::PaHAT14 + SRDX (fused with the repressor motif SRDX) exhibited similar altered phenotypes, including small leaves, early flowering and bending petals with increased cuticle production. This suggests that PaHAT14 acts as a repressor. In contrast, transgenic Arabidopsis plants expressing 35S::PaHAT14 + VP16 (fused with the activation domain VP16) exhibited curled leaves, late flowering and folded petals with decreased cuticle production within hardly opened flowers. Additionally, the expression of the ERF gene DEWAX2, which negatively regulates cuticular wax biosynthesis, was downregulated in 35S::PaHAT14 and 35S::PaHAT14 + SRDX transgenic Arabidopsis, while it was upregulated in 35S::PaHAT14 + VP16 transgenic Arabidopsis. Furthermore, transient overexpression of PaHAT14 in Phalaenopsis petal/sepal increased cuticle deposition due to the downregulation of PaERF105, a Phalaenopsis DEWAX2 ortholog. On the other hand, transient overexpression of PaERF105 decreased cuticle deposition, whereas cuticle deposition increased and the rate of epidermal water loss was reduced in PaERF105 virus-induced gene silencing Phalaenopsis flowers. Moreover, ectopic expression of PaERF105 not only produced phenotypes similar to those in 35S::PaHAT14 + VP16 Arabidopsis but also compensated for the altered phenotypes observed in 35S::PaHAT14 and 35S::PaHAT14 + SRDX Arabidopsis. These results suggest that PaHAT14 promotes cuticle deposition by negatively regulating downstream gene PaERF105 in orchid flowers.
Collapse
Affiliation(s)
- Wan-Ting Mao
- Institute of Biotechnology, National Chung Hsing University, Taichung 40227 ROC, Taiwan
| | - Wei-Han Hsu
- Institute of Biotechnology, National Chung Hsing University, Taichung 40227 ROC, Taiwan
| | - Jia-Lin Song
- Institute of Biotechnology, National Chung Hsing University, Taichung 40227 ROC, Taiwan
| | - Chang-Hsien Yang
- Institute of Biotechnology, National Chung Hsing University, Taichung 40227 ROC, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227 ROC, Taiwan
| |
Collapse
|
3
|
Gao Y, Ma X, Zhang Z, Wang Y. Transcription factors and plant hormones mediate wax metabolism in response to drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14478. [PMID: 39149803 DOI: 10.1111/ppl.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 08/17/2024]
Abstract
Plants have, throughout evolution, developed a hydrophobic cuticle to protect them from various stresses in the terrestrial environment. The cuticle layer is mainly composed of cutin and cuticular wax, a mixture of very-long-chain fatty acids and their derivatives. With the progress of transcriptome sequencing and other research methods, the key enzymes, transporters and regulatory factors in wax synthesis and metabolism have been gradually identified, especially the study on the regulation of wax metabolism by transcription factors and others in response to plant stress has become a hot topic. Drought is a major abiotic stress that limits plant growth and crop productivity. Plant epidermal wax prevents non-stomatal water loss and improves water use efficiency to adapt to arid environments. In this study, the ways of wax synthesis, transport, metabolism and regulation at different levels are reviewed. At the same time, the regulation of wax by different transcription factors and plant hormones in response to drought is elaborated, and key research questions and important directions for future solutions are proposed to enhance the potential application of epidermal wax in agriculture and the environment.
Collapse
Affiliation(s)
- Yanlong Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xiaolan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Tang X, Song G, Zou J, Ren J, Feng H. BrBCAT1 mutation resulted in deficiency of epicuticular wax crystal in Chinese cabbage. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:123. [PMID: 38722407 DOI: 10.1007/s00122-024-04632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/20/2024] [Indexed: 06/09/2024]
Abstract
KEY MESSAGE BrBCAT1 encoding a branched-chain amino acid aminotransferase was responsible for the glossy trait, which was verified by allelic mutants in Chinese cabbage. The glossy characteristic, thanks to the epicuticular wax crystal deficiency, is an excellent commodity character for leafy vegetables. Herein, two allelic glossy green mutants, wdm11 and wdm12, were isolated from an ethyl methane sulfonate (EMS)-mutagenized population of Chinese cabbage, and the mutant phenotype was recessive inherited. Cryo-SEM detected that epicuticular wax crystal in the mutant leaves was virtually absent. MutMap and Kompetitive allele-specific PCR analyses demonstrated that BraA06g006950.3C (BrBCAT1), homologous to AtBCAT1, encoding a branched-chain amino acid aminotransferase was the candidate gene. A SNP (G to A) on the fourth exon of BrBCAT1 in wdm11 caused the 233rd amino acid to change from glycine (G) to aspartic acid (D). A SNP (G to A) on the second exon of BrBCAT1 in wdm12 led to the 112th amino acid change from glycine (G) to arginine (R). Both of the allelic mutants had genetic structural variation in the candidate gene, which indicated that the mutant phenotype was triggered by the BrBCAT1 mutation. The expression levels of BrBCAT1 and genes related to fatty acid chain extension were decreased significantly in the mutant compared to the wild-type, which might result in epicuticular wax crystal deficiency in the mutants. Our findings proved that the mutation of BrBCAT1 induced the glossy phenotype and provided a valuable gene resource for commodity character improvement in Chinese cabbage.
