1
|
Bhattarai G, Rhein HS, Sreedasyam A, Lovell JT, Khanal S, Grimwood J, Schmutz J, Jenkins J, Chee PW, Pisani C, Randall J, Conner PJ. Transcriptome analysis under pecan scab infection reveals the molecular mechanisms of the defense response in pecans. PLoS One 2024; 19:e0313878. [PMID: 39570928 PMCID: PMC11581225 DOI: 10.1371/journal.pone.0313878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/03/2024] [Indexed: 11/24/2024] Open
Abstract
Pecan scab, caused by the fungal pathogen Venturia effusa, is the most devastating disease of pecan (Carya illinoinensis) in the southeastern United States. Resistance to this pathogen is determined by a complex interaction between host genetics and disease pathotype with even field-susceptible cultivars being resistant to most scab isolates. To understand the underlying molecular mechanisms of scab resistance in pecan, we performed a transcriptome analysis of the pecan cultivar, 'Desirable', in response to inoculation with a pathogenic and a non-pathogenic scab isolate at three different time points (24, 48, and 96 hrs. post-inoculation). Differential gene expression and gene ontology enrichment analyses showed contrasting gene expression patterns and pathway enrichment in response to the contrasting isolates with varying pathogenicity. The weighted gene co-expression network analysis of differentially expressed genes detected 11 gene modules. Among them, two modules had significant enrichment of genes involved with defense responses. These genes were particularly upregulated in the resistant reaction at the early stage of fungal infection (24 h) compared to the susceptible reaction. Hub genes in these modules were predominantly related to receptor-like protein kinase activity, signal reception, signal transduction, biosynthesis and transport of plant secondary metabolites, and oxidoreductase activity. Results of this study suggest that the early response of pathogen-related signal transduction and development of cellular barriers against the invading fungus are likely defense mechanisms employed by pecan cultivars against non-virulent scab isolates. The transcriptomic data generated here provide the foundation for identifying candidate resistance genes in pecan against V. effusa and for exploring the molecular mechanisms of disease resistance.
Collapse
Affiliation(s)
- Gaurab Bhattarai
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, Georgia, United States of America
| | - Hormat Shadgou Rhein
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - John T. Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Sameer Khanal
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, Georgia, United States of America
- Department of Crop and Soil Sciences, University of Georgia-Tifton Campus, Tifton, Georgia, United States of America
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Peng W. Chee
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, Georgia, United States of America
- Department of Crop and Soil Sciences, University of Georgia-Tifton Campus, Tifton, Georgia, United States of America
| | - Cristina Pisani
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Southeastern Fruit and Tree Nut Research Station, Byron, Georgia, United States of America
| | - Jennifer Randall
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Patrick J. Conner
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, Georgia, United States of America
- Department of Horticulture, University of Georgia-Tifton Campus, Tifton, Georgia, United States of America
| |
Collapse
|
2
|
Liu X, Yang C, Dong H, Wu S, Wang G, Han X, Fan B, Shang Y, Dang C, Xie C, Wang Z. TaRLK2.4, a transgressive expression receptor like kinase, improves powdery mildew resistance in wheat. Int J Biol Macromol 2024; 277:134387. [PMID: 39111505 DOI: 10.1016/j.ijbiomac.2024.134387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/11/2024]
Abstract
Plants form two immune systems, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI), to combat Blumeria graminis f. sp. tritici (Bgt) infection during the evolutionary process. In PTI, receptor-like kinases (RLKs) play important roles during pathogen infections. Based on our previous reports, there were 280 TaRLKs identified in early response to powdery mildew infection, which were divided into 34 subfamilies in this study. Differences in gene structures, cis-acting elements, and expression levels implied the function diversity of TaRLKs. TaRLK2.4, a member of LRK10L-RLKs subfamily, contained 665 amino acids, and located on the cell membrane. The main objective of this study was to investigate the role of the receptor-like kinase gene TaRLK2.4 in conferring powdery mildew resistance in wheat. Real-time quantitative PCR results indicated that TaRLK2.4 expressed during Bgt infection process, and exhibited a transgressive expression characteristic in disease resistance NILs (BJ-1). To elucidate the function of TaRLK2.4 during Bgt infection, the comprehensive analysis of virus induced gene silence and over-expression demonstrated that TaRLK2.4 promoted powdery mildew resistance positively. In summary, these results contribute to a deeper understanding of the complex and diverse biological functions of RLKs, and provide new genetic resources for wheat molecular breeding.
