1
|
Menard R, Baanannou A, Halluin C, Morse D, Kuhn S, Graber JH, Strickland J, Madelaine R. The small molecule ML233 is a direct inhibitor of tyrosinase function. Commun Biol 2025; 8:506. [PMID: 40155764 PMCID: PMC11953452 DOI: 10.1038/s42003-025-07973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
Melanogenesis is the biological process regulating the synthesis of melanin pigments in melanocytes. Defective melanogenesis is associated with numerous human skin diseases, including, but not limited to, albinism, vitiligo, melasma, and hypo- and hyperpigmentation disorders. Tyrosinase is the rate-limiting enzyme controlling melanogenesis, and hence tremendous efforts have been made to identify potent and safe inhibitors of tyrosinase function. However, despite decades of research, currently there is no effective treatment that inhibits melanogenesis or tyrosinase activity with no adverse side effects. In this study, we report the characterization of the ML233 chemical as a potent inhibitor of tyrosinase activity in vivo and in vitro. We demonstrate that ML233 reduces melanin production in the zebrafish model with no observable significant toxic side effects, and in murine melanoma cells. We also predict that these effects are mediated through direct tyrosinase-ML233 interaction, i.e., binding of the ML233 molecule to the active site of the protein to inhibit its function. Together, our results reveal that ML233 plays roles in both healthy and pathological skin cells via inhibition of melanin production. ML233-mediated tyrosinase inhibition is a potentially safe and effective approach to alleviate the symptoms of melanocyte-associated diseases and thereby substantially improve human health.
Collapse
Affiliation(s)
- Romain Menard
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, ME, USA
| | - Aissette Baanannou
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, ME, USA
| | - Caroline Halluin
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, ME, USA
| | - Dexter Morse
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, ME, USA
| | | | - Joel H Graber
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, ME, USA
| | | | - Romain Madelaine
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, ME, USA.
| |
Collapse
|
2
|
Menard R, Baanannou A, Halluin C, Morse D, Kuhn S, Graber JH, Strickland J, Madelaine R. The small molecule ML233 is a direct inhibitor of tyrosinase function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.16.638443. [PMID: 40027619 PMCID: PMC11870624 DOI: 10.1101/2025.02.16.638443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Melanogenesis is the biological process regulating the synthesis of melanin pigments in melanocytes. Defective melanogenesis is associated with numerous human skin diseases, including, but not limited to, albinism, vitiligo, melasma, and hypo- and hyperpigmentation disorders. Tyrosinase is the rate-limiting enzyme controlling melanogenesis, and hence tremendous efforts have been made to identify potent and safe inhibitors of tyrosinase function. However, despite decades of research, currently there is no effective treatment that inhibits melanogenesis or tyrosinase activity with no adverse side effects. In this study, we report characterization of the ML233 chemical as a potent inhibitor of tyrosinase activity in vivo and in vitro. We demonstrate that ML233 reduces melanin production in the zebrafish model with no observable significant toxic side effects, and in murine melanoma cells. We also predict that these effects are mediated through direct tyrosinase-ML233 interaction, i.e., binding of the ML233 molecule to the active site of the protein to inhibit its function. Together, our results reveal that ML233 plays roles in both healthy and pathological skin cells via inhibition of melanin production. ML233-mediated tyrosinase inhibition is a potentially safe and effective approach to alleviate the symptoms of melanocyte-associated diseases and thereby substantially improve human health.
Collapse
Affiliation(s)
- Romain Menard
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
| | - Aissette Baanannou
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
| | - Caroline Halluin
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
| | - Dexter Morse
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
| | - Sadie Kuhn
- MDI Bioscience, Bar Harbor, Maine, United States of America
| | - Joel H. Graber
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
| | | | - Romain Madelaine
- MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Aging, Bar Harbor, Maine, United States of America
| |
Collapse
|
3
|
López-Gil CI, Téllez-Jurado A, Velasco-Velázquez MA, Anducho-Reyes MA. Identification and Analysis of Anticancer Therapeutic Targets from the Polysaccharide Krestin (PSK) and Polysaccharopeptide (PSP) Using Inverse Docking. Molecules 2024; 29:5390. [PMID: 39598781 PMCID: PMC11596896 DOI: 10.3390/molecules29225390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
The natural compounds PSK and PSP have antitumor and immunostimulant properties. These pharmacological benefits have been documented in vitro and in vivo, although there is no information in silico which describes the action mechanisms at the molecular level. In this study, the inverse docking method was used to identify the interactions of PSK and PSP with two local databases: BPAT with 66 antitumor proteins, and BPSIC with 138 surfaces and intracellular proteins. This led to the identification interactions and similarities of PSK and the AB680 inhibitor in the active site of CD73. It was also found that PSK binds to CD59, interacting with the amino acids APS22 and PHE23, which coincide with the rlLYd4 internalization inhibitor. With the isoform of the K-RAS protein, PSK bonded to the TYR32 amino acid at switch 1, while with BAK it bonded to the region of the α1 helix, while PSP bonded to the activation site and the C-terminal and N-terminal ends of that helix. In Bcl-2, PSK interacted at the binding site of the Venetoclax inhibitor, showing similarities with the amino acids ASP111, VAL133, LEU137, MET115, PHE112, and TYR108, while PSP had similarities with THR132, VAL133, LEU137, GLN118, MET115, APS111, PHE112, and PHE104.