Collapse
Affiliation(s)
- Xiaoli Tang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Gengxing Song
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Jiaqi Zou
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Jie Ren
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China.
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
5
|
Gudi S, Halladakeri P, Singh G, Kumar P, Singh S, Alwutayd KM, Abd El-Moneim D, Sharma A. Deciphering the genetic landscape of seedling drought stress tolerance in wheat ( Triticum aestivum L.) through genome-wide association studies. FRONTIERS IN PLANT SCIENCE 2024; 15:1351075. [PMID: 38510445 PMCID: PMC10952099 DOI: 10.3389/fpls.2024.1351075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Wheat is an important cereal crop constrained by several biotic and abiotic stresses including drought stress. Understating the effect of drought stress and the genetic basis of stress tolerance is important to develop drought resilient, high-yielding wheat cultivars. In this study, we investigated the effects of drought stress on seedling characteristics in an association panel consisting of 198 germplasm lines. Our findings revealed that drought stress had a detrimental effect on all the seedling characteristics under investigation with a maximum effect on shoot length (50.94% reduction) and the minimum effect on germination percentage (7.9% reduction). To gain a deeper understanding, we conducted a genome-wide association analysis using 12,511 single nucleotide polymorphisms (SNPs), which led to the identification of 39 marker-trait associations (MTAs). Of these 39 MTAs, 13 were particularly noteworthy as they accounted for >10% of the phenotypic variance with a LOD score >5. These high-confidence MTAs were further utilized to extract 216 candidate gene (CGs) models within 1 Mb regions. Gene annotation and functional characterization identified 83 CGs with functional relevance to drought stress. These genes encoded the WD40 repeat domain, Myb/SANT-like domain, WSD1-like domain, BTB/POZ domain, Protein kinase domain, Cytochrome P450, Leucine-rich repeat domain superfamily, BURP domain, Calmodulin-binding protein60, Ubiquitin-like domain, etc. Findings from this study hold significant promise for wheat breeders as they provide direct assistance in selecting lines harboring favorable alleles for improved drought stress tolerance. Additionally, the identified SNPs and CGs will enable marker-assisted selection of potential genomic regions associated with enhanced drought stress tolerance in wheat.
Collapse
Affiliation(s)
- Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Priyanka Halladakeri
- Department of Genetics and Plant Breeding, Anand Agricultural University, Anand, India
| | - Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
- Texas A&M University, AgriLife Research Center, Beaumont, TX, United States
| | - Pradeep Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Satinder Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
6
|
Zhang C, Wang F, Jiao P, Liu J, Zhang H, Liu S, Guan S, Ma Y. The Overexpression of Zea mays Strigolactone Receptor Gene D14 Enhances Drought Resistance in Arabidopsis thaliana L. Int J Mol Sci 2024; 25:1327. [PMID: 38279328 PMCID: PMC10816222 DOI: 10.3390/ijms25021327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Strigolactones (SLs) represent a recently identified class of plant hormones that are crucial for plant tillering and mycorrhizal symbiosis. The D14 gene, an essential receptor within the SLs signaling pathway, has been well-examined in crops, like rice (Oryza sativa L.) and Arabidopsis (Arabidopsis thaliana L.), yet the research on its influence in maize (Zea mays L.) remains scarce. This study successfully clones and establishes Arabidopsis D14 gene overexpression lines (OE lines). When compared with the wild type (WT), the OE lines exhibited significantly longer primary roots during germination. By seven weeks of age, these lines showed reductions in plant height and tillering, alongside slight decreases in rosette and leaf sizes, coupled with early aging symptoms. Fluorescence-based quantitative assays indicated notable hormonal fluctuations in OE lines versus the WT, implying that D14 overexpression disrupts plant hormonal homeostasis. The OE lines, exposed to cold, drought, and sodium chloride stressors during germination, displayed an especially pronounced resistance to drought. The drought resistance of OE lines, as evident from dehydration-rehydration assays, outmatched that of the WT lines. Additionally, under drought conditions, the OE lines accumulated less reactive oxygen species (ROS) as revealed by the assessment of the related physiological and biochemical parameters. Upon confronting the pathogens Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), post-infection, fluorescence quantitative investigations showed a significant boost in the salicylic acid (SA)-related gene expression in OE lines compared to their WT counterparts. Overall, our findings designate the SL receptor D14 as a key upregulator of drought tolerance and a regulator in the biotic stress response, thereby advancing our understanding of the maize SL signaling pathway by elucidating the function of the pivotal D14 gene.