Collapse
Affiliation(s)
- Xiaoying Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Chenxiao Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Huixuan Dong
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Siqi Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Guangyu Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Xinyue Han
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Baoli Fan
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China
| | - Yuntao Shang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 30087, China
| | - Chen Dang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agro-biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agro-biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhenying Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China.
| |
Collapse
|
3
|
Zheng L, Kong YN, Yan XC, Liu YX, Wang XR, Zhang JP, Qi XL, Cao XY, Zhang SX, Liu YW, Zheng JC, Wang C, Hou ZH, Chen J, Zhou YB, Chen M, Ma YZ, Xu ZS, Lan JH. TaMYB-CC5 gene specifically expressed in root improve tolerance of phosphorus deficiency and drought stress in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109011. [PMID: 39128403 DOI: 10.1016/j.plaphy.2024.109011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Phosphate deficiency and drought are significant environmental constraints that impact both the productivity and quality of wheat. The interaction between phosphorus and water facilitates their mutual absorption processes in plants. Under conditions of both phosphorus deficiency and drought stress, we observed a significant upregulation in the expression of wheat MYB-CC transcription factors through the transcriptome analysis. 52 TaMYB-CC genes in wheat were identified and analyzed their evolutionary relationships, structures, and expression patterns. The TaMYB-CC5 gene exhibited specific expression in roots and demonstrated significant upregulation under phosphorus deficiency and drought stress compared to other TaMYB-CC genes. The overexpression of TaMYB-CC5A in Arabidopsis resulted in a significant increase of root length under stress conditions, thereby enhancing tolerance to phosphate starvation and drought stress. The wheat lines with silenced TaMYB-CC5 genes exhibited reduced root length under stress conditions and increased sensitivity to phosphate deficiency and drought stress. In addition, silencing the TaMYB-CC5 genes resulted in altered phosphorus content in leaves but did not lead to a reduction in phosphorus content in roots. Enrichment analysis the co-expression genes of TaMYB-CC5 transcription factors, we found the zinc-induced facilitator-like (ZIFL) genes were prominent associated with TaMYB-CC5 gene. The TaZIFL1, TaZIFL2, and TaZIFL5 genes were verified specifically expressed in roots and regulated by TaMYB-CC5 transcript factor. Our study reveals the pivotal role of the TaMYB-CC5 gene in regulating TaZIFL genes, which is crucial for maintaining normal root growth under phosphorus deficiency and drought stress, thereby enhanced resistance to these abiotic stresses in wheat.
Collapse
Affiliation(s)
- Lei Zheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Ya-Nan Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xue-Chun Yan
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuan-Xia Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin-Rui Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jin-Peng Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xue-Li Qi
- National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Institute of Crops Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Xin-You Cao
- National Engineering Laboratory for Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shuang-Xi Zhang
- Institute of Crop Science, Ningxia Academy of Agriculture and Forestry Sciences, Yongning, 750105, China
| | - Yong-Wei Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, China
| | - Jia-Cheng Zheng
- Anhui Science and Technology University, College of Agronomy, Fengyang, 233100, China
| | - Chao Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Ze-Hao Hou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jun Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Yong-Bin Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Ming Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - You-Zhi Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Zhao-Shi Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Seed Industry Laboratory, Sanya, 572024, China.
| | - Jin-Hao Lan
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
4
|
Meresa BK, Ayimut KM, Weldemichael MY, Geberemedhin KH, Kassegn HH, Geberemikael BA, Egigu EM. Carbohydrate elicitor-induced plant immunity: Advances and prospects. Heliyon 2024; 10:e34871. [PMID: 39157329 PMCID: PMC11327524 DOI: 10.1016/j.heliyon.2024.e34871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
The perceived negative impacts of synthetic agrochemicals gave way to alternative, biological plant protection strategies. The deployment of induced resistance, comprising boosting the natural defense responses of plants, is one of those. Plants developed multi-component defense mechanisms to defend themselves against biotic and abiotic stresses. These are activated upon recognition of stress signatures via membrane-localized receptors. The induced immune responses enable plants to tolerate and limit the impact of stresses. A systemic cascade of signals enables plants to prime un-damaged tissues, which is crucial during secondary encounters with stress. Comparable stress tolerance mechanisms can be induced in plants by the application of carbohydrate elicitors such as chitin/chitosan, β-1,3-glucans, oligogalacturonides, cellodextrins, xyloglucans, alginates, ulvans, and carrageenans. Treating plants with carbohydrate-derived elicitors enable the plants to develop resistance appliances against diverse stresses. Some carbohydrates are also known to have been involved in promoting symbiotic signaling. Here, we review recent progresses on plant resistance elicitation effect of various carbohydrate elicitors and the molecular mechanisms of plant cell perception, cascade signals, and responses to cascaded cues. Besides, the molecular mechanisms used by plants to distinguish carbohydrate-induced immunity signals from symbiotic signals are discussed. The structure-activity relationships of the carbohydrate elicitors are also described. Furthermore, we forwarded future research outlooks that might increase the utilization of carbohydrate elicitors in agriculture in order to improve the efficacy of plant protection strategies.
