1
|
Bauer N, Mao Q, Vashistha A, Seshadri A, Nancy Du YC, Otterbein L, Tan C, de Caestecker MP, Wang B. Compelling Evidence: A Critical Update on the Therapeutic Potential of Carbon Monoxide. Med Res Rev 2025. [PMID: 40302550 DOI: 10.1002/med.22116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025]
Abstract
Carbon monoxide (CO) is an endogenous signaling molecule. It is produced via heme degradation by heme oxygenase (HMOX), releasing stoichiometric amounts of CO, iron, and biliverdin (then bilirubin). The HMOX-CO axis has long been shown to offer beneficial effects by modulating inflammation, proliferation and cell death as they relate to tissue and organ protection. Recent years have seen a large number of studies examining CO pharmacology, its molecular targets, cellular mechanisms of action, pharmacokinetics, and detection methods using various delivery modalities including inhaled CO gas, CO solutions, and various types of CO donors. Unfortunately, one widely used donor type includes four commercially available carbonyl complexes with metal or borane, CORM-2 (Ru2+), CORM-3 (Ru2+), CORM-A1 (BH3), and CORM-401 (Mn+), which have been shown to have minimal and/or unpredictable CO production and extensive CO-independent chemical reactivity and biological activity. As a result, not all "CO biological activities" in the literature can be attributed to CO. In this review, we summarize key findings based on CO gas and CO in solution for the certainty of the active principal and to avoid data contamination resulting from the confirmed or potential reactivities and activities of the "carrier" portion of CORMs. Along a similar line, we discuss interesting potential research areas of CO in the brain including a newly proposed CO/HMOX/dopamine axis and the role of CO in cognitive stimulation and circadian rhythm. This review is critical for the future development of the CO field by steering clear of complications caused by chemically reactive donor molecules.
Collapse
Affiliation(s)
- Nicola Bauer
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Qiyue Mao
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Aditi Vashistha
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Anupamaa Seshadri
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, New York, USA
| | - Leo Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Chalet Tan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Li D, Chu C, Zhao M, Hou S, Liu C. The Role of Nitric Oxide in the Growth and Development of Schizophyllum commune Under Anaerobic Conditions. Microorganisms 2025; 13:887. [PMID: 40284723 PMCID: PMC12029550 DOI: 10.3390/microorganisms13040887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/30/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Nitric oxide (NO) is a widely recognized signaling molecule found across various organisms, yet its specific effects on fungal growth and development under anaerobic conditions remain underexplored. This study investigates how NO influences the growth and development of Schizophyllum commune 20R-7-F01 under anaerobic environments. The results demonstrated an increase in endogenous NO levels during mycelial growth and basidiospore germination. The addition of cPTIO, a NO scavenger, inhibited mycelial growth, delayed basidiospore germination, and reduced the expression of genes involved in basidiospore germination, highlighting the critical role of NO in fungal growth and development. On the other hand, exogenous NO supplementation accelerated mycelial growth and facilitated the formation of primordia, suggesting NO's potential as a key regulator of fungal development. These findings deepen our understanding of NO's contribution to fungal growth in anaerobic conditions and offer new perspectives on its role as a signaling molecule in the development of S. commune communities, shedding light on the metabolic regulation of anaerobic microorganisms.
Collapse
Affiliation(s)
- Dongxu Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (D.L.); (C.C.); (M.Z.)
| | - Chen Chu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (D.L.); (C.C.); (M.Z.)
| | - Mengshi Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (D.L.); (C.C.); (M.Z.)
| | - Suying Hou
- College of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (D.L.); (C.C.); (M.Z.)
| |
Collapse
|
3
|
Lin H, Liang Y, Zhao W, Cao J, Wang T, Wang C. Reassessing the role of nitric oxide in the pathogenesis of sphincter of Oddi dysfunction. Gastroenterol Rep (Oxf) 2025; 13:goaf001. [PMID: 40046950 PMCID: PMC11882319 DOI: 10.1093/gastro/goaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/25/2024] [Accepted: 09/13/2024] [Indexed: 04/11/2025] Open
Abstract
The pathogenic mechanisms underlying sphincter of Oddi dysfunction (SOD) remain incompletely understood, and it often leads to severe symptoms encompassing nausea, vomiting, and abdominal pain. New evidence now suggests correlations between nitric oxide (NO) and SOD. In this review, we summarized the factors influencing SOD pathogenesis via NO and its derivative, the peroxynitrite anion. NO appears to enhance SOD progression by modulating sphincter of Oddi (SO) contractions via NO-sGC-cGMP signaling or inducing the apoptosis of enteric neurons, interstitial cells of Cajal, smooth muscle cells, and other cellular components via peroxynitrite anion-mediated organelle damage. Thus, a comprehensive understanding of SOD will provide a foundation for the identification of potential drugs and treatment approaches.