Collapse
Affiliation(s)
- Chen Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (C.Z.); (F.W.)
| | - Fanhao Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (C.Z.); (F.W.)
| | - Peng Jiao
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (P.J.); (J.L.); (H.Z.); (S.L.)
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jiaqi Liu
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (P.J.); (J.L.); (H.Z.); (S.L.)
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Honglin Zhang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (P.J.); (J.L.); (H.Z.); (S.L.)
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (P.J.); (J.L.); (H.Z.); (S.L.)
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Shuyan Guan
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (P.J.); (J.L.); (H.Z.); (S.L.)
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yiyong Ma
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (P.J.); (J.L.); (H.Z.); (S.L.)
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
7
|
Song G, Liu C, Fang B, Ren J, Feng H. Identification of an epicuticular wax crystal deficiency gene Brwdm1 in Chinese cabbage ( Brassica campestris L. ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2023; 14:1161181. [PMID: 37324687 PMCID: PMC10267742 DOI: 10.3389/fpls.2023.1161181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
Introduction The cuticle wax covering the plant surface is a whitish hydrophobic protective barrier in Chinese cabbage, and the epicuticular wax crystal deficiency normally has higher commodity value for a tender texture and glossy appearance. Herein, two allelic epicuticular wax crystal deficiency mutants, wdm1 and wdm7, were obtained from the EMS mutagenesis population of a Chinese cabbage DH line 'FT'. Methods The cuticle wax morphology was observed by Cryo-scanning electron microscopy (Cryo-SEM) and the composition of wax was determined by GC-MS. The candidate mutant gene was found by MutMap and validated by KASP. The function of candidate gene was verified by allelic variation. Results The mutants had fewer wax crystals and lower leaf primary alcohol and ester content. Genetic analysis revealed that the epicuticular wax crystal deficiency phenotype was controlled by a recessive nuclear gene, named Brwdm1. MutMap and KASP analyses indicated that BraA01g004350.3C, encoding an alcohol-forming fatty acyl-CoA reductase, was the candidate gene for Brwdm1. A SNP 2,113,772 (C to T) variation in the 6th exon of Brwdm1 in wdm1 led to the 262nd amino acid substitution from threonine (T) to isoleucine (I), which existed in a rather conserved site among the amino acid sequences from Brwdm1 and its homologs. Meanwhile, the substitution changed the three-dimensional structure of Brwdm1. The SNP 2,114,994 (G to A) in the 10th exon of Brwdm1 in wdm7 resulted in the change of the 434th amino acid from valine (V) to isoleucine (I), which occurred in the STERILE domain. KASP genotyping showed that SNP 2,114,994 was co-segregated with glossy phenotype. Compared with the wild type, the relative expression of Brwdm1 was significantly decreased in the leaves, flowers, buds and siliques of wdm1. Discussion These results indicated that Brwdm1 was indispensable for the wax crystals formation and its mutation resulted in glossy appearance in Chinese cabbage.
Collapse
Affiliation(s)
| | | | | | - Jie Ren
- *Correspondence: Jie Ren, ; Hui Feng,
| | - Hui Feng
- *Correspondence: Jie Ren, ; Hui Feng,
| |
Collapse
|
8
|
Huang D, Gao L, McAdams J, Zhao F, Lu H, Wu Y, Martin J, Sherif SM, Subramanian J, Duan H, Liu W. Engineered Cleistogamy in Camelina sativa for bioconfinement. HORTICULTURE RESEARCH 2023; 10:uhac280. [PMID: 36793756 PMCID: PMC9926159 DOI: 10.1093/hr/uhac280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Camelina sativa is a self-pollinating and facultative outcrossing oilseed crop. Genetic engineering has been used to improve camelina yield potential for altered fatty acid composition, modified protein profiles, improved seed and oil yield, and enhanced drought resistance. The deployment of transgenic camelina in the field posits high risks related to the introgression of transgenes into non-transgenic camelina and wild relatives. Thus, effective bioconfinement strategies need to be developed to prevent pollen-mediated gene flow (PMGF) from transgenic camelina. In the present study, we overexpressed the cleistogamy (i.e. floral petal non-openness)-inducing PpJAZ1 gene from peach in transgenic camelina. Transgenic camelina overexpressing PpJAZ1 showed three levels of cleistogamy, affected pollen germination rates after anthesis but not during anthesis, and caused a minor silicle abortion only on the main branches. We also conducted field trials to examine the effects of the overexpressed PpJAZ1 on PMGF in the field, and found that the overexpressed PpJAZ1 dramatically inhibited PMGF from transgenic camelina to non-transgenic camelina under the field conditions. Thus, the engineered cleistogamy using the overexpressed PpJAZ1 is a highly effective bioconfinement strategy to limit PMGF from transgenic camelina, and could be used for bioconfinement in other dicot species.