Collapse
Affiliation(s)
- Birhanu Kahsay Meresa
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kiros-Meles Ayimut
- Department of Crop and Horticultural Sciences, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Micheale Yifter Weldemichael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kalayou Hiluf Geberemedhin
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Hagos Hailu Kassegn
- Department of Food Science and Postharvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Bruh Asmelash Geberemikael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Etsay Mesele Egigu
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| |
Collapse
|
5
|
Ni J, Dong Z, Qiao F, Zhou W, Cao A, Xing L. Phylogenetic Analysis of Wall-Associated Kinase Genes in Triticum Species and Characterization of TaWAK7 Involved in Wheat Powdery Mildew Resistance. PLANT DISEASE 2024; 108:1223-1235. [PMID: 37923976 DOI: 10.1094/pdis-06-23-1090-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Wall-associated kinases (WAKs), a group of receptor-like kinases, have been found to play important roles in defending against pathogens and in various developmental processes. However, the importance of this family in wheat remains largely unknown. Wheat powdery mildew is caused by Blumeria graminis f. sp. tritici (Bgt), which initiates infection on the cell surface and forms haustoria inside the cell; therefore, the defense to Bgt involves extracellular and subsequently intracellular signals. In this study, WAKs were identified genome-wide and analyzed phylogenetically, and then a transmembrane WAK gene that putatively participated in pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity to Bgt was functionally and evolutionarily investigated. In total, 1,193 WAKs were identified from wheat and its Gramineae relatives. Phylogenetic analysis indicated that WAKs expanded through tandem duplication or segment duplication. TaWAK7, from chromosome 2A, was identified as a Bgt-inducible gene both in susceptible and resistant materials, but it showed distinct responsive patterns. Functional analysis showed that TaWAK7 was involved in both the basal and resistance gene-mediated resistances. The specific gene structures and protein characteristics of TaWAK7, along with its orthologs, were characterized both in subgenomes of Triticum spp. and in the A genome of multiple wheat accessions, which revealed that TaWAK7 orthologs underwent complex evolution with frequent gene fusion and domain deletion. In addition, three cytoplasmic proteins interacting with TaWAK7 were indicated by yeast two-hybrid and bimolecular fluorescence complementation assays. Binding of TaWAK7 with these proteins could change its subcellular localization from the plasma membrane to the cytoplasm. This study provides a better understanding of the evolution of WAKs at the genomic level and TaWAK7 at the gene level and provides useful clues for further investigation of how WAKs transmit the extracellular signals to the cytoplasm to activate defense responses.
Collapse
Affiliation(s)
- Jiayao Ni
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Zhenjie Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Fangyuan Qiao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Weihao Zhou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Aizhong Cao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Liping Xing
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| |
Collapse
|
6
|
Li R, Wang X, Hu Y, Huang G. Analysis of huanglongbing-associated RNA-seq data reveals disturbances in biological processes within Citrus spp. triggered by Candidatus Liberibacter asiaticus infection. FRONTIERS IN PLANT SCIENCE 2024; 15:1388163. [PMID: 38660443 PMCID: PMC11039969 DOI: 10.3389/fpls.2024.1388163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
Introduction Huanglongbing (HLB), a disease that's ubiquitous worldwide, wreaks havoc on the citrus industry. The primary culprit of HLB is the gram-negative bacterium Candidatus Liberibacter asiaticus (CLas) that infects the phloem, but its damaging mechanism is yet to be fully understood. Methods and results In this study, a multitude of tools including weighted correlation network analysis (WGCNA), protein-protein interaction (PPI) network analysis and gene expression profiling are employed to unravel the intricacies of its pathogenesis. The investigation pinpoints various central genes, such as the ethylene-responsive transcription factor 9 (ERF9) and thioredoxin reductase 1 (TrxR1), that are associated with CLas invasion and resultant disturbances in numerous biological operations. Additionally, the study uncovers a range of responses through the detection of differential expressed genes (DEGs) across different experiments. The discovery of core DEGs leads to the identification of pivotal genes such as the sieve element occlusion (SEO) and the wall-associated receptor kinase-like 15 (WAKL15). PPI network analysis highlights potential vital proteins, while GO and KEGG pathway enrichment analysis illustrate a significant impact on multiple defensive and metabolic pathways. Gene set enrichment analysis (GSEA) indicates significant alterations in biological processes such as leaf senescence and response to biotic stimuli. Discussion This all-encompassing approach extends valuable understanding into the pathogenesis of CLas, potentially aiding future research and therapeutic strategies for HLB.
Collapse
Affiliation(s)
- Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Xinyou Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Yanan Hu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Guiyan Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| |
Collapse
|
7
|
Liu J, Li W, Wu G, Ali K. An update on evolutionary, structural, and functional studies of receptor-like kinases in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1305599. [PMID: 38362444 PMCID: PMC10868138 DOI: 10.3389/fpls.2024.1305599] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
All living organisms must develop mechanisms to cope with and adapt to new environments. The transition of plants from aquatic to terrestrial environment provided new opportunities for them to exploit additional resources but made them vulnerable to harsh and ever-changing conditions. As such, the transmembrane receptor-like kinases (RLKs) have been extensively duplicated and expanded in land plants, increasing the number of RLKs in the advanced angiosperms, thus becoming one of the largest protein families in eukaryotes. The basic structure of the RLKs consists of a variable extracellular domain (ECD), a transmembrane domain (TM), and a conserved kinase domain (KD). Their variable ECDs can perceive various kinds of ligands that activate the conserved KD through a series of auto- and trans-phosphorylation events, allowing the KDs to keep the conserved kinase activities as a molecular switch that stabilizes their intracellular signaling cascades, possibly maintaining cellular homeostasis as their advantages in different environmental conditions. The RLK signaling mechanisms may require a coreceptor and other interactors, which ultimately leads to the control of various functions of growth and development, fertilization, and immunity. Therefore, the identification of new signaling mechanisms might offer a unique insight into the regulatory mechanism of RLKs in plant development and adaptations. Here, we give an overview update of recent advances in RLKs and their signaling mechanisms.