Collapse
Affiliation(s)
- Haonan Lin
- Department of General Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, P. R. China
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Yixuan Liang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
- School of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Wangqiang Zhao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
- School of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Junwei Cao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
- School of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Tianqi Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Changmiao Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| |
Collapse
|
4
|
Munteanu C, Galaction AI, Onose G, Turnea M, Rotariu M. Harnessing Gasotransmitters to Combat Age-Related Oxidative Stress in Smooth Muscle and Endothelial Cells. Pharmaceuticals (Basel) 2025; 18:344. [PMID: 40143122 PMCID: PMC11946800 DOI: 10.3390/ph18030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Age-related oxidative stress is a critical factor in vascular dysfunction, contributing to hypertension and atherosclerosis. Smooth muscle cells and endothelial cells are particularly susceptible to oxidative damage, which exacerbates vascular aging through cellular senescence, chronic inflammation, and arterial stiffness. Gasotransmitters-hydrogen sulfide (H2S), nitric oxide (NO), and carbon monoxide (CO)-are emerging as promising therapeutic agents for counteracting these processes. This review synthesizes findings from recent studies focusing on the mechanisms by which H2S, NO, and CO influence vascular smooth muscle and endothelial cell function. Therapeutic strategies involving exogenous gasotransmitter delivery systems and combination therapies were analyzed. H2S enhances mitochondrial bioenergetics, scavenges ROS, and activates antioxidant pathways. NO improves endothelial function, promotes vasodilation, and inhibits platelet aggregation. CO exhibits cytoprotective and anti-inflammatory effects by modulating heme oxygenase activity and ROS production. In preclinical studies, gasotransmitter-releasing molecules (e.g., NaHS, SNAP, CORMs) and targeted delivery systems show significant promise. Synergistic effects with lifestyle modifications and antioxidant therapies further enhance their therapeutic potential. In conclusion, gasotransmitters hold significant promise as therapeutic agents to combat age-related oxidative stress in vascular cells. Their multifaceted mechanisms and innovative delivery approaches make them potential candidates for treating vascular dysfunction and promoting healthy vascular aging. Further research is needed to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Gelu Onose
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| |
Collapse
|
5
|
Mao L, Han X, Wu H, Xu L, Zheng H, Wang F, Wang C, Xu J. An Imidazo-Pyridin-Derived Fluorescent Probe for Monitoring Hydrogen Sulfide in Chinese Medicinal Materials. J Fluoresc 2025:10.1007/s10895-024-04083-z. [PMID: 39903389 DOI: 10.1007/s10895-024-04083-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/05/2024] [Indexed: 02/06/2025]
Abstract
Herein, an imidazo-pyridin-derived fluorescent probe ImPy-HS was developed for monitoring the hydrogen sulfide (H2S) level in the water decoction of Chinese medicinal materials. Under the excitation at 355 nm, ImPy-HS exhibited the obvious fluorescence response at 490 nm. The detection system with ImPy-HS showed the advantages including relatively high sensitivity, high selectivity, and high steadiness. Especially, in the water decoction of Chinese medicinal materials with H2S from both addition and excessive fumigation then reduction, ImPy-HS achieved the monitoring of the H2S level. ImPy-HS also realized the imaging of both exogenous and endogenous H2S as well as the water decoction-treated affection. The information here was meaningful for studying the quality control of Chinese medicinal materials.
Collapse
Affiliation(s)
- Lisi Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Xionggao Han
- Jinhua Institute of Zhejiang University, Jinhua, 321000, China
| | - Honghua Wu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Lingyan Xu
- Department of Rehabilitation Medicine, The Third Hospital of Quzhou, Quzhou, 324000, China
| | - Hui Zheng
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Fengping Wang
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Chaoyue Wang
- Jinhua Advanced Research Institute, Jinhua, 321019, China.
| | - Jingyan Xu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
6
|
Wołowiec Ł, Rogowicz D, Budzyński J, Banach J, Wołowiec A, Kozakiewicz M, Bieliński M, Jaśniak A, Osiak J, Grześk G. Prognostic value of plasma secretoneurin concentration in patients with heart failure with reduced ejection fraction in one-year follow-up. Ann Med 2024; 56:2305309. [PMID: 38261566 PMCID: PMC10810662 DOI: 10.1080/07853890.2024.2305309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND This is the first study to examine the clinical utility of measuring plasma secretoneurin (SN) levels in patients with heart failure with reduced ejection fraction (HFrEF), as a predictor of unplanned hospitalization, and all-cause mortality independently, and as a composite endpoint at one-year follow-up. METHODS The study group includes 124 caucasian patients in New York Heart Association (NYHA) classes II to IV. Plasma SN concentrations were statistically analyzed in relation to sex, age, BMI, etiology of HFrEF, pharmacotherapy, clinical, laboratory and echocardiographic parameters. Samples were collected within 24 h of admission to the hospital. KEY RESULTS In the 12-month follow-up, high SN levels were noted for all three endpoints. CONCLUSIONS SN positively correlates with HF severity measured by NYHA classes and proves to be a useful prognostic parameter in predicting unplanned hospitalizations and all-cause mortality among patients with HFrEF. Patients with high SN levels may benefit from systematic follow-up and may be candidates for more aggressive treatment.
Collapse
Affiliation(s)
- Łukasz Wołowiec
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Daniel Rogowicz
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Jacek Budzyński
- Department of Vascular and Internal Diseases, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Joanna Banach
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Anna Wołowiec
- Department of Geriatrics, Division of Biochemistry and Biogerontology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Mariusz Kozakiewicz
- Department of Geriatrics, Division of Biochemistry and Biogerontology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Maciej Bieliński
- Department of Clinical Neuropsychology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Albert Jaśniak
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Joanna Osiak
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
7
|
Reis J, Spencer PS. An introduction to environmental neurotoxicology: Lessons from a clinical perspective. J Neurol Sci 2024; 463:123108. [PMID: 38991324 DOI: 10.1016/j.jns.2024.123108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
In 1992, the Committee on Neurotoxicology and Models for Assessing Risk of the National Academy of Sciences in Washington DC focused with a scientific perspective on the identification of substances with neurotoxic potential, studies of exposed populations, risk assessment, and biologic markers of disease. This Committee recommended: "all physicians should be trained to take a thorough occupational-exposure history and to be aware of other possible sources of toxic exposure". Although convened after several outbreaks of neurotoxic syndromes, clinical neurological considerations were lacking. After defining keys words, namely Environment, Neurotoxicology and Neurotoxicants, we present some demonstrative cases; e.g., the Epidemic Neuropathy in Cuba, Minamata disease, ALS/PDC on Guam, and the ALS hot spot in the French Alps. Always with a clinical and practical approach, we will then review the milieux that contain and convey potential neurotoxicants, the different exposure routes and the clinical presentations. Drawing lessons from clinical cases, we offer some thoughts concerning the future of Environmental Neurotoxicology (ENT). Pointing notably to the diffuse chemical contamination of ecosystems and living beings, including Homo sapiens, we question the real impact of agents with neurotoxic potential on the human brain, considering the effects, for example, of air pollution, endocrine disruptors and nanoparticles. Concern is expressed over the lack of knowledge of the non-monotonic kinetics of many of these chemicals, the major concern being related to mixtures and low-dose exposures, as well as the delayed appearance in clinical expression of prevalent neurodegenerative diseases.