Collapse
Affiliation(s)
- Debao Huang
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Liwei Gao
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
- College of Life Sciences, Ganzhou Normal University, Ganzhou, Jiangxi 341000, China
| | - Jeremy McAdams
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Fangzhou Zhao
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hongyan Lu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430048, China
| | - Yonghui Wu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Jeremy Martin
- Sandhills Research Station, North Carolina State University, Jackson Springs, NC 27281, USA
| | - Sherif M Sherif
- Vineland Research Station, Department of Plant Agriculture, University of Guelph, Vinland Station, ON LOR 2E0, Canada
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA
| | - Jayasankar Subramanian
- Vineland Research Station, Department of Plant Agriculture, University of Guelph, Vinland Station, ON LOR 2E0, Canada
| | - Hui Duan
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA
| | | |
Collapse
|
9
|
Bacillus Consortia Modulate Transcriptional and Metabolic Machinery of Arabidopsis Plants for Salt Tolerance. Curr Microbiol 2023; 80:77. [PMID: 36652029 DOI: 10.1007/s00284-023-03187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/07/2023] [Indexed: 01/19/2023]
Abstract
Rhizobacteria that are helpful to plants can lessen the impacts of salt stress, and they may hold promise for the development of sustainable agriculture in the future. The present study was intended to explicate consortia of salt-tolerant plant-beneficial rhizobacteria for the amelioration of salinity stress in Arabidopsis plants. Inoculation with both the consortia positively influenced the growth of plants as indicated by total chlorophyll content, MDA content, and antioxidant enzyme activities under stressful conditions. Both the multi-trait consortia altered the expression profiles of stress-related genes including CSD1, CAT1, Wrky, Ein, Etr, and ACO. Furthermore, the metabolomic analysis indicated that inoculated plants modulated the metabolic profiles to stimulate physiological and biochemical responses in Arabidopsis plants to mitigate salt stress. Our study affirms that the consortia of salt-tolerant bacterial strains modulate the transcriptional as well as metabolic machinery of plants to protect them from salinity stress. Nevertheless, the findings of this study revealed that consortia are composed of salt-tolerant bacterial strains viz. Bacillus safensis NBRI 12M, B. subtilis NBRI 28B, and B. subtilis NBRI 33N demonstrated significant improvement in Arabidopsis plants under saline stress conditions.
Collapse
|
10
|
Comparative Analysis of Physiological, Hormonal and Transcriptomic Responses Reveal Mechanisms of Saline-Alkali Tolerance in Autotetraploid Rice ( Oryza sativa L.). Int J Mol Sci 2022; 23:ijms232416146. [PMID: 36555786 PMCID: PMC9783840 DOI: 10.3390/ijms232416146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Saline-alkali soil has posed challenges to the growth of agricultural crops, while polyploidy often show greater adaptability in diverse and extreme environments including saline-alkali stress, but its defense mechanisms in rice remain elusive. Herein, we explored the mechanisms of enhanced saline-alkali tolerance of autotetraploid rice 93-11T relative to diploid rice 93-11D, based on physiological, hormonal and transcriptomic profilings. Physiologically, the enhanced saline-alkali tolerance in 93-11T was manifested in higher soluble sugar accumulation and stronger superoxide dismutase (SOD) and peroxidase (POD) activities in leaves during 24 h after saline-alkali shock. Furthermore, various hormone levels in leaves of 93-11T altered greatly, such as the negative correlation between salicylic acid (SA) and the other four hormones changed to positive correlation due to polyploidy. Global transcriptome profiling revealed that the upregulated differentially expressed genes (DEGs) in leaves and roots of 93-11T were more abundant than that in 93-11D, and there were more DEGs in roots than in leaves under saline-alkali stress. Genes related to phytohormone signal transduction of auxin (AUX) and SA in roots, lignin biosynthesis in leaves or roots, and wax biosynthesis in leaves were obviously upregulated in 93-11T compared with 93-11D under saline-alkali condition. Collectively, 93-11T subjected to saline-alkali stress possibly possesses higher osmotic regulation ability due to cuticular wax synthesis, stronger negative regulation of reactive oxygen species (ROS) production by increasing the SA levels and maintaining relative lower levels of IAA, and higher antioxidant capacity by increasing activities of SOD and POD, as well as lignin biosynthesis. Our research provides new insights for exploring the mechanisms of saline-alkali tolerance in polyploid rice and discovering new gene targets for rice genetic improvement.
Collapse
|
11
|
Wang X, Chang C. Exploring and exploiting cuticle biosynthesis for abiotic and biotic stress tolerance in wheat and barley. FRONTIERS IN PLANT SCIENCE 2022; 13:1064390. [PMID: 36438119 PMCID: PMC9685406 DOI: 10.3389/fpls.2022.1064390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Wheat and barley are widely distributed cereal crops whose yields are adversely affected by environmental stresses such as drought, salinity, extreme temperatures, and attacks of pathogens and pests. As the interphase between aerial plant organs and their environments, hydrophobic cuticle largely consists of a cutin matrix impregnated and sealed with cuticular waxes. Increasing evidence supports that the cuticle plays a key role in plant adaptation to abiotic and biotic stresses, which could be harnessed for wheat and barley improvement. In this review, we highlighted recent advances in cuticle biosynthesis and its multifaceted roles in abiotic and biotic stress tolerance of wheat and barley. Current strategies, challenges, and future perspectives on manipulating cuticle biosynthesis for abiotic and biotic stress tolerance in wheat and barley are discussed.