Collapse
Affiliation(s)
| | | | - Guang Wu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Khawar Ali
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
8
|
Yan W, Hu P, Ni Y, Zhao H, Liu X, Cao H, Jia M, Tian B, Miao H, Liu H. Genome-wide characterization of the wall-associated kinase-like (WAKL) family in sesame (Sesamum indicum) identifies a SiWAKL6 gene involved in resistance to Macrophomina Phaseolina. BMC PLANT BIOLOGY 2023; 23:624. [PMID: 38057720 DOI: 10.1186/s12870-023-04658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Sesame charcoal rot caused by Macrophomina phaseolina is one of the most serious fungal diseases in sesame production, and threatens the yield and quality of sesame. WAKL genes are important in the plant response to biotic stresses by sensing and transmitting external signals to the intracellular receptor. However, there is still a lack about the WAKL gene family and its function in sesame resistance to M. phaseolina. The aim of this study was to interpret the roles of WAKL genes in sesame resistance to M. phaseolina. RESULTS In this study, a comprehensive study of the WAKL gene family was conducted and 31 WAKL genes were identified in the sesame genome. Tandem duplication events were the main factor in expansion of the SiWAKL gene family. Phylogenetic analysis showed that the sesame SiWAKL gene family was divided into 4 groups. SiWAKL genes exhibited different expression patterns in diverse tissues. Under M. phaseolina stress, most SiWAKL genes were significantly induced. Notably, SiWAKL6 was strongly induced in the resistant variety "Zhengzhi 13". Functional analysis showed that SiWAKL6 was induced by salicylic acid but not methyl jasmonate in sesame. Overexpression of SiWAKL6 in transgenic Arabidopsis thaliana plants enhanced their resistance to M. phaseolina by inducing the expression of genes involved in the salicylic acid signaling pathway and reconstructing reactive oxygen species homeostasis. CONCLUSIONS Taken together, the results provide a better understanding of functions about SiWAKL gene family and suggest that manipulation of these SiWAKL genes can improve plant resistance to M. phaseolina. The findings contributed to further understanding of functions of SiWAKL genes in plant immunity.
Collapse
Affiliation(s)
- Wenqing Yan
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Peilin Hu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Yunxia Ni
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Hui Zhao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Xintao Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Hengchun Cao
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Zhengzhou, Henan, 450002, China
| | - Min Jia
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Baoming Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, 450002, China.
| | - Hongmei Miao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Zhengzhou, Henan, 450002, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, 450002, China.
- The Shennong Laboratory, Zhengzhou, Henan, 450002, China.
| | - Hongyan Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, 450002, China.
- The Shennong Laboratory, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
9
|
Bittencourt CB, Carvalho da Silva TL, Rodrigues Neto JC, Leão AP, de Aquino Ribeiro JA, Maia ADHN, de Sousa CAF, Quirino BF, Souza Júnior MT. Molecular Interplay between Non-Host Resistance, Pathogens and Basal Immunity as a Background for Fatal Yellowing in Oil Palm ( Elaeis guineensis Jacq.) Plants. Int J Mol Sci 2023; 24:12918. [PMID: 37629099 PMCID: PMC10454536 DOI: 10.3390/ijms241612918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
An oil palm (Elaeis guineensis Jacq.) bud rod disorder of unknown etiology, named Fatal Yellowing (FY) disease, is regarded as one of the top constraints with respect to the growth of the palm oil industry in Brazil. FY etiology has been a challenge embraced by several research groups in plant pathology throughout the last 50 years in Brazil, with no success in completing Koch's postulates. Most recently, the hypothesis of having an abiotic stressor as the initial cause of FY has gained ground, and oxygen deficiency (hypoxia) damaging the root system has become a candidate for stress. Here, a comprehensive, large-scale, single- and multi-omics integration analysis of the metabolome and transcriptome profiles on the leaves of oil palm plants contrasting in terms of FY symptomatology-asymptomatic and symptomatic-and collected in two distinct seasons-dry and rainy-is reported. The changes observed in the physicochemical attributes of the soil and the chemical attributes and metabolome profiles of the leaves did not allow the discrimination of plants which were asymptomatic or symptomatic for this disease, not even in the rainy season, when the soil became waterlogged. However, the multi-omics integration analysis of enzymes and metabolites differentially expressed in asymptomatic and/or symptomatic plants in the rainy season compared to the dry season allowed the identification of the metabolic pathways most affected by the changes in the environment, opening an opportunity for additional characterization of the role of hypoxia in FY symptom intensification. Finally, the initial analysis of a set of 56 proteins/genes differentially expressed in symptomatic plants compared to the asymptomatic ones, independent of the season, has presented pieces of evidence suggesting that breaks in the non-host resistance to non-adapted pathogens and the basal immunity to adapted pathogens, caused by the anaerobic conditions experienced by the plants, might be linked to the onset of this disease. This set of genes might offer the opportunity to develop biomarkers for selecting oil palm plants resistant to this disease and to help pave the way to employing strategies to keep the safety barriers raised and strong.
