1
|
Kalimuthu V, Chandran Manimegalai S, Venkatesan R, Krishnamoorthy SP, Dey N, Ramesh T, Balamuthu K. Exploring the Therapeutic Potential of Terminalia chebula Retz. in Alleviating the Complications of Letrozole-Induced PCOS in Rat Model. Reprod Sci 2025; 32:836-853. [PMID: 39939489 DOI: 10.1007/s43032-025-01813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
Polycystic Ovarian Syndrome is a leading gynecological condition that is being known to affect women fertility irrespective of their reproductive age. Though its prevalency and adverse effects in causing the female infertility is know to be reported worldwide, it has the steroidal pills having remarkable side effects as their effective medication to treat and manage its symptoms. Inorder to find a novel curative plant besed therapy, this study investigates the therapeutic potential of Terminalia chebula Retz. to manage the complications of PCOS. In this present study, the bioactive compounds of Terminalia chebula Retz. fruit extract were identified by GC-MS and the experimental animals (female Wistar rats) were categorized into six groups including control, letrozole-induced PCOS group, metformine treated as standard control, along with the groups orally treated with T. chebula fruit extracts at various concentrations. As a result of PCOS induction, the level of LPx got increased evidencing the increased lipid metabolism where the other antioxidant levels were decreased. The serum hormonal profile revealed a considerable decrease in estrogen and progesterone levels while the levels of LH, FSH, testosterone, and insulin were increased. The mRNA and protein expressions of CYP17A1, was upregulated whereas the CYP19A1 and PPAR-γ found to have lower expression on concerning the control group. These entire physiological, and biochemical observed during the successful induction of PCOS got restored to normal after being treated with the fruit extract of T. chebula in the experimental animals and implied its potentiality in managing the complications of PCOS.
Collapse
Affiliation(s)
- Vignesh Kalimuthu
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | | | - Ramya Venkatesan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | | | - Nigamananda Dey
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Kadalmani Balamuthu
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
2
|
Sangeet S, Khan A. An in-silico approach to identify bioactive phytochemicals from Houttuynia cordata Thunb. As potential inhibitors of human glutathione reductase. J Biomol Struct Dyn 2025; 43:2300-2319. [PMID: 38109166 DOI: 10.1080/07391102.2023.2294181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Cellular infections are central to the etiology of various diseases, notably cancer and malaria. Counteracting cellular oxidative stress via the inhibition of glutathione reductase (GR) has emerged as a promising therapeutic strategy. Houttuynia cordata, a medicinal plant known for its potent antioxidant properties, has been the focus of our investigation. In this study, we conducted comprehensive in silico analyses involving the phytochemical constituents of H. cordata to identify potential natural GR inhibitors. Our methodological approach encompassed multiple in silico techniques, including molecular docking, molecular dynamics simulations, MMPBSA analysis, and dynamic cross-correlation analysis. Out of 13 docked phytochemicals, Quercetin, Quercitrin, and Sesamin emerged as particularly noteworthy due to their exceptional binding affinities for GR. Notably, our investigation demonstrated that Quercetin and Sesamin exhibited promising outcomes compared to the well-established pharmaceutical agent N-acetylcysteine (NAC). Molecular dynamics analyses provided insights into the ability of these phytochemicals to induce structural compaction and stabilization of the GR protein, as evidenced by changes in radius of gyration and solvent-accessible surface area. Moreover, MMPBSA analysis highlighted the crucial roles of specific residues, namely Gly27, Gly28, Ser51, His52, and Val61, in mediating essential interactions with these phytochemicals. Furthermore, an assessment of Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADME-Tox) profiles underscored the favourable drug-like attributes of these phytochemicals. Thus, the current findings underscore the immense potential of Houttuynia cordata phytochemicals as potent antioxidants with the capacity to combat a spectrum of maladies, including malaria and cancer. This study not only unveils novel therapeutic avenues but also underscores the distinctive outcomes and paramount significance of harnessing H. cordata phytochemicals for their efficacious antioxidant properties.