Collapse
|
12
|
Xu H, Li D, Hao Y, Guo X, Lu J, Zhang T. Genome-wide analysis of DGAT gene family in Perilla frutescens and functional characterization of PfDGAT2-2 and PfDGAT3-1 in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111426. [PMID: 35998725 DOI: 10.1016/j.plantsci.2022.111426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Diacylglycerol acyltransferase (DGAT) is the rate-limiting enzyme that catalyzes the final step in triacylglycerol biosynthesis, however, members of DGAT gene family of Perilla frutescens has not yet been identified and characterized. In this study, a total of 20 PfDGAT genes were identified from the genome of Perilla frutescens and were divided into four groups (PfDGAT1, PfDGAT2, PfDGAT3, PfWS/DGAT) according to their phylogenetic relationships. These were unevenly distributed across the 12 chromosomes. Sequence analysis revealed that PfDGAT members of the same subfamily have highly conserved gene structures, protein motifs and cis-acting elements in their promoters. Gene duplication analysis showed that random duplication and segmental duplication contributed to the expansion of the DGAT family in P. frutescens. RNA-seq and qRT-PCR analysis suggested that they may play a role in the growth and development of Perilla, especially in the accumulation of seed oil. Compared with the wild-type, seed length, width, and 1000-seed weight of transgenic PfDGAT2-2 and PfDGAT3-1 Arabidopsis were significantly increased, as well as the seed oil content increased by 7.36-15.83 %. Over-expression of PfDGAT2-2 could significantly increase the content of C18:3 and C20:1 in Arabidopsis, while over-expression of PfDGAT3-1 could significantly enhance the content of C18:2 and C18:3. In conclusion, in this study the characteristics and potential functions of the PfDGAT family members were elucidated. Our findings provided basic information for further functional studies and helped to increase the yield and quality of Perilla oil.
Collapse
Affiliation(s)
- Huaxiang Xu
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Dan Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Xi Guo
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Junxing Lu
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Tao Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
13
|
Obermeyer S, Stöckl R, Schnekenburger T, Moehle C, Schwartz U, Grasser KD. Distinct role of subunits of the Arabidopsis RNA polymerase II elongation factor PAF1C in transcriptional reprogramming. FRONTIERS IN PLANT SCIENCE 2022; 13:974625. [PMID: 36247629 PMCID: PMC9558118 DOI: 10.3389/fpls.2022.974625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Transcript elongation by RNA polymerase II (RNAPII) is dynamic and highly regulated, thereby contributing to the implementation of gene expression programs during plant development or in response to environmental cues. The heterohexameric polymerase-associated factor 1 complex (PAF1C) stabilizes the RNAPII elongation complex promoting efficient transcript synthesis. In addition, PAF1C links transcriptional elongation with various post-translational histone modifications at transcribed loci. We have exposed Arabidopsis mutants deficient in the PAF1C subunits ELF7 or CDC73 to elevated NaCl concentrations to provoke a transcriptional response. The growth of elf7 plants was reduced relative to that of wildtype under these challenging conditions, whereas cdc73 plants exhibited rather enhanced tolerance. Profiling of the transcriptional changes upon NaCl exposure revealed that cdc73 responded similar to wildtype. Relative to wildtype and cdc73, the transcriptional response of elf7 plants was severely reduced in accord with their greater susceptibility to NaCl. The data also imply that CDC73 is more relevant for the transcription of longer genes. Despite the fact that both ELF7 and CDC73 are part of PAF1C the strikingly different transcriptional response of the mutants upon NaCl exposure suggests that the subunits have (partially) specific functions.