Collapse
Affiliation(s)
- Cleiton Barroso Bittencourt
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras 37203-202, MG, Brazil; (C.B.B.); (T.L.C.d.S.)
| | | | - Jorge Cândido Rodrigues Neto
- The Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília 70770-901, DF, Brazil; (J.C.R.N.); (A.P.L.); (J.A.d.A.R.); (B.F.Q.)
| | - André Pereira Leão
- The Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília 70770-901, DF, Brazil; (J.C.R.N.); (A.P.L.); (J.A.d.A.R.); (B.F.Q.)
| | - José Antônio de Aquino Ribeiro
- The Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília 70770-901, DF, Brazil; (J.C.R.N.); (A.P.L.); (J.A.d.A.R.); (B.F.Q.)
| | | | | | - Betania Ferraz Quirino
- The Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília 70770-901, DF, Brazil; (J.C.R.N.); (A.P.L.); (J.A.d.A.R.); (B.F.Q.)
| | - Manoel Teixeira Souza Júnior
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras 37203-202, MG, Brazil; (C.B.B.); (T.L.C.d.S.)
- The Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília 70770-901, DF, Brazil; (J.C.R.N.); (A.P.L.); (J.A.d.A.R.); (B.F.Q.)
| |
Collapse
|
10
|
Yan J, Su P, Meng X, Liu P. Phylogeny of the plant receptor-like kinase (RLK) gene family and expression analysis of wheat RLK genes in response to biotic and abiotic stresses. BMC Genomics 2023; 24:224. [PMID: 37127571 PMCID: PMC10152718 DOI: 10.1186/s12864-023-09303-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND The receptor-like kinase (RLK) gene families in plants contains a large number of members. They are membrane proteins with an extracellular receptor domain and participate in biotic and abiotic stress responses. RESULTS In this study, we identified RLKs in 15 representative plant genomes, including wheat, and classified them into 64 subfamilies by using four types of phylogenetic trees and HMM models. Conserved exon‒intron structures with conserved exon phases in the kinase domain were found in many RLK subfamilies from Physcomitrella patens to Triticum aestivum. Domain distributions of RLKs were also diagrammed. Collinearity events and tandem gene clusters suggested that polyploidization and tandem duplication events contributed to the member expansions of T. aestivum RLKs. Global expression pattern analysis was performed by using public transcriptome data. These analyses were involved in T. aestivum, Aegilops tauschii and Brachypodium distachyon RLKs under biotic and abiotic stresses. We also selected 9 RLKs to validate the transcriptome prediction by using qRT‒PCR under drought treatment and with Fusarium graminearum infection. The expression trends of these 9 wheat RLKs from public transcriptome data were consistent with the results of qRT‒PCR, indicating that they might be stress response genes under drought or F. graminearum treatments. CONCLUSION In this study, we identified, classified, evolved, and expressed RLKs in wheat and related plants. Thus, our results will provide insights into the evolutionary history and molecular mechanisms of wheat RLKs.
Collapse
Affiliation(s)
- Jun Yan
- Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of the Ministry of Agriculture and Rural Affairs, College of Information Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| | - Peisen Su
- College of Agronomy, Liaocheng University, Liaocheng, 252059, People's Republic of China.
| | - Xianyong Meng
- Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of the Ministry of Agriculture and Rural Affairs, College of Information Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Pingzeng Liu
- Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of the Ministry of Agriculture and Rural Affairs, College of Information Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
11
|
Huerta AI, Sancho-Andrés G, Montesinos JC, Silva-Navas J, Bassard S, Pau-Roblot C, Kesten C, Schlechter R, Dora S, Ayupov T, Pelloux J, Santiago J, Sánchez-Rodríguez C. The WAK-like protein RFO1 acts as a sensor of the pectin methylation status in Arabidopsis cell walls to modulate root growth and defense. MOLECULAR PLANT 2023; 16:865-881. [PMID: 37002606 PMCID: PMC10168605 DOI: 10.1016/j.molp.2023.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/20/2022] [Accepted: 03/28/2023] [Indexed: 05/04/2023]
Abstract
Most organisms adjust their development according to the environmental conditions. For the majority, this implies the sensing of alterations to cell walls caused by different cues. Despite the relevance of this process, few molecular players involved in cell wall sensing are known and characterized. Here, we show that the wall-associated kinase-like protein RESISTANCE TO FUSARIUM OXYSPORUM 1 (RFO1) is required for plant growth and early defense against Fusarium oxysporum and functions by sensing changes in the pectin methylation levels in the cell wall. The RFO1 dwell time at the plasma membrane is affected by the pectin methylation status at the cell wall, regulating MITOGEN-ACTIVATED PROTEIN KINASE and gene expression. We show that the extracellular domain of RFO1 binds de-methylated pectin in vitro, whose distribution in the cell wall is altered during F. oxysporum infection. Further analyses also indicate that RFO1 is required for the BR-dependent plant growth alteration in response to inhibition of pectin de-methyl-esterase activity at the cell wall. Collectively, our work demonstrates that RFO1 is a sensor of the pectin methylation status that plays a unique dual role in plant growth and defense against vascular pathogens.