Collapse
Affiliation(s)
- J Reis
- Department of Neurology, University Hospital of Strasbourg, 67000 Strasbourg, France; Association RISE, 67205 Oberhausbergen, France.
| | - P S Spencer
- Department of Neurology, School of Medicine, and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
8
|
Asadi B, Rakhshan K, Ranjbaran M, Abdi A, Vaziripour M, Seifi B. Carbon monoxide refines ovarian structure changes and attenuates oxidative stress via modulating of heme oxygenase system in a rat model of polycystic ovary syndrome: An experimental study. Int J Reprod Biomed 2024; 22:627-638. [PMID: 39494120 PMCID: PMC11528292 DOI: 10.18502/ijrm.v22i8.17231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/16/2024] [Accepted: 06/22/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Carbon monoxide (CO), influences ovarian function, pregnancy, and placental health. Heme oxygenase (HO)-1 and its products, including CO, exhibit protective and anti-inflammatory properties. OBJECTIVE This study investigates the protective effects of CO released by the carbon dioxide-releasing molecule (CORM)-2 against oxidative stress, functional and structural changes of the ovaries, and HO-1 expressions in female rats suffering from polycystic ovary syndrome (PCOS). MATERIALS AND METHODS In this experimental study, 24 Rattus norvegicus var. Albinus female rats (180-200 gr, 8 wk) were randomly divided into 4 groups (n = 6/each): control, CORM-2 (10 mg/kg), PCOS (induced by 4 mg/kg, intramuscular injection and a single dose of estradiol valerate), PCOS + CORM-2. Ovary histological changes were evaluated by crystal violet staining. Malondialdehyde (MDA) level and superoxide dismutase (SOD) activity of ovarian tissue were assessed using enzyme-linked immunosorbent assay. HO-1 expression was evaluated using Western blot. RESULTS Corpus luteal formation significantly decreased in the PCOS group and was significantly restored with CORM-2 administration compared to the control group (p < 0.05). The expression of ovarian HO-1 protein was reduced in the PCOS group compared to controls (p < 0.01), and administration of CORM in PCOS rats significantly increased its expression (p < 0.0001). In addition, CORM administration markedly reduced ovarian MDA levels and restored SOD activity (p < 0.0001). CONCLUSION CORM-2 administration to PCOS rats created protective effects by reducing oxidative stress (reducing MDA level and restoring SOD activity) and increasing ovarian HO-1 protein.
Collapse
Affiliation(s)
- Bahareh Asadi
- Physiology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Rakhshan
- Physiology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Ranjbaran
- Physiology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Abdi
- Physiology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Vaziripour
- Physiology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Physiology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Calhau IB, Gomes AC, Mendes RF, Almeida Paz FA, Gonçalves IS, Pillinger M. An organic-organometallic CO-releasing material comprising 4,4'-bipyridine and molybdenum subcarbonyl building blocks. Dalton Trans 2024; 53:12783-12796. [PMID: 39023244 DOI: 10.1039/d4dt01303d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Over the past two decades, following the discovery of the important biological roles of carbon monoxide (CO), metal carbonyl complexes have been intensively studied as CO-releasing molecules (CORMs) for therapeutic applications. To improve the properties of "bare" low molecular weight CORMs, attention has been drawn to conjugating CORMs with macromolecular and inorganic scaffolds to produce CO-releasing materials (CORMAs) capable of storing and delivering large payloads of the gasotransmitter. A significant obstacle is to obtain CORMAs that retain the beneficial features of the parent CORMs. In the present work, a crystalline metal-organic framework (MOF) formulated as Mo(CO)3(4,4'-bipyridine)3/2 (Mobpy), with a structure based on Mo(CO)3 metallic nodes and bipyridine linkers, has been prepared in near quantitative yield by a straightforward reflux method, and found to exhibit CO-release properties that mimic those typically observed for molybdenum carbonyl CORMs. Mobpy was characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), FT-IR, FT-Raman and diffuse reflectance (DR) UV-vis spectroscopies, and 13C{1H} cross-polarization (CP) magic-angle spinning (MAS) NMR. The release of CO from Mobpy was studied by the deoxy-myoglobin (deoxy-Mb)/carbonmonoxy-myoglobin (MbCO) UV-vis assay. Mobpy liberates CO upon contact with a physiological buffer in the dark, leading to a maximum released amount of 1.3-1.5 mmol g-1, after 1.5 h at 37 °C, with half-lives of 0.5-1.0 h (time to transfer 0.5 equiv. of CO to Mb). In the solid-state and under open air, Mobpy undergoes complete decarbonylation over a period of 42 days, corresponding to a theoretical CO-release of 7.25 mmol g-1.
Collapse
Affiliation(s)
- Isabel B Calhau
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana C Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ricardo F Mendes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Filipe A Almeida Paz
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Isabel S Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Martyn Pillinger
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
10
|
Herrald AL, Ambrogi EK, Mirica KA. Electrochemical Detection of Gasotransmitters: Status and Roadmap. ACS Sens 2024; 9:1682-1705. [PMID: 38593007 PMCID: PMC11196117 DOI: 10.1021/acssensors.3c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), are a class of gaseous, endogenous signaling molecules that interact with one another in the regulation of critical cardiovascular, immune, and neurological processes. The development of analytical sensing mechanisms for gasotransmitters, especially multianalyte mechanisms, holds vast importance and constitutes a growing area of study. This review provides an overview of electrochemical sensing mechanisms with an emphasis on opportunities in multianalyte sensing. Electrochemical methods demonstrate good sensitivity, adequate selectivity, and the most well-developed potential for the multianalyte detection of gasotransmitters. Future research will likely address challenges with sensor stability and biocompatibility (i.e., sensor lifetime and cytotoxicity), sensor miniaturization, and multianalyte detection in biological settings.