Collapse
Affiliation(s)
- Simon Obermeyer
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Regensburg, Germany
| | - Richard Stöckl
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Regensburg, Germany
| | - Tobias Schnekenburger
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Regensburg, Germany
| | - Christoph Moehle
- Center of Excellence for Fluorescent Bioanalytics (KFB), University of Regensburg, Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Centre, Biology and Pre-Clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Klaus D. Grasser
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Regensburg, Germany
| |
Collapse
|
14
|
Zhang C, Yang J, Meng W, Zeng L, Sun L. Genome-wide analysis of the WSD family in sunflower and functional identification of HaWSD9 involvement in wax ester biosynthesis and osmotic stress. FRONTIERS IN PLANT SCIENCE 2022; 13:975853. [PMID: 36212375 PMCID: PMC9539440 DOI: 10.3389/fpls.2022.975853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The wax esters are important cuticular wax composition that cover the outer surface of plant organs and play a critical role in protection and energy metabolism. Wax ester synthesis in plant is catalyzed by a bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase (WSD). Sunflower (Helianthus annuus L.) is an important oil crop in the world; however, little is known about WSD in sunflower. In this study, we identified and performed a functional analysis of twelve HaWSD genes from sunflower genome. Tissue-specific expression revealed that 12 HaWSD genes were differentially expressed in various organs and tissues of sunflower, except seeds. HaWSD genes were highly induced by salinity, drought, cold, and abscisic acid (ABA) in sunflower. To ascertain their function, HaWSD9, with highly expressed levels in stems and leaves, was cloned and expressed in a yeast mutant defective in triacylglycerol (TAG) biosynthesis. HaWSD9 complemented the phenotype by producing wax ester but not TAG in vivo, indicating that it functions as a wax ester synthase. Subcellular localization analysis indicated that HaWSD9 was located in the endoplasmic reticulum (ER). Heterologous introduction of HaWSD9 into Arabidopsis wsd1 mutant exhibited increased epicuticular wax crystals and cuticular wax contents on the stems. As compared with the wsd1 mutant, HaWSD9 overexpressing transgenic Arabidopsis showed less cuticle permeability, chlorophyll leaching and water loss rate. Further analysis showed that the HaWSD9 transgenics enhanced tolerance to ABA, mannitol, drought and salinity, and maintained higher leaf relative water content (RWC) than the wsd1 mutant under drought stress, suggesting that HaWSD9 play an important physiological role in stress response as well as wax synthase. These results contribute to understanding the function of HaWSD genes in wax ester synthesis and stress tolerance in sunflower.
Collapse
|
15
|
Tanin MJ, Saini DK, Sandhu KS, Pal N, Gudi S, Chaudhary J, Sharma A. Consensus genomic regions associated with multiple abiotic stress tolerance in wheat and implications for wheat breeding. Sci Rep 2022; 12:13680. [PMID: 35953529 PMCID: PMC9372038 DOI: 10.1038/s41598-022-18149-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
In wheat, a meta-analysis was performed using previously identified QTLs associated with drought stress (DS), heat stress (HS), salinity stress (SS), water-logging stress (WS), pre-harvest sprouting (PHS), and aluminium stress (AS) which predicted a total of 134 meta-QTLs (MQTLs) that involved at least 28 consistent and stable MQTLs conferring tolerance to five or all six abiotic stresses under study. Seventy-six MQTLs out of the 132 physically anchored MQTLs were also verified with genome-wide association studies. Around 43% of MQTLs had genetic and physical confidence intervals of less than 1 cM and 5 Mb, respectively. Consequently, 539 genes were identified in some selected MQTLs providing tolerance to 5 or all 6 abiotic stresses. Comparative analysis of genes underlying MQTLs with four RNA-seq based transcriptomic datasets unravelled a total of 189 differentially expressed genes which also included at least 11 most promising candidate genes common among different datasets. The promoter analysis showed that the promoters of these genes include many stress responsiveness cis-regulatory elements, such as ARE, MBS, TC-rich repeats, As-1 element, STRE, LTR, WRE3, and WUN-motif among others. Further, some MQTLs also overlapped with as many as 34 known abiotic stress tolerance genes. In addition, numerous ortho-MQTLs among the wheat, maize, and rice genomes were discovered. These findings could help with fine mapping and gene cloning, as well as marker-assisted breeding for multiple abiotic stress tolerances in wheat.
Collapse
Affiliation(s)
- Mohammad Jafar Tanin
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, Uttar Pradesh, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
16
|
Tanin MJ, Saini DK, Sandhu KS, Pal N, Gudi S, Chaudhary J, Sharma A. Consensus genomic regions associated with multiple abiotic stress tolerance in wheat and implications for wheat breeding. Sci Rep 2022; 12:13680. [PMID: 35953529 DOI: 10.1101/2022.06.24.497482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/05/2022] [Indexed: 05/20/2023] Open
Abstract
In wheat, a meta-analysis was performed using previously identified QTLs associated with drought stress (DS), heat stress (HS), salinity stress (SS), water-logging stress (WS), pre-harvest sprouting (PHS), and aluminium stress (AS) which predicted a total of 134 meta-QTLs (MQTLs) that involved at least 28 consistent and stable MQTLs conferring tolerance to five or all six abiotic stresses under study. Seventy-six MQTLs out of the 132 physically anchored MQTLs were also verified with genome-wide association studies. Around 43% of MQTLs had genetic and physical confidence intervals of less than 1 cM and 5 Mb, respectively. Consequently, 539 genes were identified in some selected MQTLs providing tolerance to 5 or all 6 abiotic stresses. Comparative analysis of genes underlying MQTLs with four RNA-seq based transcriptomic datasets unravelled a total of 189 differentially expressed genes which also included at least 11 most promising candidate genes common among different datasets. The promoter analysis showed that the promoters of these genes include many stress responsiveness cis-regulatory elements, such as ARE, MBS, TC-rich repeats, As-1 element, STRE, LTR, WRE3, and WUN-motif among others. Further, some MQTLs also overlapped with as many as 34 known abiotic stress tolerance genes. In addition, numerous ortho-MQTLs among the wheat, maize, and rice genomes were discovered. These findings could help with fine mapping and gene cloning, as well as marker-assisted breeding for multiple abiotic stress tolerances in wheat.