Collapse
Affiliation(s)
- Carlos Iván López-Gil
- Department of Biotechnology, Universidad Politécnica de Pachuca, Zempoala 43830, Mexico; (C.I.L.-G.); (A.T.-J.)
| | - Alejandro Téllez-Jurado
- Department of Biotechnology, Universidad Politécnica de Pachuca, Zempoala 43830, Mexico; (C.I.L.-G.); (A.T.-J.)
| | | | - Miguel Angel Anducho-Reyes
- Department of Biotechnology, Universidad Politécnica de Pachuca, Zempoala 43830, Mexico; (C.I.L.-G.); (A.T.-J.)
| |
Collapse
|
4
|
Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, Elmets C, Raman C, Jetten AM, Indra AK, Slominski AT. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers (Basel) 2024; 16:2262. [PMID: 38927967 PMCID: PMC11201527 DOI: 10.3390/cancers16122262] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems. We provide an overview on vitamin D and its anticancerogenic properties, and report recent advances in this field that can provide solutions for the prevention and/or therapy of melanoma. Experimental papers and clinicopathological studies on the role of vitamin D status and signaling pathways initiated by its active metabolites in melanoma prognosis and therapy are reviewed. We conclude that vitamin D signaling, defined by specific nuclear receptors and selective activation by specific vitamin D hydroxyderivatives, can provide a benefit for new or existing therapeutic approaches. We propose to target vitamin D signaling with the use of computational biology and AI tools to provide a solution to the melanoma problem.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Tae-Kang Kim
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Zorica Janjetovic
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ewa Podgorska
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Katie M. Dixon
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Rebecca S. Mason
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Rahul Sharma
- Department of Biomedical Informatics and Data Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - David K. Crossman
- Department of Genetics and Bioinformatics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anton M. Jetten
- Cell Biology Section, NIEHS—National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrzej T. Slominski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, Veteran Administration Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
5
|
Wu Y, Yin S, Li C, Zhao L, Song M, Yu Y, Tang L, Yang Y. A signature of seven hypoxia-related lncRNAs is a potential biomarker for predicting the prognosis of melanoma. Am J Cancer Res 2024; 14:1712-1729. [PMID: 38726277 PMCID: PMC11076246 DOI: 10.62347/lhkw3124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Melanoma is the most aggressive type of skin cancer and has a high mortality rate once metastasis occurs. Hypoxia is a universal characteristic of the microenvironment of cancer and a driver of melanoma progression. In recent years, long noncoding RNAs (lncRNAs) have attracted widespread attention in oncology research. In this study, screening was performed and revealed seven hypoxia-related lncRNAs AC008687.3, AC009495.1, AC245128.3, AL512363.1, LINC00518, LINC02416 and MCCC1-AS1 as predictive biomarkers. A predictive risk model was constructed via univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses. Patients were grouped according to the model risk score, and Kaplan-Meier analysis was performed to compare survival between groups. Functional and pathway enrichment analyses were performed to compare gene set enrichment between groups. Moreover, a nomogram was constructed with the risk score as a variable. In both the training and validation sets, patients in the low-risk group had better overall survival than did those in the high-risk group (P<0.001). The 3-, 5- and 10-year area under the curve (AUC) values for the nomogram model were 0.821, 0.795 and 0.820, respectively. Analyses of immune checkpoints, immunotherapy response, drug sensitivity, and mutation landscape were also performed. The results suggested that the low-risk group had a better response to immunotherapeutic. In addition, the nomogram can effectively predict the prognosis and immunotherapy response of melanoma patients. The signature of seven hypoxia-related lncRNAs showed great potential value as an immunotherapy response biomarker, and these lncRNAs might be treatment targets for melanoma patients.
