1
|
Hall L, Hart R. Role of corticosteroids in skin physiology and therapeutic potential of an 11β-HSD1 inhibitor: A review. Int J Dermatol 2024; 63:443-454. [PMID: 38146184 DOI: 10.1111/ijd.16967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/27/2023]
Abstract
Skin is a major site of cortisol bioconversion by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzymes which catalyze intracellular inactive cortisone into physiologically active cortisol. 11β-HSD1 is highly expressed in skin, especially in dermal fibroblasts, epidermal keratinocytes, melanocytes, and hair follicles, and plays important roles in regulating keratinocytes, fibroblast proliferation, and has roles in skin aging. Inhibition of 11β-HSD1 may reverse decreased collagen levels observed in extrinsically and intrinsically aged skin. Inhibitors of 11β-HSD1 may also have the potential to reverse decreased collagen observed in skin atrophy induced by glucocorticoid treatment. This systematic review aimed to summarize the current knowledge of roles for 11β-HSD1 inhibitor in skin physiology and potential for future use in medications. Studies have demonstrated that immediately following experimental insult in an animal model, there is increased expression of 11β-HSD1, and that topical application of an 11β-HSD1 inhibitor increases the rate of healing, increases skin collagen content, increases dermal fibroblasts, and increases dermal thickness. Furthermore, in patients with type 2 diabetes mellitus, 11β-HSD1 inhibitors reduce wound diameter after injury. Further development of 11β-HSD1 inhibitors appears to be a promising area for treating aging skin, aiding wound healing, and mitigating effects of systemic glucocorticoid use. Both topically and orally administered 11β-HSD1 inhibitors appear to be viable avenues for future research.
Collapse
Affiliation(s)
- Larissa Hall
- Faculty of Science and Agriculture, Business and Law, School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Robert Hart
- Faculty of Science and Agriculture, Business and Law, School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
2
|
Oestlund I, Snoep J, Schiffer L, Wabitsch M, Arlt W, Storbeck KH. The glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 catalyzes the activation of testosterone. J Steroid Biochem Mol Biol 2024; 236:106436. [PMID: 38035948 DOI: 10.1016/j.jsbmb.2023.106436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
Testosterone biosynthesis from its precursor androstenedione is thought to be exclusively catalysed by the 17β-hydroxysteroid dehydrogenases-HSD17B3 in testes, and AKR1C3 in the ovary, adrenal and peripheral tissues. Here we show for the first time that the glucocorticoid activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1) can also catalyse the 17β-reduction of androstenedione to testosterone, using a combination of in vitro enzyme kinetic assays, mathematical modelling, and molecular docking analysis. Furthermore, we show that co-expression of HSD11B1 and AKR1C3 increases testosterone production several-fold compared to the rate observed with AKR1C3 only, and that HSD11B1 is likely to contribute significantly to testosterone production in peripheral tissues.
Collapse
Affiliation(s)
- Imken Oestlund
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Jacky Snoep
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa; Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Lina Schiffer
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University Hospital of Ulm, Ulm, Germany
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK; Medical Research Council Laboratory of Medical Sciences, London, UK
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
3
|
Lee YB, Hwang HJ, Kim E, Lim SH, Chung CH, Choi EH. Hyperglycemia-activated 11β-hydroxysteroid dehydrogenase type 1 increases endoplasmic reticulum stress and skin barrier dysfunction. Sci Rep 2023; 13:9206. [PMID: 37280272 PMCID: PMC10244460 DOI: 10.1038/s41598-023-36294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
The diabetes mellitus (DM) skin shows skin barrier dysfunction and skin lipid abnormality, similar to conditions induced by systemic or local glucocorticoid excess and aged skin. Inactive glucocorticoid (GC) is converted into active glucocorticoid by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Hyperglycemia in DM and excessive GC are known to increase endoplasmic reticulum (ER) stress. We hypothesized that hyperglycemia affects systemic GC homeostasis and that the action of skin 11β-HSD1 and GC contributes to increased ER stress and barrier defects in DM. We compared 11β-HSD1, active GC, and ER stress between hyperglycemic and normoglycemic conditions in normal human keratinocytes and db/db mice. 11β-HSD1 and cortisol increased with time in keratinocyte culture under hyperglycemic conditions. 11β-HSD1 siRNA-transfected cells did not induce cortisol elevation in hyperglycemic condition. The production of 11β-HSD1 and cortisol was suppressed in cell culture treated with an ER stress-inhibitor. The 14-week-old db/db mice showed higher stratum corneum (SC) corticosterone, and skin 11β-HSD1 levels than 8-week-old db/db mice. Topical 11β-HSD1 inhibitor application in db/db mice decreased SC corticosterone levels and improved skin barrier function. Hyperglycemia in DM may affect systemic GC homeostasis, activate skin 11β-HSD1, and induce local GC excess, which increases ER stress and adversely affects skin barrier function.