Collapse
Affiliation(s)
- Apolonio I Huerta
- ETH Zurich, Institute of Molecular Plant Biology (D-BIOL), Zurich, Switzerland
| | | | | | - Javier Silva-Navas
- University of Lausanne, Department of Plant Molecular Biology, Lausanne, Switzerland
| | - Solène Bassard
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Corinne Pau-Roblot
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Christopher Kesten
- ETH Zurich, Institute of Molecular Plant Biology (D-BIOL), Zurich, Switzerland
| | - Rudolf Schlechter
- ETH Zurich, Institute of Molecular Plant Biology (D-BIOL), Zurich, Switzerland
| | - Susanne Dora
- ETH Zurich, Institute of Molecular Plant Biology (D-BIOL), Zurich, Switzerland
| | - Temurkhan Ayupov
- ETH Zurich, Institute of Molecular Plant Biology (D-BIOL), Zurich, Switzerland
| | - Jérôme Pelloux
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Julia Santiago
- University of Lausanne, Department of Plant Molecular Biology, Lausanne, Switzerland
| | | |
Collapse
|
12
|
A Novel Wall-Associated Kinase TaWAK-5D600 Positively Participates in Defense against Sharp Eyespot and Fusarium Crown Rot in Wheat. Int J Mol Sci 2023; 24:ijms24055060. [PMID: 36902488 PMCID: PMC10003040 DOI: 10.3390/ijms24055060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Sharp eyespot and Fusarium crown rot, mainly caused by soil-borne fungi Rhizoctonia cerealis and Fusarium pseudograminearum, are destructive diseases of major cereal crops including wheat (Triticum aestivum). However, the mechanisms underlying wheat-resistant responses to the two pathogens are largely elusive. In this study, we performed a genome-wide analysis of wall-associated kinase (WAK) family in wheat. As a result, a total of 140 TaWAK (not TaWAKL) candidate genes were identified from the wheat genome, each of which contains an N-terminal signal peptide, a galacturonan binding domain, an EGF-like domain, a calcium binding EGF domain (EGF-Ca), a transmembrane domain, and an intracellular Serine/Threonine protein kinase domain. By analyzing the RNA-sequencing data of wheat inoculated with R. cerealis and F. pseudograminearum, we found that transcript abundance of TaWAK-5D600 (TraesCS5D02G268600) on chromosome 5D was significantly upregulated, and that its upregulated transcript levels in response to both pathogens were higher compared with other TaWAK genes. Importantly, knock-down of TaWAK-5D600 transcript impaired wheat resistance against the fungal pathogens R. cerealis and F. pseudograminearum, and significantly repressed expression of defense-related genes in wheat, TaSERK1, TaMPK3, TaPR1, TaChitinase3, and TaChitinase4. Thus, this study proposes TaWAK-5D600 as a promising gene for improving wheat broad resistance to sharp eyespot and Fusarium crown rot (FCR) in wheat.
Collapse
|
13
|
Baez LA, Tichá T, Hamann T. Cell wall integrity regulation across plant species. PLANT MOLECULAR BIOLOGY 2022; 109:483-504. [PMID: 35674976 PMCID: PMC9213367 DOI: 10.1007/s11103-022-01284-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/05/2022] [Indexed: 05/05/2023]
Abstract
Plant cell walls are highly dynamic and chemically complex structures surrounding all plant cells. They provide structural support, protection from both abiotic and biotic stress as well as ensure containment of turgor. Recently evidence has accumulated that a dedicated mechanism exists in plants, which is monitoring the functional integrity of cell walls and initiates adaptive responses to maintain integrity in case it is impaired during growth, development or exposure to biotic and abiotic stress. The available evidence indicates that detection of impairment involves mechano-perception, while reactive oxygen species and phytohormone-based signaling processes play key roles in translating signals generated and regulating adaptive responses. More recently it has also become obvious that the mechanisms mediating cell wall integrity maintenance and pattern triggered immunity are interacting with each other to modulate the adaptive responses to biotic stress and cell wall integrity impairment. Here we will review initially our current knowledge regarding the mode of action of the maintenance mechanism, discuss mechanisms mediating responses to biotic stresses and highlight how both mechanisms may modulate adaptive responses. This first part will be focused on Arabidopsis thaliana since most of the relevant knowledge derives from this model organism. We will then proceed to provide perspective to what extent the relevant molecular mechanisms are conserved in other plant species and close by discussing current knowledge of the transcriptional machinery responsible for controlling the adaptive responses using selected examples.
Collapse
Affiliation(s)
- Luis Alonso Baez
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway
| | - Tereza Tichá
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway.
| |
Collapse
|
14
|
Xia X, Zhang X, Zhang Y, Wang L, An Q, Tu Q, Wu L, Jiang P, Zhang P, Yu L, Li G, He Y. Characterization of the WAK Gene Family Reveals Genes for FHB Resistance in Bread Wheat (Triticum aestivum L.). Int J Mol Sci 2022; 23:ijms23137157. [PMID: 35806165 PMCID: PMC9266398 DOI: 10.3390/ijms23137157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Wall-associated kinases (WAKs) are important receptor-like proteins that play major roles in plant defense against pathogens. Fusarium head blight (FHB), one of the most widespread and devastating crop diseases, reduces wheat yield and leads to quality deterioration. Although WAK gene families have been studied in many plants, systematic research on bread wheat (Triticum aestivum) and its role in FHB resistance, in particular, is lacking. In this study, we identified and characterized 320 genes of the TaWAK family in wheat distributed across all chromosomes except 4B and divided them into three phylogenetic groups. Duplication and synteny analyses provided valuable information on the evolutionary characteristics of the TaWAK genes. The gene expression pattern analysis suggested that TaWAK genes play diverse roles in plant biological processes and that at least 30 genes may be involved in the response to Fusarium infection in wheat spikes, with most of the genes contributing to pectin- and chitin-induced defense pathways. Furthermore, 45 TaWAK genes were identified within 17 hcmQTLs that are related to wheat FHB resistance. Our findings provide potential candidate genes for improving FHB resistance and insights into the future functional analysis of TaWAK genes in wheat.