Collapse
Affiliation(s)
- Yunyang Wu
- School of Traditional Chinese Medicine, Naval Medical UniversityShanghai, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical UniversityShanghai, China
| | - Shenhui Yin
- National Key Laboratory of Immunity & Inflammation, Naval Medical UniversityShanghai, China
| | - Chunzhen Li
- National Key Laboratory of Immunity & Inflammation, Naval Medical UniversityShanghai, China
| | - Liyuan Zhao
- National Key Laboratory of Immunity & Inflammation, Naval Medical UniversityShanghai, China
| | - Mengqi Song
- National Key Laboratory of Immunity & Inflammation, Naval Medical UniversityShanghai, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical UniversityShanghai, China
| | - Ling Tang
- School of Traditional Chinese Medicine, Naval Medical UniversityShanghai, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical UniversityShanghai, China
| | - Yanlong Yang
- School of Traditional Chinese Medicine, Naval Medical UniversityShanghai, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical UniversityShanghai, China
| |
Collapse
|
6
|
Ma S, Huis in't Veld RV, Hao Y, Gu Z, Rich C, Gelmi MC, Mulder AA, van Veelen PA, Vu TKH, van Hall T, Ossendorp FA, Jager MJ. Tumor Pigmentation Does Not Affect Light-Activated Belzupacap Sarotalocan Treatment but Influences Macrophage Polarization in a Murine Melanoma Model. Invest Ophthalmol Vis Sci 2024; 65:42. [PMID: 38271187 PMCID: PMC10829805 DOI: 10.1167/iovs.65.1.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Purpose Pigmentation in uveal melanoma is associated with increased malignancy and is known as a barrier for photodynamic therapy. We investigated the role of pigmentation in tumor behavior and the response to light-activated Belzupacap sarotalocan (Bel-sar) treatment in a pigmented (wild type) and nonpigmented (tyrosinase knock-out [TYR knock-out]) cell line in vitro and in a murine model. Methods The B16F10 (TYR knock-out) was developed using CRISPR/Cas9. After the treatment with light-activated Bel-sar, cytotoxicity and exposure of damage-associated molecular patterns (DAMPs) were measured by flow cytometry. Treated tumor cells were co-cultured with bone marrow-derived macrophages (BMDMs) and dendritic cells (DCs) to assess phagocytosis and activation. Both cell lines were injected subcutaneously in syngeneic C57BL/6 mice. Results Knock-out of the tyrosinase gene in B16F10 led to loss of pigmentation and immature melanosomes. Pigmented tumors contained more M1 and fewer M2 macrophages compared with amelanotic tumors. Bel-sar treatment induced near complete cell death, accompanied with enhanced exposure of DAMPs in both cell lines, resulting in enhanced phagocytosis of BMDMs and maturation of DCs. Bel-sar treatment induced a shift to M1 macrophages and delayed tumor growth in both in vivo tumor models. Following treatment, especially the pigmented tumors and their draining lymph nodes contained IFN-gamma positive CD8+T cells. Conclusions Pigmentation influenced the type of infiltrating macrophages in the tumor, with more M1 macrophages in pigmented tumors. Belzupacap sarotalocan treatment induced immunogenic cell death and tumor growth delay in pigmented as well as in nonpigmented models and stimulated M1 macrophage influx in both models.