Collapse
Affiliation(s)
- Audrey L Herrald
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Emma K Ambrogi
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| |
Collapse
|
11
|
Bhowmik R, Roy M. Recent advances on the development of NO-releasing molecules (NORMs) for biomedical applications. Eur J Med Chem 2024; 268:116217. [PMID: 38367491 DOI: 10.1016/j.ejmech.2024.116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Nitric oxide (NO) is an important biological messenger as well as a signaling molecule that participates in a broad range of physiological events and therapeutic applications in biological systems. However, due to its very short half-life in physiological conditions, its therapeutic applications are restricted. Efforts have been made to develop an enormous number of NO-releasing molecules (NORMs) and motifs for NO delivery to the target tissues. These NORMs involve organic nitrate, nitrite, nitro compounds, transition metal nitrosyls, and several nanomaterials. The controlled release of NO from these NORMs to the specific site requires several external stimuli like light, sound, pH, heat, enzyme, etc. Herein, we have provided a comprehensive review of the biochemistry of nitric oxide, recent advancements in NO-releasing materials with the appropriate stimuli of NO release, and their biomedical applications in cancer and other disease control.
Collapse
Affiliation(s)
- Rintu Bhowmik
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur, India
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur, India.
| |
Collapse
|
12
|
Grześk-Kaczyńska M, Petrus-Halicka J, Kaczyński S, Bartuzi Z, Ukleja-Sokołowska N. Should Emollients Be Recommended for the Prevention of Atopic Dermatitis?-New Evidence and Current State of Knowledge. J Clin Med 2024; 13:863. [PMID: 38337555 PMCID: PMC10856443 DOI: 10.3390/jcm13030863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Atopic dermatitis (AD) is a chronic, pruritic skin disease with complex pathogenesis, which affects about 43 million children aged 1-4 years. One of the most known methods of alleviating symptoms of AD is emollient treatment, which varies depending on formulation and additional active ingredients. There is some evidence that emollients could be used in AD prevention in high-risk children. MATERIALS AND METHODS A search of the literature from Cochrane Library, PubMed and Medline was conducted between August and September 2023 with the following keywords: "atopic dermatitis", "emollients", and "prevention". Only randomised clinical trials published in the last 5 years were included into the meta-analysis. RESULTS Considering the inclusion criteria only 11 randomized clinical trials were taken into account, and six of them proved lack of effect of emollients in the prevention of atopic dermatitis among neonates from AD risk groups. CONCLUSIONS Emollient treatment has a good safety profile and most of the ingredients used in formulations are nonirritant for sensitive newborn and infant skin. There is some evidence of the positive effects of emollient treatment in prevention of AD in predisposed populations. The relatively high cost of emollient treatment (vs regular infant skin-care routine) would support the necessity for further evaluation of their effectiveness in nonpredisposed populations.
Collapse
Affiliation(s)
- Magdalena Grześk-Kaczyńska
- Department and Clinic of Allergy, Clinical Immunology and Internal Diseases, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.P.-H.); (N.U.-S.)
| | - Justyna Petrus-Halicka
- Department and Clinic of Allergy, Clinical Immunology and Internal Diseases, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.P.-H.); (N.U.-S.)
| | - Szymon Kaczyński
- Department of Obstetrics, Gynecology and Gynecological Oncology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Zbigniew Bartuzi
- Department and Clinic of Allergy, Clinical Immunology and Internal Diseases, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.P.-H.); (N.U.-S.)
| | - Natalia Ukleja-Sokołowska
- Department and Clinic of Allergy, Clinical Immunology and Internal Diseases, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.P.-H.); (N.U.-S.)
| |
Collapse
|
13
|
Zizi V, Becatti M, Bani D, Nistri S. Serelaxin Protects H9c2 Cardiac Myoblasts against Hypoxia and Reoxygenation-Induced Damage through Activation of AMP Kinase/Sirtuin1: Further Insight into the Molecular Mechanisms of the Cardioprotection of This Hormone. Antioxidants (Basel) 2024; 13:163. [PMID: 38397761 PMCID: PMC10886064 DOI: 10.3390/antiox13020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Serelaxin (RLX), namely the human recombinant Relaxin-2 hormone, protects the heart from ischemia/reperfusion (I/R)-induced damage due to its anti-inflammatory, anti-apoptotic and antioxidant properties. RLX acts by binding to its specific RXFP1 receptor whereby it regulates multiple transduction pathways. In this in vitro study, we offer the first evidence for the involvement of the AMP kinase/Sirtuin1 (AMPK/SIRT1) pathway in the protection by RLX against hypoxia/reoxygenation (H/R)-induced damage in H9c2 cells. The treatment of the H/R-exposed cells with RLX (17 nmol L-1) enhanced SIRT1 expression and activity. The inhibition of SIRT1 signaling with EX527 (10 µmol L-1) reduced the beneficial effect of the hormone on mitochondrial efficiency and cell apoptosis. Moreover, RLX upregulated the AMPK pathway, as shown by the increase in the expression of phospho-AMPK-activated protein. Finally, AMPK pathway inhibition by Compound C (10 and 20 μmol L-1) abrogated the increase in SIRT1 expression induced by RLX, thus suggesting the involvement of the AMPK pathway in this effect of RLX. These results strengthen the concept that RLX exerts its cardioprotective effects against H/R-induced injury through multiple pathways which also include AMPK/SIRT1. These new findings support the use of RLX or RLX-derived molecules as a promising therapeutic for those diseases in which I/R and oxidative stress play a pathogenic role.