Collapse
Affiliation(s)
- Satyam Sangeet
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India
- CompObelisk, Mirzapur, India
| | - Arshad Khan
- CompObelisk, Mirzapur, India
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, India
| |
Collapse
|
3
|
Zhan T, Zhang J, Zhang Y, Zhao Q, Chemerinski A, Douglas NC, Zhang Q, Xiao S. A Dose-Response Study on Functional and Transcriptomic Effects of FSH on Ex Vivo Mouse Folliculogenesis. Endocrinology 2024; 165:bqae054. [PMID: 38735763 PMCID: PMC11129714 DOI: 10.1210/endocr/bqae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Follicle-stimulating hormone (FSH) binds to its membrane receptor (FSHR) in granulosa cells to activate various signal transduction pathways and drive the gonadotropin-dependent phase of folliculogenesis. Both FSH insufficiency (due to genetic or nongenetic factors) and FSH excess (as encountered with ovarian stimulation in assisted reproductive technology [ART]) can cause poor female reproductive outcomes, but the underlying molecular mechanisms remain elusive. Herein, we conducted single-follicle and single-oocyte RNA sequencing analysis along with other approaches in an ex vivo mouse folliculogenesis and oogenesis system to investigate the effects of different concentrations of FSH on key follicular events. Our study revealed that a minimum FSH threshold is required for follicle maturation into the high estradiol-secreting preovulatory stage, and such threshold is moderately variable among individual follicles between 5 and 10 mIU/mL. FSH at 5, 10, 20, and 30 mIU/mL induced distinct expression patterns of follicle maturation-related genes, follicular transcriptomics, and follicular cAMP levels. RNA sequencing analysis identified FSH-stimulated activation of G proteins and downstream canonical and novel signaling pathways that may critically regulate follicle maturation, including the cAMP/PKA/CREB, PI3K/AKT/FOXO1, and glycolysis pathways. High FSH at 20 and 30 mIU/mL resulted in noncanonical FSH responses, including premature luteinization, high production of androgen and proinflammatory factors, and reduced expression of energy metabolism-related genes in oocytes. Together, this study improves our understanding of gonadotropin-dependent folliculogenesis and provides crucial insights into how high doses of FSH used in ART may impact follicular health, oocyte quality, pregnancy outcome, and systemic health.
Collapse
Affiliation(s)
- Tingjie Zhan
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
- Center for Environmental Exposures and Disease, Rutgers University, Piscataway, NJ 08854, USA
| | - Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
- Center for Environmental Exposures and Disease, Rutgers University, Piscataway, NJ 08854, USA
| | - Ying Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
- Center for Environmental Exposures and Disease, Rutgers University, Piscataway, NJ 08854, USA
| | - Qingshi Zhao
- Department of Obstetrics, Gynecology and Reproductive Health, New Jersey Medical School (NJMS), Rutgers University, Newark, NJ 07103, USA
| | - Anat Chemerinski
- Department of Obstetrics, Gynecology and Reproductive Health, New Jersey Medical School (NJMS), Rutgers University, Newark, NJ 07103, USA
| | - Nataki C Douglas
- Department of Obstetrics, Gynecology and Reproductive Health, New Jersey Medical School (NJMS), Rutgers University, Newark, NJ 07103, USA
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences (RBHS), Newark, NJ 07103, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
- Center for Environmental Exposures and Disease, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Kobayashi H, Yoshimoto C, Matsubara S, Shigetomi H, Imanaka S. Altered Energy Metabolism, Mitochondrial Dysfunction, and Redox Imbalance Influencing Reproductive Performance in Granulosa Cells and Oocyte During Aging. Reprod Sci 2024; 31:906-916. [PMID: 37917297 DOI: 10.1007/s43032-023-01394-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Female fertility decreases during aging. The development of effective therapeutic strategies to address the age-related decline in oocyte quality and quantity and its accurate diagnosis remain major challenges. In this review, we summarize our current understanding of the study of aging and infertility, focusing primarily on the molecular basis of energy metabolism, mitochondrial function, and redox homeostasis in granulosa cells and oocytes, and discuss perspectives on future research directions. Mitochondria serve as a central hub sensing a multitude of physiological processes, including energy production, cellular redox homeostasis, aging, and senescence. Young granulosa cells favor glycolysis and actively produce pyruvate, NADPH, and other metabolites. Oocytes rely on oxidative phosphorylation fueled by nutrients, metabolites, and antioxidants provided by the adjacent granulosa cells. A reduced cellular energy metabolism phenotype, including both aerobic glycolysis and mitochondrial respiration, is characteristic of older female granulosa cells compared with younger female granulosa cells. Aged oocytes become more susceptible to oxidative damage to cells and mitochondria because of further depletion of antioxidant-dependent ROS scavenging systems. Molecular perturbations of gene expression caused by a subtle change in the follicular fluid microenvironment adversely affect energy metabolism and mitochondrial dynamics in granulosa cells and oocytes, further causing redox imbalance and accelerating aging and senescence. Furthermore, recent advances in technology are beginning to identify biofluid molecular markers that may influence follicular development and oocyte quality. Accumulating evidence suggests that redox imbalance caused by abnormal energy metabolism and/or mitochondrial dysfunction is closely linked to the pathophysiology of age-related subfertility.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-Cho, Kashihara, 634-0813, Japan.