Collapse
Affiliation(s)
- Xiaobo Xia
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xu Zhang
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
| | - Yicong Zhang
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lirong Wang
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qi An
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qiang Tu
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lei Wu
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
| | - Peng Jiang
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
| | - Peng Zhang
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
| | - Lixuan Yu
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
| | - Gang Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (G.L.); (Y.H.)
| | - Yi He
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
- Correspondence: (G.L.); (Y.H.)
| |
Collapse
|
15
|
Li L, Guo N, Feng Y, Duan M, Li C. Effect of Piriformospora indica-Induced Systemic Resistance and Basal Immunity Against Rhizoctonia cerealis and Fusarium graminearum in Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:836940. [PMID: 35498704 PMCID: PMC9047502 DOI: 10.3389/fpls.2022.836940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2022] [Indexed: 06/01/2023]
Abstract
Wheat is among the top 10 and most widely grown crops in the world. However, wheat is often infected with many soil-borne diseases, including sharp eyespot, mainly caused by the necrotrophic fungus Rhizoctonia cerealis, and Fusarium head blight (FHB), caused by Fusarium graminearum, resulting in reduced production. Piriformospora indica is a root endophytic fungus with a wide range of host plants, which increases their growth and tolerance to biotic and abiotic stresses. In this study, the capability of P. indica to protect wheat seedlings against R. cerealis and F. graminearum was investigated at the physiological, biochemical, and molecular levels. Our results showed that P. indica significantly reduced the disease progress on wheat caused by F. graminearum and R. cerealis in vivo, but not showed any antagonistic effect on F. graminearum and R. cerealis in vitro. Additionally, P. indica can induce systemic resistance by elevating H2O2 content, antioxidase activity, relative water content (RWC), and membrane stability index (MSI) compared to the plants only inoculated with F. graminearum or R. cerealis and control. RNA-seq suggested that transcriptome changes caused by F. graminearum were more severe than those caused by R. cerealis. The number of differentially expressed genes (DEGs) in the transcriptome can be reduced by the addition of P. indica: for F. graminearum reduced by 18% and for R. cerealis reduced 58%. The DEGs related to disease resistance, such as WRKY and MAPK, were upregulated by P. indica colonization. The data further revealed that the transcriptional resistance to F. graminearum and R. cerealis mediated by P. indica is quite different.
Collapse
|
16
|
The Pathogen-Induced MATE Gene TaPIMA1 Is Required for Defense Responses to Rhizoctonia cerealis in Wheat. Int J Mol Sci 2022; 23:ijms23063377. [PMID: 35328796 PMCID: PMC8950252 DOI: 10.3390/ijms23063377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/29/2022] Open
Abstract
The sharp eyespot, mainly caused by the soil-borne fungus Rhizoctonia cerealis, is a devastating disease endangering production of wheat (Triticum aestivum). Multi-Antimicrobial Extrusion (MATE) family genes are widely distributed in plant species, but little is known about MATE functions in wheat disease resistance. In this study, we identified TaPIMA1, a pathogen-induced MATE gene in wheat, from RNA-seq data. TaPIMA1 expression was induced by Rhizoctonia cerealis and was higher in sharp eyespot-resistant wheat genotypes than in susceptible wheat genotypes. Molecular biology assays showed that TaPIMA1 belonged to the MATE family, and the expressed protein could distribute in the cytoplasm and plasma membrane. Virus-Induced Gene Silencing plus disease assessment indicated that knock-down of TaPIMA1 impaired resistance of wheat to sharp eyespot and down-regulated the expression of defense genes (Defensin, PR10, PR1.2, and Chitinase3). Furthermore, TaPIMA1 was rapidly induced by exogenous H2O2 and jasmonate (JA) treatments, which also promoted the expression of pathogenesis-related genes. These results suggested that TaPIMA1 might positively regulate the defense against R. cerealis by up-regulating the expression of defense-associated genes in H2O2 and JA signal pathways. This study sheds light on the role of MATE transporter in wheat defense to Rhizoctonia cerealis and provides a potential gene for improving wheat resistance against sharp eyespot.