Collapse
Affiliation(s)
- Virginia Zizi
- Department of Experimental & Clinical Medicine, Research Unit of Histology & Embryology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy; (V.Z.); (D.B.)
| | - Matteo Becatti
- Department of Experimental & Clinical Biomedical Sciences “Mario Serio”, Section of Biochemical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Florence, Italy;
| | - Daniele Bani
- Department of Experimental & Clinical Medicine, Research Unit of Histology & Embryology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy; (V.Z.); (D.B.)
| | - Silvia Nistri
- Department of Experimental & Clinical Medicine, Research Unit of Histology & Embryology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy; (V.Z.); (D.B.)
| |
Collapse
|
14
|
Jiang S, Chen H, Shen P, Zhou Y, Li Q, Zhang J, Chen Y. Gasotransmitter Research Advances in Respiratory Diseases. Antioxid Redox Signal 2024; 40:168-185. [PMID: 37917094 DOI: 10.1089/ars.2023.0410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Gasotransmitters are small gas molecules that are endogenously generated and have well-defined physiological functions. The most well-defined gasotransmitters currently are nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), while other potent gasotransmitters include ammonia, methane, cyanide, hydrogen gas, and sulfur dioxide. Gasotransmitters play a role in various respiratory diseases such as asthma, chronic obstructive pulmonary disease, obstructive sleep apnea, lung infection, bronchiectasis, cystic fibrosis, primary ciliary dyskinesia, and COVID-19. Recent Advances: Gasotransmitters can act as biomarkers that facilitate disease diagnosis, indicate disease severity, predict disease exacerbation, and evaluate disease outcomes. They also have cell-protective properties, and many studies have been conducted to explore their pharmacological applications. Innovative drug donors and drug delivery methods have been invented to amplify their therapeutic effects. Critical Issues: In this article, we briefly reviewed the physiological and pathophysiological functions of some gasotransmitters in the respiratory system, the progress in detecting exhaled gasotransmitters, as well as innovative drugs derived from these molecules. Future Directions: The current challenge for gasotransmitter research includes further exploring their physiological and pathological functions, clarifying their complicated interactions, exploring suitable drug donors and delivery devices, and characterizing new members of gasotransmitters. Antioxid. Redox Signal. 40, 168-185.
Collapse
Affiliation(s)
- Simin Jiang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Haijie Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Pu Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yumou Zhou
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Qiaoyu Li
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
15
|
Singh S, Ahuja A, Pathak S. Potential Role of Oxidative Stress in the Pathophysiology of Neurodegenerative Disorders. Comb Chem High Throughput Screen 2024; 27:2043-2061. [PMID: 38243956 DOI: 10.2174/0113862073280680240101065732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024]
Abstract
Neurodegeneration causes premature death in the peripheral and central nervous system. Neurodegeneration leads to the accumulation of oxidative stress, inflammatory responses, and the generation of free radicals responsible for nervous disorders like amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disorders. Therefore, focus must be diverted towards treating and managing these disorders, as it is very challenging. Furthermore, effective therapies are also lacking, so the growing interest of the global market must be inclined towards developing newer therapeutic approaches that can intercept the progression of neurodegeneration. Emerging evidences of research findings suggest that antioxidant therapy has significant potential in modulating disease phenotypes. This makes them promising candidates for further investigation. This review focuses on the role of oxidative stress and reactive oxygen species in the pathological mechanisms of various neurodegenerative diseases, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disorders and their neuroprotection. Additionally, it highlights the potential of antioxidant-based therapeutics in mitigating disease severity in humans and improving patient compliance. Ongoing extensive global research further sheds light on exploring new therapeutic targets for a deeper understanding of disease mechanisms in the field of medicine and biology targeting neurogenerative disorders.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Shilpi Pathak
- Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| |
Collapse
|
16
|
Yin Q, Zheng X, Song Y, Wu L, Li L, Tong R, Han L, Bian Y. Decoding signaling mechanisms: unraveling the targets of guanylate cyclase agonists in cardiovascular and digestive diseases. Front Pharmacol 2023; 14:1272073. [PMID: 38186653 PMCID: PMC10771398 DOI: 10.3389/fphar.2023.1272073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Soluble guanylate cyclase agonists and guanylate cyclase C agonists are two popular drugs for diseases of the cardiovascular system and digestive systems. The common denominator in these conditions is the potential therapeutic target of guanylate cyclase. Thanks to in-depth explorations of their underlying signaling mechanisms, the targets of these drugs are becoming clearer. This review explains the recent research progress regarding potential drugs in this class by introducing representative drugs and current findings on them.
Collapse
Affiliation(s)
- Qinan Yin
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingyue Zheng
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yujie Song
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liuyun Wu
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lian Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lizhu Han
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Oza PP, Kashfi K. The Triple Crown: NO, CO, and H 2S in cancer cell biology. Pharmacol Ther 2023; 249:108502. [PMID: 37517510 PMCID: PMC10529678 DOI: 10.1016/j.pharmthera.2023.108502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are three endogenously produced gases with important functions in the vasculature, immune defense, and inflammation. It is increasingly apparent that, far from working in isolation, these three exert many effects by modulating each other's activity. Each gas is produced by three enzymes, which have some tissue specificities and can also be non-enzymatically produced by redox reactions of various substrates. Both NO and CO share similar properties, such as activating soluble guanylate cyclase (sGC) to increase cyclic guanosine monophosphate (cGMP) levels. At the same time, H2S both inhibits phosphodiesterase 5A (PDE5A), an enzyme that metabolizes sGC and exerts redox regulation on sGC. The role of NO, CO, and H2S in the setting of cancer has been quite perplexing, as there is evidence for both tumor-promoting and pro-inflammatory effects and anti-tumor and anti-inflammatory activities. Each gasotransmitter has been found to have dual effects on different aspects of cancer biology, including cancer cell proliferation and apoptosis, invasion and metastasis, angiogenesis, and immunomodulation. These seemingly contradictory actions may relate to each gas having a dual effect dependent on its local flux. In this review, we discuss the major roles of NO, CO, and H2S in the context of cancer, with an effort to highlight the dual nature of each gas in different events occurring during cancer progression.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York 10091, USA.