Collapse
Affiliation(s)
- Sen Ma
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ruben V. Huis in't Veld
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Yang Hao
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Zili Gu
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Cadmus Rich
- Aura Biosciences, Inc., Boston, Massachusetts, United States
| | - Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Aat A. Mulder
- Department of Electron Microscopy, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Peter A. van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - T. Khanh H. Vu
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncology Institute, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ferry A. Ossendorp
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
7
|
Yang B, Xie P, Huai H, Li J. Comprehensive analysis of necroptotic patterns and associated immune landscapes in individualized treatment of skin cutaneous melanoma. Sci Rep 2023; 13:21094. [PMID: 38036577 PMCID: PMC10689831 DOI: 10.1038/s41598-023-48374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023] Open
Abstract
Skin cutaneous melanoma (SKCM) constitutes a malignant cutaneous neoplasm characterized by an exceedingly unfavorable prognosis. Over the past years, necroptosis, a manifestation of inflammatory programmed cell demise, has gained substantial traction in its application. However, a conclusive correlation between the expression of necroptosis-related genes (NRGs) and SKCM patient's prognosis remains elusive. In this endeavor, we have undertaken an integrative analysis of genomic data, aiming to provide an exhaustive evaluation of the intricate interplay between melanoma necroptosis and immune-infiltration nuances within the tumor microenvironment. Through meticulous scrutiny, we have endeavored to discern the prognostic potency harbored by individual necroptosis-associated genes. Our efforts culminated in the establishment of a risk stratification framework, allowing for the appraisal of necroptosis irregularities within each afflicted cutaneous melanoma patient. Notably, those SKCM patients classified within the low-risk cohort exhibited a markedly elevated survival quotient, in stark contrast to their high-risk counterparts (p < 0.001). Remarkably, the low-risk cohort not only displayed a more favorable survival rate but also exhibited an enhanced responsiveness to immunotherapeutic interventions, relative to their high-risk counterparts. The outcomes of this investigation proffer insights into a conceivable mechanistic underpinning linking necroptosis-related attributes to the intricacies of the tumor microenvironment. This prompts a conjecture regarding the plausible association between necroptosis characteristics and the broader tumor microenvironmental milieu. However, it is imperative to emphasize that the pursuit of discerning whether the expression profiles of NRG genes can indeed be regarded as viable therapeutic targets necessitates further comprehensive exploration and scrutiny. In conclusion, our study sheds light on the intricate interrelationship between necroptosis-related factors and the tumor microenvironment, potentially opening avenues for therapeutic interventions. However, the prospect of translating these findings into clinical applications mandates rigorous investigation.
Collapse
Affiliation(s)
- Bo Yang
- Department of Ophthalmology, Chengdu Aier Eye Hospital, Chengdu, Sichuan, China
| | - Pan Xie
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hongyu Huai
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Junpeng Li
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
8
|
Ghazi M, Khanna S, Subramaniam Y, Rengaraju J, Sultan F, Gupta I, Sharma K, Chandna S, Gokhale RS, Natarajan V. Sustained pigmentation causes DNA damage and invokes translesion polymerase Polκ for repair in melanocytes. Nucleic Acids Res 2023; 51:10451-10466. [PMID: 37697436 PMCID: PMC10602914 DOI: 10.1093/nar/gkad704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023] Open
Abstract
Melanin protects skin cells from ultraviolet radiation-induced DNA damage. However, intermediates of eumelanin are highly reactive quinones that are potentially genotoxic. In this study, we systematically investigate the effect of sustained elevation of melanogenesis and map the consequent cellular repair response of melanocytes. Pigmentation increases γH2AX foci, DNA abasic sites, causes replication stress and invokes translesion polymerase Polκ in primary human melanocytes, as well as mouse melanoma cells. Confirming the causal link, CRISPR-based genetic ablation of tyrosinase results in depigmented cells with low Polκ levels. During pigmentation, Polκ activates replication stress response and keeps a check on uncontrolled proliferation of cells harboring melanin-damaged DNA. The mutational landscape observed in human melanoma could in part explain the error-prone bypass of DNA lesions by Polκ, whose absence would lead to genome instability. Thereby, translesion polymerase Polκ is a critical response of pigmenting melanocytes to combat melanin-induced DNA alterations. Our study illuminates the dark side of melanin and identifies (eu)melanogenesis as a key missing link between tanning response and mutagenesis, mediated via the necessary evil translesion polymerase, Polκ.