Collapse
Affiliation(s)
- Young Bin Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Republic of Korea
| | - Hyun Jee Hwang
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Republic of Korea
| | - Eunjung Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Republic of Korea
| | - Sung Ha Lim
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Republic of Korea
| | - Choon Hee Chung
- Department of Endocrinology and Metabolism, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Republic of Korea.
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| |
Collapse
|
4
|
Kley M, Moser SO, Winter DV, Odermatt A. In vitro methods to assess 11β-hydroxysteroid dehydrogenase type 1 activity. Methods Enzymol 2023; 689:121-165. [PMID: 37802569 DOI: 10.1016/bs.mie.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) converts inactive 11-keto-glucocorticoids to their active 11β-hydroxylated forms. It also catalyzes the oxoreduction of other endogenous and exogenous substrates. The ubiquitously expressed 11β-HSD1 shows high levels in liver and other metabolically active tissues such as brain and adipose tissue. Pharmacological inhibition of 11β-HSD1 was found to ameliorate adverse metabolic effects of elevated glucocorticoids in rodents and humans, improve wound healing and delay skin aging, and enhance memory and cognition in rodent Alzheimer's disease models. Thus, there is an interest to develop 11β-HSD1 inhibitors for therapeutic purposes. This chapter describes in vitro methods to assess 11β-HSD1 enzyme activity for different purposes, be it in disease models, for the assessment of the kinetics of novel substrates or for the screening and characterization of inhibitors. 11β-HSD1 protein expression and preparations of the different biological samples are discussed first, followed by a description of a well-established and easily adaptable 11β-HSD1 enzyme activity assay. Finally, different readout methods are shortly described. This chapter should provide the reader with a toolbox of methods to assess 11β-HSD1 activity with instructions in the form of a decision tree for the choice and implementation of an appropriate enzyme activity assay.
Collapse
Affiliation(s)
- Manuel Kley
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Seraina O Moser
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Denise V Winter
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Wen S, Elias PM, Wakefield JS, Mauro TM, Man MQ. The link between cutaneous inflammation and cognitive impairment. J Eur Acad Dermatol Venereol 2022; 36:1705-1712. [PMID: 35748522 PMCID: PMC9481668 DOI: 10.1111/jdv.18360] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022]
Abstract
Cognitive impairment is a symptom of neurological disorders, including dementia and Alzheimer's disease; and mild cognitive impairment can be a precursor of both disorders. Aged humans and animal models with other systemic disorders, such as cardiovascular diseases and diabetes, display a higher incidence of cognitive decline. Epidemiological studies have shown that the incidence of cognitive impairment also is higher in subjects with certain inflammatory skin disorders, including psoriasis and chronic eczematous dermatitis. Chronologically aged individuals exhibit increased cutaneous inflammation and elevated circulating cytokine levels, linked to alterations in epidermal function, which itself can induce cutaneous inflammation. Conversely, strategies that improve epidermal function can lower cytokine levels in both the skin and circulation. Thus, it seems likely that epidermal dysfunction could contribute, at least in part, to the development of chronic low-grade inflammation, also termed 'inflammaging', in the elderly. The evidence of cognitive impairment in patients with inflammatory dermatoses suggests a link between cutaneous inflammation and cognitive impairment. Because of the pathogenic role of epidermal dysfunction in ageing-associated cutaneous inflammation, improvements in epidermal function could be an alternative approach for mitigation of the ageing-associated decline in cognitive function.