| |
Collapse
|
18
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
19
|
Wołowiec Ł, Mędlewska M, Osiak J, Wołowiec A, Grześk E, Jaśniak A, Grześk G. MicroRNA and lncRNA as the Future of Pulmonary Arterial Hypertension Treatment. Int J Mol Sci 2023; 24:9735. [PMID: 37298685 PMCID: PMC10253568 DOI: 10.3390/ijms24119735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Pulmonary hypertension (PH) is characterized by a progressive increase in pulmonary arterial pressure and pulmonary vascular resistance. In a short time, it leads to right ventricular failure and, consequently, to death. The most common causes of PH include left heart disease and lung disease. Despite the significant development of medicine and related sciences observed in recent years, we still suffer from a lack of effective treatment that would significantly influence the prognosis and prolong life expectancy of patients with PH. One type of PH is pulmonary arterial hypertension (PAH). The pathophysiology of PAH is based on increased cell proliferation and resistance to apoptosis in the small pulmonary arteries, leading to pulmonary vascular remodeling. However, studies conducted in recent years have shown that epigenetic changes may also lie behind the pathogenesis of PAH. Epigenetics is the study of changes in gene expression that are not related to changes in the sequence of nucleotides in DNA. In addition to DNA methylation or histone modification, epigenetic research focuses on non-coding RNAs, which include microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Preliminary research results give hope that targeting epigenetic regulators may lead to new, potential therapeutic possibilities in the treatment of PAH.
Collapse
Affiliation(s)
- Łukasz Wołowiec
- Department of Cardiology and Clinical Pharmacology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland; (Ł.W.)
| | - Martyna Mędlewska
- Department of Cardiology and Clinical Pharmacology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland; (Ł.W.)
| | - Joanna Osiak
- Department of Cardiology and Clinical Pharmacology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland; (Ł.W.)
| | - Anna Wołowiec
- Department of Geriatrics, Division of Biochemistry and Biogerontology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | - Elżbieta Grześk
- Department of Pediatrics, Hematology and Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | - Albert Jaśniak
- Department of Cardiology and Clinical Pharmacology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland; (Ł.W.)
| | - Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland; (Ł.W.)
| |
Collapse
|
20
|
Inclisiran-Safety and Effectiveness of Small Interfering RNA in Inhibition of PCSK-9. Pharmaceutics 2023; 15:pharmaceutics15020323. [PMID: 36839644 PMCID: PMC9965021 DOI: 10.3390/pharmaceutics15020323] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Dyslipidemia is listed among important cardiovascular disease risk factors. Treating lipid disorders is difficult, and achieving desirable levels of LDL-cholesterol (LDL-C) is essential in both the secondary and primary prevention of cardiovascular disease. For many years, statins became the basis of lipid-lowering therapy. Nevertheless, these drugs are often insufficient due to their side effects and restrictive criteria for achieving the recommended LDL-C values. Even the addition of other drugs, i.e., ezetimibe, does not help one achieve the target LDL-C. The discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9) discovery has triggered intensive research on a new class of protein-based drugs. The protein PCSK9 is located mainly in hepatocytes and is involved in the metabolism of LDL-C. In the beginning, antibodies against the PCSK9 protein, such as evolocumab, were invented. The next step was inclisiran. Inclisiran is a small interfering RNA (siRNA) that inhibits the expression of PCSK9 by binding specifically to the mRNA precursor of PCSK9 protein and causing its degradation. It has been noticed in recent years that siRNA is a powerful tool for biomedical research and drug discovery. The purpose of this work is to summarize the molecular mechanisms, pharmacokinetics, pharmacodynamics of inclisiran and to review the latest research.
Collapse
|
21
|
Grześk G, Witczyńska A, Węglarz M, Wołowiec Ł, Nowaczyk J, Grześk E, Nowaczyk A. Soluble Guanylyl Cyclase Activators-Promising Therapeutic Option in the Pharmacotherapy of Heart Failure and Pulmonary Hypertension. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020861. [PMID: 36677920 PMCID: PMC9862932 DOI: 10.3390/molecules28020861] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Endogenous nitric oxide (NO)-dependent vascular relaxation plays a leading role in the homeostasis of the cardiovascular, pulmonary, and vascular systems and organs, such as the kidneys, brain, and liver. The mechanism of the intracellular action of NO in blood vessels involves the stimulation of the activity of the soluble cytosolic form of guanylyl cyclase (soluble guanylyl cyclase, sGC), increasing the level of cyclic 3'-5'-guanosine monophosphate (cGMP) in smooth muscle and subsequent vasodilation. In recent years, a new group of drugs, soluble guanylyl cyclase stimulators, has found its way into clinical practice. Based on the CHEST-1 and PATENT-1 trials, riociguat was introduced into clinical practice for treating chronic thromboembolic pulmonary hypertension (CTEPH). In January 2021, the FDA approved the use of another drug, vericiguat, for the treatment of heart failure.