Collapse
Affiliation(s)
- Madeeha Ghazi
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Shivangi Khanna
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Yogaspoorthi Subramaniam
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Jeyashri Rengaraju
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Farina Sultan
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Iti Gupta
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Kanupriya Sharma
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi 110054, India
| | - Sudhir Chandna
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi 110054, India
| | - Rajesh S Gokhale
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vivek T Natarajan
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
9
|
Yunmam S, Lee HR, Hong SM, Kim JY, Kang TH, Lee AY, Jang DS, Kim SY. Aspacochioside C from Asparagus cochinchinensis attenuates eumelanin synthesis via inhibition of TRP2 expression. Sci Rep 2023; 13:14831. [PMID: 37684311 PMCID: PMC10491620 DOI: 10.1038/s41598-023-41248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Aspacochioside C (ACC) is a steroidal saponin isolated from Asparagus cochinchinensis. Steroidal saponins, such as pseudoprotodioscin and dioscin, are known to inhibit melanogenesis, but the role of ACC in melanogenesis remains unknown. Due to the toxic effect of the commonly used skin whitening agents like arbutin, kojic acid and α-lipoic acid alternative plant products are recentlybeen studied for their anti-hypergmentation effect. This study explores the role of ACC in melanogenesis in both in vivo and in vitro models. Here, we for the first time demonstrate that ACC attenuated α-MSH- and UVB-induced eumelanin production by inhibiting tyrosinase-related protein (TRP)-2 protein expression in both murine B16F10 and human melanoma MNT1 cells. However, ACC had no significant effect on pheomelanin concentration. ACC also decreased the pigmentation density in zebrafish embryos, which indicates that ACC targets TRP2 and inhibits eumelanin synthesis. Our results demonstrate that ACC inhibits TRP2, thereby attenuating eumelanin synthesis both in in vitro and in vivo zebrafish model. Therefore, ACC can potentially be used as an anti-melanogenic agent for both aesthetic and pharmaceutical purposes.
Collapse
Affiliation(s)
- Silvia Yunmam
- College of Pharmacy, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
- Institute of Bioresources and Sustainable Development, Imphal, Manipur, 795001, India
| | - Hae Ran Lee
- College of Pharmacy, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Seong Min Hong
- College of Pharmacy, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Ji-Young Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Tong Ho Kang
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Gyeonggi, 17104, Republic of Korea
| | - Ai Young Lee
- Department of Dermatology, Graduate School of Medicine, Dongguk University Seoul, Goyang, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea.
- Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-gu, Incheon, 21565, Republic of Korea.
| |
Collapse
|
10
|
Jędrzejewski T, Pawlikowska M, Sobocińska J, Wrotek S. COVID-19 and Cancer Diseases-The Potential of Coriolus versicolor Mushroom to Combat Global Health Challenges. Int J Mol Sci 2023; 24:ijms24054864. [PMID: 36902290 PMCID: PMC10003402 DOI: 10.3390/ijms24054864] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Coriolus versicolor (CV) is a common species from the Polyporaceae family that has been used in traditional Chinese herbal medicine for over 2000 years. Among well-described and most active compounds identified in CV are polysaccharopeptides, such as polysaccharide peptide (PSP) and Polysaccharide-K (PSK, krestin), which, in some countries, are already used as an adjuvant agent in cancer therapy. In this paper, research advances in the field of anti-cancer and anti-viral action of CV are analyzed. The results of data obtained in in vitro and in vivo studies using animal models as well as in clinical research trials have been discussed. The present update provides a brief overview regarding the immunomodulatory effects of CV. A particular focus has been given to the mechanisms of direct effects of CV on cancer cells and angiogenesis. A potential use of CV compounds in anti-viral treatment, including therapy against COVID-19 disease, has also been analyzed based on the most recent literature. Additionally, the significance of fever in viral infection and cancer has been debated, providing evidence that CV affects this phenomenon.
Collapse
|
11
|
Tabolacci C, De Vita D, Facchiano A, Bozzuto G, Beninati S, Failla CM, Di Martile M, Lintas C, Mischiati C, Stringaro A, Del Bufalo D, Facchiano F. Phytochemicals as Immunomodulatory Agents in Melanoma. Int J Mol Sci 2023; 24:2657. [PMID: 36768978 PMCID: PMC9916941 DOI: 10.3390/ijms24032657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Cutaneous melanoma is an immunogenic highly heterogenic tumor characterized by poor outcomes when it is diagnosed late. Therefore, immunotherapy in combination with other anti-proliferative approaches is among the most effective weapons to control its growth and metastatic dissemination. Recently, a large amount of published reports indicate the interest of researchers and clinicians about plant secondary metabolites as potentially useful therapeutic tools due to their lower presence of side effects coupled with their high potency and efficacy. Published evidence was reported in most cases through in vitro studies but also, with a growing body of evidence, through in vivo investigations. Our aim was, therefore, to review the published studies focused on the most interesting phytochemicals whose immunomodulatory activities and/or mechanisms of actions were demonstrated and applied to melanoma models.