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan.
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, 2-897-5 Shichi-Jyonishi-Machi, Nara, 630-8581, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan
- Department of Medicine, Kei Oushin Clinic, 5-2-6, Naruo-Cho, Nishinomiya, 663-8184, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, 3-3-17 Kitatomigaoka-Cho, Nara, 634-0001, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-Cho, Kashihara, 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan
| |
Collapse
|
5
|
Guo J, Song Z, Yu J, Li C, Jin C, Duan W, Liu X, Liu Y, Huang S, Tuo Y, Pei F, Jian Z, Zhou P, Zheng S, Zou Z, Zhang F, Gong Q, Liang S. Hepatocyte-specific TMEM16A deficiency alleviates hepatic ischemia/reperfusion injury via suppressing GPX4-mediated ferroptosis. Cell Death Dis 2022; 13:1072. [PMID: 36572666 PMCID: PMC9792590 DOI: 10.1038/s41419-022-05518-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022]
Abstract
Ischemia/reperfusion (I/R)-induced liver injury with severe cell death is a major complication of liver transplantation. Transmembrane member 16A (TMEM16A), a component of hepatocyte Ca2+-activated chloride channel, has been implicated in a variety of liver diseases. However, its role in hepatic I/R injury remains unknown. Here, mice with hepatocyte-specific TMEM16A knockout or overexpression were generated to examine the effect of TMEM16A on hepatic I/R injury. TMEM16A expression increased in liver samples from patients and mice with I/R injury, which was correlated with liver damage progression. Hepatocyte-specific TMEM16A knockout alleviated I/R-induced liver damage in mice, ameliorating inflammation and ferroptotic cell death. However, mice with hepatic TMEM16A overexpression showed the opposite phenotype. In addition, TMEM16A ablation decreased inflammatory responses and ferroptosis in hepatocytes upon hypoxia/reoxygenation insult in vitro, whereas TMEM16A overexpression promoted the opposite effects. The ameliorating effects of TMEM16A knockout on hepatocyte inflammation and cell death were abolished by chemically induced ferroptosis, whereas chemical inhibition of ferroptosis reversed the potentiated role of TMEM16A in hepatocyte injury. Mechanistically, TMEM16A interacted with glutathione peroxidase 4 (GPX4) to induce its ubiquitination and degradation, thereby enhancing ferroptosis. Disruption of TMEM16A-GPX4 interaction abrogated the effects of TMEM16A on GPX4 ubiquitination, ferroptosis, and hepatic I/R injury. Our results demonstrate that TMEM16A exacerbates hepatic I/R injury by promoting GPX4-dependent ferroptosis. TMEM16A-GPX4 interaction and GPX4 ubiquitination are therefore indispensable for TMEM16A-regulated hepatic I/R injury, suggesting that blockades of TMEM16A-GPX4 interaction or TMEM16A inhibition in hepatocytes may represent promising therapeutic strategies for acute liver injury.
Collapse
Affiliation(s)
- Jiawei Guo
- grid.410654.20000 0000 8880 6009Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Zihao Song
- grid.410654.20000 0000 8880 6009Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jie Yu
- grid.284723.80000 0000 8877 7471Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chengyi Li
- grid.410654.20000 0000 8880 6009Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Chenchen Jin
- grid.508040.90000 0004 9415 435XCenter for Neuro-Metabolism and Regeneration Research, The Bioland Laboratory, Guangzhou, China
| | - Wei Duan
- grid.410654.20000 0000 8880 6009Department of Oncology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Xiu Liu
- grid.416466.70000 0004 1757 959XDepartment of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingying Liu
- grid.413428.80000 0004 1757 8466Guangzhou Women and Children’s Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Shuai Huang
- grid.412534.5Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yonghua Tuo
- grid.412534.5Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fei Pei
- grid.12981.330000 0001 2360 039XDepartment of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China ,Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, China
| | - Zhengyang Jian
- Center For Drug Inspection of Guizhou Medical Products Administration, Guiyang, China
| | - Pengyu Zhou
- grid.416466.70000 0004 1757 959XDepartment of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyi Zheng
- grid.416466.70000 0004 1757 959XDepartment of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaowei Zou
- grid.284723.80000 0000 8877 7471Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Zhang
- grid.34477.330000000122986657Department of Radiology, University of Washington School of Medicine, Seattle, WA USA
| | - Quan Gong
- grid.410654.20000 0000 8880 6009Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Sijia Liang
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Gan J, Gu T, Hong L, Cai G. Ferroptosis-related genes involved in animal reproduction: An Overview. Theriogenology 2022; 184:92-99. [DOI: 10.1016/j.theriogenology.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
|