Collapse
Affiliation(s)
- Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Colle-gium Medicum in Bydgoszcz, Nicolaus Copernicus University, 75 Ujejskiego St., 85-168 Bydgoszcz, Poland
| | - Adrianna Witczyńska
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Byd-goszcz, Nicolaus Copernicus University in Toruń, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
- Correspondence:
| | - Magdalena Węglarz
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Colle-gium Medicum in Bydgoszcz, Nicolaus Copernicus University, 75 Ujejskiego St., 85-168 Bydgoszcz, Poland
| | - Łukasz Wołowiec
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Colle-gium Medicum in Bydgoszcz, Nicolaus Copernicus University, 75 Ujejskiego St., 85-168 Bydgoszcz, Poland
| | - Jacek Nowaczyk
- Physical Chemistry and Chemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina St., 87-100 Toruń, Poland
| | - Elżbieta Grześk
- Department of Pediatrics, Hematology and Oncology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 9 Skłodowskiej-Curie St., 85-094 Bydgoszcz, Poland
| | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Byd-goszcz, Nicolaus Copernicus University in Toruń, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
| |
Collapse
|
22
|
Wołowiec Ł, Grześk G, Osiak J, Wijata A, Mędlewska M, Gaborek P, Banach J, Wołowiec A, Głowacka M. Beta-blockers in cardiac arrhythmias-Clinical pharmacologist's point of view. Front Pharmacol 2023; 13:1043714. [PMID: 36699057 PMCID: PMC9868422 DOI: 10.3389/fphar.2022.1043714] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023] Open
Abstract
β-blockers is a vast group of antiarrhythmic drugs which differ in their pharmacokinetic and chemical properties. Some of them block β-adrenergic receptors selectively while the others work non-selectively. Consequently, they reduce the influence of the sympathetic nervous system on the heart, acting negatively inotropic, chronotropic, bathmotropic and dromotropic. Although they have been present in medicine since the beginning of the 1960s, they still play a crucial role in the treatment of cardiac arrhythmias. They are also first-line group of drugs used to control the ventricular rate in patients with the most common arrhythmia-atrial fibrillation. Previous reports indicate that infection with SARS-CoV-2 virus may constitute an additional risk factor for arrhythmia. Due to the aging of the population in developed countries and the increase in the number of patients with cardiac burden, the number of people suffering from cardiac arrhythmias will increase in the upcoming years. As a result the role of above-mentioned beta-blockers will remain significant. Particularly noteworthy is propranolol-the oldest beta adrenergic antagonist, which in recent years has found additional applications due to its unique properties. In this article, we reviewed the accessible literature and summarized the current guidelines on the use of beta-blockers in the treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Łukasz Wołowiec
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Joanna Osiak
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Aleksandra Wijata
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Martyna Mędlewska
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Patryk Gaborek
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Joanna Banach
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Anna Wołowiec
- Department of Geriatrics, Division of Biochemistry and Biogerontology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | | |
Collapse
|
23
|
Neuronal Nitric Oxide Synthase as a Shared Target for the Effects of Adiponectin and Resistin on the Mechanical Responses of the Mouse Gastric Fundus. Int J Mol Sci 2022; 23:ijms232416113. [PMID: 36555750 PMCID: PMC9781802 DOI: 10.3390/ijms232416113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
It has been reported that adiponectin (ADPN) and resistin are co-secreted by white mouse adipocytes and exert similar inhibitory effects in the mouse gastric fundus, in which resistin was observed to increase neuronal nitric oxide synthase (nNOS) expression. On these grounds, the present work aimed to investigate whether the effects of the two adipokines on the neurally-induced relaxant responses potentiate each other and whether there is a possible correlation with changes in nNOS expression in preparations from the mouse gastric fundus. In carbachol (CCh)-precontracted strips, electrical field stimulation elicited nitrergic relaxant responses, whose amplitude was increased by ADPN or resistin, but no additional enhancements were observed in their concomitant presence. Western blot and immunofluorescence analyses revealed that ADPN, like resistin, was able to up-regulate nNOS expression and to increase the percentage of nNOS-positive neurons in the myenteric plexus: co-treatment with the two adipokines did not induce additional changes. The results indicate that the two adipokines modulate nitrergic neurotransmission, and both do so by up-regulating nNOS expression. Therefore, nNOS appears to be a shared target for the two adipokines' effects, which, rather than mutually reinforcing each other, may represent a dual physiological control mechanism to guarantee gastric fundus relaxation.
Collapse
|
24
|
Grześk G, Dorota B, Wołowiec Ł, Wołowiec A, Osiak J, Kozakiewicz M, Banach J. Safety of PCSK9 inhibitors. Biomed Pharmacother 2022; 156:113957. [DOI: 10.1016/j.biopha.2022.113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
25
|
Fijałkowski Ł, Skubiszewska M, Grześk G, Koech FK, Nowaczyk A. Acetylsalicylic Acid-Primus Inter Pares in Pharmacology. Molecules 2022; 27:8412. [PMID: 36500502 PMCID: PMC9738180 DOI: 10.3390/molecules27238412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Acetylsalicylic acid (ASA) is one of the first drugs to be obtained by synthesis while being the most used. It has experienced the longest lasting commercial success and is considered the most popular drug of the modern era. ASA, originally used as an anti-inflammatory medication, nowadays is predominantly used as an antiplatelet agent for prophylaxis in cardiac patients. Many studies show that the benefits of using ASA far outweigh the potential risk of side effects. With particular emphasis on the possibility of ASA repositioning for new therapies, extending the indications for use beyond the diseases from the spectrum of atherosclerotic diseases, such as cancer, requires shifting the benefit-risk ratio, although very good, even more towards safety. Interesting activities consisting not only of changing the formulation but also modifying the drug molecule seem to be an important goal of the 21st century. ASA has become a milestone in two important fields: pharmacy and medicine. For a pharmacist, ASA is a long-used drug for which individual indications are practically maintained. For a doctor, acetylsalicylic acid is primarily an antiplatelet drug that saves millions of lives of patients with coronary heart disease or after a stroke. These facts do not exempt us from improving therapeutic methods based on ASA, the main goal of which is to reduce the risk of side effects, as well as to extend effectiveness. Modified acetylsalicylic acid molecules already seem to be a promising therapeutic option.