Collapse
Affiliation(s)
- Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Daniela De Vita
- Department of Environmental Biology, University of Rome La Sapienza, 00185 Rome, Italy
| | | | - Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | | | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico, 00128 Rome, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, School of Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
12
|
Zhou BB, Liu D, Qian JC, Tan RX. Vegetable-derived indole enhances the melanoma-treating efficacy of chemotherapeutics. Phytother Res 2022; 36:4278-4292. [PMID: 35883268 DOI: 10.1002/ptr.7565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/08/2022]
Abstract
Food-drug interaction is an important but overlooked issue. For example, little is known concerning whether or not the chemotherapy of cancers is affected by the well-defined dietary chemicals such as 2-(indol-3-ylmethyl)-3,3'-diindolylmethane (LTr1) derived from daily consumed cruciferous vegetables. This work, inspired by the described melanogenesis reduction by certain indoles, presents that LTr1 mitigates the melanogenesis and thus potentiates the in vitro and in vivo anti-melanoma effectiveness of different chemotherapeutic agents including dacarbazine, vemurafenib, and sorafenib. In B16 melanoma cells, LTr1 was shown to inhibit the melanogenesis by acting towards the regulatory (R) subunit of protein kinase A (PRKAR1a) associated with the phosphorylation of cAMP-response element binding protein (CREB). This allows LTr1 to reduce the expression of melanogenesis-related enzymes such as tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), and tyrosinase-related protein 2 (TYRP2). Furthermore, LTr1 was addressed to bind to the aryl hydrocarbon receptor (AhR) and up-regulate the expression of CYP1A1 encoding cytochrome P450 1A1, leading to the escalation of reactive oxygen species (ROS) level. The increased ROS generation promotes the cysteine-to-cystine transformation to inhibit the pheomelanogenesis in melanomas. Collectively, the work identifies LTr1 as a new melanogenesis inhibitor that modulates the PKA/CREB/MITF and AhR/CYP1A1/ROS pathways, thereby providing a new option for (re)sensitizing melanomas to chemotherapeutics.
Collapse
Affiliation(s)
- Bei Bei Zhou
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan Liu
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Cheng Qian
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Hu G, Jiang Y, Ma J, Zhan H. Necroptosis-associated classification combined with tumor microenvironment characteristic analysis of cutaneous melanoma. Sci Rep 2022; 12:8752. [PMID: 35610275 PMCID: PMC9130269 DOI: 10.1038/s41598-022-12676-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Necroptosis is a mode of programmed cell death that overcomes apoptotic resistance. The accurate prognosis of cutaneous melanoma is complicated to predict due to tumor heterogeneity. Necroptosis contributes to the regulation of oncogenesis and cancer immunity. We comprehensively investigated different necroptosis patterns by the non-negative matrix factorization (NMF) clustering analysis and explored the relationships among necroptosis patterns, infiltered immune cells, and tumor microenvironment (TME) scores. Two different necroptosis patterns were identified, and the two clusters could predict prognosis and immune landscape. A four-gene signature was successfully constructed and validated its predictive capability of overall survival (OS) in cutaneous melanoma patients. The prognostic value of the signature was further enhanced by incorporating other independent prognostic factors such as age and clinicopathological stages in a nomogram-based prediction model. Patients with lower risk scores tended to have better OS, higher TME score, immune checkpoints, immunophenoscore (IPS), and lower Tumor Immune Dysfunction and Exclusion (TIDE), which indicated better responses to immunotherapy. In addition, the pigmentation score of the high-risk group was visibly higher than those of the low-risk group. In conclusion, the necroptosis-related signature indicated favorable predictive performance in cutaneous melanoma patients, which provides guidance for immunotherapy and provide novel insights into precision medicine.
Collapse
Affiliation(s)
- Gang Hu
- Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Yan Jiang
- Department of Nosocomial Infection Management, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Jianying Ma
- Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, China
| | - Hui Zhan
- Department of Dermatology, Huangshi Central Hospital (Pu Ai Hospital) of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, No. 141, Tianjin Road, Huangshi, 435000, Hubei, China.