Collapse
Affiliation(s)
- Mohammad Jafar Tanin
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, Uttar Pradesh, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
17
|
Liu L, Wang X, Chang C. Toward a smart skin: Harnessing cuticle biosynthesis for crop adaptation to drought, salinity, temperature, and ultraviolet stress. FRONTIERS IN PLANT SCIENCE 2022; 13:961829. [PMID: 35958191 PMCID: PMC9358614 DOI: 10.3389/fpls.2022.961829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Drought, salinity, extreme temperatures, and ultraviolet (UV) radiation are major environmental factors that adversely affect plant growth and crop production. As a protective shield covering the outer epidermal cell wall of plant aerial organs, the cuticle is mainly composed of cutin matrix impregnated and sealed with cuticular waxes, and greatly contributes to the plant adaption to environmental stresses. Past decades have seen considerable progress in uncovering the molecular mechanism of plant cutin and cuticular wax biosynthesis, as well as their important roles in plant stress adaptation, which provides a new direction to drive strategies for stress-resilient crop breeding. In this review, we highlighted the recent advances in cuticle biosynthesis in plant adaptation to drought, salinity, extreme temperatures, and UV radiation stress, and discussed the current status and future directions in harnessing cuticle biosynthesis for crop improvement.
Collapse
|
18
|
Cheng D, Li L, Rizhsky L, Bhandary P, Nikolau BJ. Heterologous Expression and Characterization of Plant Wax Ester Producing Enzymes. Metabolites 2022; 12:metabo12070577. [PMID: 35888701 PMCID: PMC9319179 DOI: 10.3390/metabo12070577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Wax esters are widely distributed among microbes, plants, and mammals, and they serve protective and energy storage functions. Three classes of enzymes catalyze the reaction between a fatty acyl alcohol and a fatty acyl-CoA, generating wax esters. Multiple isozymes of two of these enzyme classes, the membrane-bound O-acyltransferase class of wax synthase (WS) and the bifunctional wax synthase/diacylglycerol acyl transferase (WSD), co-exist in plants. Although WSD enzymes are known to produce the wax esters of the plant cuticle, the functionality of plant WS enzymes is less well characterized. In this study, we investigated the phylogenetic relationships among the 12 WS and 11 WSD isozymes that occur in Arabidopsis, and established two in vivo heterologous expression systems, in the yeast Saccharomyces cerevisiae and in Arabidopsis seeds to investigate the catalytic abilities of the WS enzymes. These two refactored wax assembly chassis were used to demonstrate that WS isozymes show distinct differences in the types of esters that can be assembled. We also determined the cellular and subcellular localization of two Arabidopsis WS isozymes. Additionally, using publicly available Arabidopsis transcriptomics data, we identified the co-expression modules of the 12 Arabidopsis WS coding genes. Collectively, these analyses suggest that WS genes may function in cuticle assembly and in supporting novel photosynthetic function(s).
Collapse
Affiliation(s)
- Daolin Cheng
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (D.C.); (L.L.); (L.R.)
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Ling Li
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (D.C.); (L.L.); (L.R.)
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
- Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Ludmila Rizhsky
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (D.C.); (L.L.); (L.R.)
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Priyanka Bhandary
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| | - Basil J. Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (D.C.); (L.L.); (L.R.)
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
- Correspondence: ; Tel.: +1-515-290-3382
| |
Collapse
|
19
|
Muhammad Aslam M, Waseem M, Jakada BH, Okal EJ, Lei Z, Saqib HSA, Yuan W, Xu W, Zhang Q. Mechanisms of Abscisic Acid-Mediated Drought Stress Responses in Plants. Int J Mol Sci 2022; 23:ijms23031084. [PMID: 35163008 PMCID: PMC8835272 DOI: 10.3390/ijms23031084] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Drought is one of the major constraints to rain-fed agricultural production, especially under climate change conditions. Plants evolved an array of adaptive strategies that perceive stress stimuli and respond to these stress signals through specific mechanisms. Abscisic acid (ABA) is a premier signal for plants to respond to drought and plays a critical role in plant growth and development. ABA triggers a variety of physiological processes such as stomatal closure, root system modulation, organizing soil microbial communities, activation of transcriptional and post-transcriptional gene expression, and metabolic alterations. Thus, understanding the mechanisms of ABA-mediated drought responses in plants is critical for ensuring crop yield and global food security. In this review, we highlighted how plants adjust ABA perception, transcriptional levels of ABA- and drought-related genes, and regulation of metabolic pathways to alter drought stress responses at both cellular and the whole plant level. Understanding the synergetic role of drought and ABA will strengthen our knowledge to develop stress-resilient crops through integrated advanced biotechnology approaches. This review will elaborate on ABA-mediated drought responses at genetic, biochemical, and molecular levels in plants, which is critical for advancement in stress biology research.