Collapse
Affiliation(s)
- S Wen
- Dermatology Hospital, Southern Medical University, Guangdong, China
| | - P M Elias
- Dermatology Service, Veterans Affairs Medical Center San Francisco, San Francisco, California, USA
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - J S Wakefield
- Dermatology Service, Veterans Affairs Medical Center San Francisco, San Francisco, California, USA
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - T M Mauro
- Dermatology Service, Veterans Affairs Medical Center San Francisco, San Francisco, California, USA
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - M-Q Man
- Dermatology Hospital, Southern Medical University, Guangdong, China
- Dermatology Service, Veterans Affairs Medical Center San Francisco, San Francisco, California, USA
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
6
|
Na HW, Kim HS, Choi H, Cha N, Seo YR, Hong YD, Kim HJ. Transcriptome Analysis of Particulate Matter 2.5-Induced Abnormal Effects on Human Sebocytes. Int J Mol Sci 2022; 23:ijms231911534. [PMID: 36232834 PMCID: PMC9570376 DOI: 10.3390/ijms231911534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Particulate matter 2.5 (PM2.5), an atmospheric pollutant with an aerodynamic diameter of <2.5 μm, can cause serious human health problems, including skin damage. Since sebocytes are involved in the regulation of skin homeostasis, it is necessary to study the effects of PM2.5 on sebocytes. We examined the role of PM2.5 via the identification of differentially expressed genes, functional enrichment and canonical pathway analysis, upstream regulator analysis, and disease and biological function analysis through mRNA sequencing. Xenobiotic and lipid metabolism, inflammation, oxidative stress, and cell barrier damage-related pathways were enriched; additionally, PM2.5 altered steroid hormone biosynthesis and retinol metabolism-related pathways. Consequently, PM2.5 increased lipid synthesis, lipid peroxidation, inflammatory cytokine expression, and oxidative stress and altered the lipid composition and expression of factors that affect cell barriers. Furthermore, PM2.5 altered the activity of sterol regulatory element binding proteins, mitogen-activated protein kinases, transforming growth factor beta-SMAD, and forkhead box O3-mediated pathways. We also suggest that the alterations in retinol and estrogen metabolism by PM2.5 are related to the damage. These results were validated using the HairSkin® model. Thus, our results provide evidence of the harmful effects of PM2.5 on sebocytes as well as new targets for alleviating the skin damage it causes.
Collapse
Affiliation(s)
- Hye-Won Na
- Research and Innovation Center, AMOREPACIFIC, Yongin 17074, Korea
| | - Hyun Soo Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang 10326, Korea
| | - Hyunjung Choi
- Research and Innovation Center, AMOREPACIFIC, Yongin 17074, Korea
| | - Nari Cha
- Research and Innovation Center, AMOREPACIFIC, Yongin 17074, Korea
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang 10326, Korea
| | - Yong Deog Hong
- Research and Innovation Center, AMOREPACIFIC, Yongin 17074, Korea
| | - Hyoung-June Kim
- Research and Innovation Center, AMOREPACIFIC, Yongin 17074, Korea
- Correspondence: ; Tel.: +82-31-280-5827; Fax: +82-31-899-2595
| |
Collapse
|
7
|
Zouboulis CC, Blume-Peytavi U, Kosmadaki M, Roó E, Vexiau-Robert D, Kerob D, Goldstein SR. Skin, hair and beyond: the impact of menopause. Climacteric 2022; 25:434-442. [PMID: 35377827 DOI: 10.1080/13697137.2022.2050206] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The skin is an endocrine organ and a major target of hormones such as estrogens, androgens and cortisol. Besides vasomotor symptoms (VMS), skin and hair symptoms often receive less attention than other menopausal symptoms despite having a significant negative effect on quality of life. Skin and mucosal menopausal symptoms include dryness and pruritus, thinning and atrophy, wrinkles and sagging, poor wound healing and reduced vascularity, whereas skin premalignant and malignant lesions and skin aging signs are almost exclusively caused by environmental factors, especially solar radiation. Hair menopausal symptoms include reduced hair growth and density on the scalp (diffuse effluvium due to follicular rarefication and/or androgenetic alopecia of female pattern), altered hair quality and structure, and increased unwanted hair growth on facial areas. Hormone replacement therapy (HRT) is not indicated for skin and hair symptoms alone due to the risk-benefit balance, but wider potential benefits of HRT (beyond estrogen's effect on VMS, bone, breast, heart and blood vessels) to include skin, hair and mucosal benefits should be discussed with women so that they will be able to make the best possible informed decisions on how to prevent or manage their menopausal symptoms.
Collapse
Affiliation(s)
- C C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences, Brandenburg, Germany
| | - U Blume-Peytavi
- Department of Dermatology, Venerology and Allergology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | | | - E Roó
- Clider Clínica Dermatológica Roó, Universidad Francisco de Vitoria, Madrid, Spain
| | | | - D Kerob
- Laboratoires Vichy, Levallois-Perret, France
| | - S R Goldstein
- School of Medicine, New York University Grossman, New York, NY, USA
| |
Collapse
|
8
|
Synopsis of Barrier Function of Skin and Oral Mucosa-Volume 1. Int J Mol Sci 2021; 22:ijms22179383. [PMID: 34502292 PMCID: PMC8431000 DOI: 10.3390/ijms22179383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
|