| |
Collapse
|
14
|
Cabaço LC, Tomás A, Pojo M, Barral DC. The Dark Side of Melanin Secretion in Cutaneous Melanoma Aggressiveness. Front Oncol 2022; 12:887366. [PMID: 35619912 PMCID: PMC9128548 DOI: 10.3389/fonc.2022.887366] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Skin cancers are among the most common cancers worldwide and are increasingly prevalent. Cutaneous melanoma (CM) is characterized by the malignant transformation of melanocytes in the epidermis. Although CM shows lower incidence than other skin cancers, it is the most aggressive and responsible for the vast majority of skin cancer-related deaths. Indeed, 75% of patients present with invasive or metastatic tumors, even after surgical excision. In CM, the photoprotective pigment melanin, which is produced by melanocytes, plays a central role in the pathology of the disease. Melanin absorbs ultraviolet radiation and scavenges reactive oxygen/nitrogen species (ROS/RNS) resulting from the radiation exposure. However, the scavenged ROS/RNS modify melanin and lead to the induction of signature DNA damage in CM cells, namely cyclobutane pyrimidine dimers, which are known to promote CM immortalization and carcinogenesis. Despite triggering the malignant transformation of melanocytes and promoting initial tumor growth, the presence of melanin inside CM cells is described to negatively regulate their invasiveness by increasing cell stiffness and reducing elasticity. Emerging evidence also indicates that melanin secreted from CM cells is required for the immunomodulation of tumor microenvironment. Indeed, melanin transforms dermal fibroblasts in cancer-associated fibroblasts, suppresses the immune system and promotes tumor angiogenesis, thus sustaining CM progression and metastasis. Here, we review the current knowledge on the role of melanin secretion in CM aggressiveness and the molecular machinery involved, as well as the impact in tumor microenvironment and immune responses. A better understanding of this role and the molecular players involved could enable the modulation of melanin secretion to become a therapeutic strategy to impair CM invasion and metastasis and, hence, reduce the burden of CM-associated deaths.
Collapse
Affiliation(s)
- Luís C. Cabaço
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Tomás
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Duarte C. Barral
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
15
|
Slominski RM, Sarna T, Płonka PM, Raman C, Brożyna AA, Slominski AT. Melanoma, Melanin, and Melanogenesis: The Yin and Yang Relationship. Front Oncol 2022; 12:842496. [PMID: 35359389 PMCID: PMC8963986 DOI: 10.3389/fonc.2022.842496] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Melanin pigment plays a critical role in the protection against the harmful effects of ultraviolet radiation and other environmental stressors. It is produced by the enzymatic transformation of L-tyrosine to dopaquinone and subsequent chemical and biochemical reactions resulting in the formation of various 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and 5,6-dihydroxyindole (DHI) oligomers-main constituents of eumelanin, and benzothiazine and benzothiazole units of pheomelanin. The biosynthesis of melanin is regulated by sun exposure and by many hormonal factors at the tissue, cellular, and subcellular levels. While the presence of melanin protects against the development of skin cancers including cutaneous melanoma, its presence may be necessary for the malignant transformation of melanocytes. This shows a complex role of melanogenesis in melanoma development defined by chemical properties of melanin and the nature of generating pathways such as eu- and pheomelanogenesis. While eumelanin is believed to provide radioprotection and photoprotection by acting as an efficient antioxidant and sunscreen, pheomelanin, being less photostable, can generate mutagenic environment after exposure to the short-wavelength UVR. Melanogenesis by itself and its highly reactive intermediates show cytotoxic, genotoxic, and mutagenic activities, and it can stimulate glycolysis and hypoxia-inducible factor 1-alpha (HIF-1α) activation, which, combined with their immunosuppressive effects, can lead to melanoma progression and resistance to immunotherapy. On the other hand, melanogenesis-related proteins can be a target for immunotherapy. Interestingly, clinicopathological analyses on advanced melanomas have shown a negative correlation between tumor pigmentation and diseases outcome as defined by overall survival and disease-free time. This indicates a "Yin and Yang" role for melanin and active melanogenesis in melanoma development, progression, and therapy. Furthermore, based on the clinical, experimental data and diverse effects of melanogenesis, we propose that inhibition of melanogenesis in advanced melanotic melanoma represents a realistic adjuvant strategy to enhance immuno-, radio-, and chemotherapy.
Collapse
Affiliation(s)
- Radomir M Slominski
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Przemysław M Płonka
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States.,Pathology Laboratory Service, Veteran Administration Medical Center at Birmingham, Birmingham, AL, United States
| |
Collapse
|
16
|
D'Aguanno S. Special Issue "Precision Oncology in Melanoma Progression". Int J Mol Sci 2021; 22:7723. [PMID: 34299343 PMCID: PMC8306589 DOI: 10.3390/ijms22147723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
Melanoma represents the most malignant type of skin cancer, with increasing incidence worldwide [...].
Collapse
Affiliation(s)
- Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| |
Collapse
|