Collapse
Affiliation(s)
- Mehtab Muhammad Aslam
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Waseem
- Department of Botany, University of Narowal, Narowal 51600, Pakistan;
- College of Horticulture, Hainan University, Haikou 570100, China
| | - Bello Hassan Jakada
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, College of Life Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China;
| | - Eyalira Jacob Okal
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Zuliang Lei
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
| | - Hafiz Sohaib Ahmad Saqib
- Guangdong Provincial Key Laboratory of Marine Biology, College of Science, Shantou University, Shantou 515063, China;
| | - Wei Yuan
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Correspondence: (W.Y.); (Q.Z.)
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Qian Zhang
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
- Correspondence: (W.Y.); (Q.Z.)
| |
Collapse
|
20
|
Singh PK, Indoliya Y, Agrawal L, Awasthi S, Deeba F, Dwivedi S, Chakrabarty D, Shirke PA, Pandey V, Singh N, Dhankher OP, Barik SK, Tripathi RD. Genomic and proteomic responses to drought stress and biotechnological interventions for enhanced drought tolerance in plants. CURRENT PLANT BIOLOGY 2022; 29:100239. [DOI: 10.1016/j.cpb.2022.100239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
21
|
Metabolomics and Molecular Approaches Reveal Drought Stress Tolerance in Plants. Int J Mol Sci 2021; 22:ijms22179108. [PMID: 34502020 PMCID: PMC8431676 DOI: 10.3390/ijms22179108] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/21/2023] Open
Abstract
Metabolic regulation is the key mechanism implicated in plants maintaining cell osmotic potential under drought stress. Understanding drought stress tolerance in plants will have a significant impact on food security in the face of increasingly harsh climatic conditions. Plant primary and secondary metabolites and metabolic genes are key factors in drought tolerance through their involvement in diverse metabolic pathways. Physio-biochemical and molecular strategies involved in plant tolerance mechanisms could be exploited to increase plant survival under drought stress. This review summarizes the most updated findings on primary and secondary metabolites involved in drought stress. We also examine the application of useful metabolic genes and their molecular responses to drought tolerance in plants and discuss possible strategies to help plants to counteract unfavorable drought periods.
Collapse
|
22
|
Evolution and Characterization of Acetyl Coenzyme A: Diacylglycerol Acyltransferase Genes in Cotton Identify the Roles of GhDGAT3D in Oil Biosynthesis and Fatty Acid Composition. Genes (Basel) 2021; 12:genes12071045. [PMID: 34356061 PMCID: PMC8306077 DOI: 10.3390/genes12071045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cottonseed oil is rich in unsaturated fatty acids (UFAs) and serves as an edible oil in human nutrition. Reports suggest that acyl-coenzyme A: diacylglycerol acyltransferases (DGAT) and wax ester synthase/DGAT (WSD1) genes encode a key group of enzymes that catalyze the final step for triacylglycerol biosynthesis and enable an important rate-limiting process. However, their roles in oil biosynthesis and the fatty acid profile of cotton seed are poorly understood. Therefore, the aim of this study was to identify and characterize DGAT and WSD1 genes in cotton plants and examine their roles in oil biosynthesis, the fatty acid profile of cotton seeds, and abiotic stress responses. In this study, 36 GhDGAT and GhWSD1 genes were identified in upland cotton (G. hirsutum) and found to be clustered into four groups: GhDGAT1, GhDGAT2, GhDGAT3, and GhWSD1. Gene structure and domain analyses showed that the GhDGAT and GhWSD1 genes in each group are highly conserved. Gene synteny analysis indicated that segmental and tandem duplication events occurred frequently during cotton evolution. Expression analysis revealed that GhDGAT and GhWSD1 genes function widely in cotton development and stress responses; moreover, several environmental stress and hormone response-related cis-elements were detected in the GhDGAT and GhWSD1 promoter regions. The predicted target transcription factors and miRNAs imply an extensive role of GhDGAT and GhWSD1 genes in stress responses. Increases in GhDGAT3 gene expression with increases in cottonseed oil accumulation were observed. Transformation study results showed that there was an increase in C18:1 content and a decrease in C18:2 and C18:3 contents in seeds of Arabidopsis transgenic plants overexpressing GhDGAT3D compared with that of control plants. Overall, these findings contributed to the understanding of the functions of GhDGAT and GhWSD1 genes in upland cotton, providing basic information for further research.
Collapse
|