Collapse
|
17
|
Li M, Ma J, Liu H, Ou M, Ye H, Zhao P. Identification and Characterization of Wall-Associated Kinase (WAK) and WAK-like (WAKL) Gene Family in Juglans regia and Its Wild Related Species Juglans mandshurica. Genes (Basel) 2022; 13:genes13010134. [PMID: 35052474 PMCID: PMC8775259 DOI: 10.3390/genes13010134] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
Wall-associated kinase (WAK) and WAK-like kinase (WAKL) are receptor-like kinases (RLKs), which play important roles in signal transduction between the cell wall and the cytoplasm in plants. WAK/WAKLs have been studied in many plants, but were rarely studied in the important economic walnut tree. In this study, 27 and 14 WAK/WAKL genes were identified in Juglans regia and its wild related species Juglans mandshurica, respectively. We found tandem duplication might play a critical role in the expansion of WAK/WAKL gene family in J. regia, and most of the WAK/WAKL homologous pairs underwent purified selection during evolution. All WAK/WAKL proteins have the extracellular WAK domain and the cytoplasmic protein kinase domain, and the latter was more conserved than the former. Cis-acting elements analysis showed that WAK/WAKL might be involved in plant growth and development, plant response to abiotic stress and hormones. Gene expression pattern analysis further indicated that most WAK/WAKL genes in J. regia might play a role in the development of leaves and be involved in plant response to biotic stress. Our study provides a new perspective for the evolutionary analysis of gene families in tree species and also provides potential candidate genes for studying WAK/WAKL gene function in walnuts.
Collapse
|
18
|
Wheat Breeding through Genetic and Physical Mapping 2. Int J Mol Sci 2021; 22:ijms222413359. [PMID: 34948157 PMCID: PMC8709161 DOI: 10.3390/ijms222413359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 11/23/2022] Open
|
19
|
TaWAK2A-800, a Wall-Associated Kinase, Participates Positively in Resistance to Fusarium Head Blight and Sharp Eyespot in Wheat. Int J Mol Sci 2021; 22:ijms222111493. [PMID: 34768923 PMCID: PMC8583783 DOI: 10.3390/ijms222111493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022] Open
Abstract
Fusarium head blight (FHB) and sharp eyespot are important diseases of the cereal plants, including bread wheat (Triticum aestivum) and barley. Both diseases are predominately caused by the pathogenic fungi, Fusarium graminearum and Rhizoctonia cerealis. The roles of the wheat-wall-associated kinases (WAKs) in defense against both F. graminearum and R. cerealis have remained largely unknown. This research reports the identification of TaWAK2A-800, a wheat WAK-coding gene located on chromosome 2A, and its functional roles in wheat resistance responses to FHB and sharp eyespot. TaWAK2A-800 transcript abundance was elevated by the early infection of R. cerealis and F. graminearum, or treatment with exogenous chitin. The gene transcript seemed to correspond to the resistance of wheat. Further functional analyses showed that silencing TaWAK2A-800 compromised the resistance of wheat to both FHB (F. graminearum) and sharp eyespot (R. cerealis). Moreover, the silencing reduced the expression levels of six defense-related genes, including the chitin-triggering immune pathway-marker genes, TaCERK1, TaRLCK1B, and TaMPK3. Summarily, TaWAK2A-800 participates positively in the resistance responses to both F. graminearum and R. cerealis, possibly through a chitin-induced pathway in wheat. TaWAK2A-800 will be useful for breeding wheat varieties with resistance to both FHB and sharp eyespot.
Collapse
|
20
|
Qi H, Guo F, Lv L, Zhu X, Zhang L, Yu J, Wei X, Zhang Z. The Wheat Wall-Associated Receptor-Like Kinase TaWAK-6D Mediates Broad Resistance to Two Fungal Pathogens Fusarium pseudograminearum and Rhizoctonia cerealis. FRONTIERS IN PLANT SCIENCE 2021; 12:758196. [PMID: 34777437 PMCID: PMC8579037 DOI: 10.3389/fpls.2021.758196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/23/2021] [Indexed: 05/19/2023]
Abstract
The soil-borne fungi Fusarium pseudograminearum and Rhizoctonia cerealis are the major pathogens for the economically important diseases Fusarium crown rot (FCR) and sharp eyespot of common wheat (Triticum aestivum), respectively. However, there has been no report on the broad resistance of wheat genes against both F. pseudograminearum and R. cerealis. In the current study, we identified TaWAK-6D, a wall-associated kinase (WAK) which is an encoding gene located on chromosome 6D, and demonstrated its broad resistance role in the wheat responses to both F. pseudograminearum and R. cerealis infection. TaWAK-6D transcript induction by F. pseudograminearum and R. cerealis was related to the resistance degree of wheat and the gene expression was significantly induced by exogenous pectin treatment. Silencing of TaWAK-6D compromised wheat resistance to F. pseudograminearum and R. cerealis, and repressed the expression of a serial of wheat defense-related genes. Ectopic expression of TaWAK-6D in Nicotiana benthamiana positively modulated the expression of several defense-related genes. TaWAK-6D protein was determined to localize to the plasma membrane in wheat and N. benthamiana. Collectively, the TaWAK-6D at the plasma membrane mediated the broad resistance responses to both F. pseudograminearum and R. cerealis in wheat at the seedling stage. This study, therefore, concludes that TaWAK-6D is a promising gene for improving wheat broad resistance to FCR and sharp eyespot.
Collapse
Affiliation(s)
- Haijun Qi
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feilong Guo
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liangjie Lv
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xiuliang Zhu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Jinfeng Yu
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Xuening Wei
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zengyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Zengyan Zhang
| |
Collapse
|