Collapse
Affiliation(s)
- Łukasz Fijałkowski
- Department of Pharmacometrics and Molecular Modeling, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
| | - Magdalena Skubiszewska
- Department of Pharmacometrics and Molecular Modeling, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
| | - Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 75 Ujejskiego St., 85-168 Bydgoszcz, Poland
| | | | - Alicja Nowaczyk
- Department of Pharmacometrics and Molecular Modeling, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
| |
Collapse
|
26
|
Tropea MR, Gulisano W, Vacanti V, Arancio O, Puzzo D, Palmeri A. Nitric oxide/cGMP/CREB pathway and amyloid-beta crosstalk: From physiology to Alzheimer's disease. Free Radic Biol Med 2022; 193:657-668. [PMID: 36400326 DOI: 10.1016/j.freeradbiomed.2022.11.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/30/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
The nitric oxide (NO)/cGMP pathway has been extensively studied for its pivotal role in synaptic plasticity and memory processes, resulting in an increase of cAMP response element-binding (CREB) phosphorylation, and consequent synthesis of plasticity-related proteins. The NO/cGMP/CREB signaling is downregulated during aging and neurodegenerative disorders and is affected by Amyloid-β peptide (Aβ) and tau protein, whose increase and deposition is considered the key pathogenic event of Alzheimer's disease (AD). On the other hand, in physiological conditions, the crosstalk between the NO/cGMP/PKG/CREB pathway and Aβ ensures long-term potentiation and memory formation. This review summarizes the current knowledge on the interaction between the NO/cGMP/PKG/CREB pathway and Aβ in the healthy and diseased brain, offering a new perspective to shed light on AD pathophysiology. We will focus on the synaptic mechanisms underlying Aβ physiological interplay with cGMP pathway and how this balance is corrupted in AD, as high levels of Aβ interfere with NO production and cGMP molecular signaling leading to cognitive impairment. Finally, we will discuss results from preclinical and clinical studies proposing the increase of cGMP signaling as a therapeutic strategy in the treatment of AD.
Collapse
Affiliation(s)
- Maria Rosaria Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Valeria Vacanti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, USA; Department of Pathology & Cell Biology and Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy; Oasi Research Institute-IRCCS, Troina (EN), 94018, Italy.
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| |
Collapse
|
27
|
Kashfi K, Patel KK. Carbon monoxide and its role in human physiology: A brief historical perspective. Biochem Pharmacol 2022; 204:115230. [PMID: 36027927 DOI: 10.1016/j.bcp.2022.115230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
Abstract
Carbon monoxide is a molecule with notoriety in modern culture and extensive documentation regarding its toxic physiological effects, long predating its formal discovery in the 18th century. Upon its discovery as a molecule in 1772, subsequent investigations into its properties have provided mechanisms describing its toxicity and insights into its function as an endogenously produced molecule and as a therapeutic agent. This brief review aims to provide a historical perspective on this molecule and recognize research regarding its physiological functions and therapeutic applications, often overshadowed by its reputation as a lethal substance. Historicizing science is an acknowledgment of the pioneers and helps us better conceptualize the issues.
Collapse
Affiliation(s)
- Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, USA.
| | - Kush K Patel
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| |
Collapse
|
28
|
The importance of pharmacokinetics, pharmacodynamic and repetitive use of levosimendan. Biomed Pharmacother 2022; 153:113391. [DOI: 10.1016/j.biopha.2022.113391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
|
29
|
Teleanu RI, Niculescu AG, Roza E, Vladâcenco O, Grumezescu AM, Teleanu DM. Neurotransmitters-Key Factors in Neurological and Neurodegenerative Disorders of the Central Nervous System. Int J Mol Sci 2022; 23:5954. [PMID: 35682631 PMCID: PMC9180936 DOI: 10.3390/ijms23115954] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Neurotransmitters are molecules that amplify, transmit, and convert signals in cells, having an essential role in information transmission throughout the nervous system. Hundreds of such chemicals have been discovered in the last century, continuing to be identified and studied concerning their action on brain health. These substances have been observed to influence numerous functions, including emotions, thoughts, memories, learning, and movements. Thus, disturbances in neurotransmitters' homeostasis started being correlated with a plethora of neurological and neurodegenerative disorders. In this respect, the present paper aims to describe the most important neurotransmitters, broadly classified into canonical (e.g., amino acids, monoamines, acetylcholine, purines, soluble gases, neuropeptides) and noncanonical neurotransmitters (e.g., exosomes, steroids, D-aspartic acid), and explain their link with some of the most relevant neurological conditions. Moreover, a brief overview of the recently developed neurotransmitters' detection methods is offered, followed by several considerations on the modulation of these substances towards restoring homeostasis.
Collapse
Affiliation(s)
- Raluca Ioana Teleanu
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Eugenia Roza
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Oana Vladâcenco
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | | |
Collapse
|
30
|
Zhu Z, Chambers S, Zeng Y, Bhatia M. Gases in Sepsis: Novel Mediators and Therapeutic Targets. Int J Mol Sci 2022; 23:3669. [PMID: 35409029 PMCID: PMC8998565 DOI: 10.3390/ijms23073669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis, a potentially lethal condition resulting from failure to control the initial infection, is associated with a dysregulated host defense response to pathogens and their toxins. Sepsis remains a leading cause of morbidity, mortality and disability worldwide. The pathophysiology of sepsis is very complicated and is not yet fully understood. Worse still, the development of effective therapeutic agents is still an unmet need and a great challenge. Gases, including nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S), are small-molecule biological mediators that are endogenously produced, mainly by enzyme-catalyzed reactions. Accumulating evidence suggests that these gaseous mediators are widely involved in the pathophysiology of sepsis. Many sepsis-associated alterations, such as the elimination of invasive pathogens, the resolution of disorganized inflammation and the preservation of the function of multiple organs and systems, are shaped by them. Increasing attention has been paid to developing therapeutic approaches targeting these molecules for sepsis/septic shock, taking advantage of the multiple actions played by NO, CO and H2S. Several preliminary studies have identified promising therapeutic strategies for gaseous-mediator-based treatments for sepsis. In this review article, we summarize the state-of-the-art knowledge on the pathophysiology of sepsis; the metabolism and physiological function of NO, CO and H2S; the crosstalk among these gaseous mediators; and their crucial effects on the development and progression of sepsis. In addition, we also briefly discuss the prospect of developing therapeutic interventions targeting these gaseous mediators for sepsis.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Stephen Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| | - Yiming Zeng
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| |
Collapse
|
31
|
The Role of Serotonin Neurotransmission in Gastrointestinal Tract and Pharmacotherapy. Molecules 2022; 27:molecules27051680. [PMID: 35268781 PMCID: PMC8911970 DOI: 10.3390/molecules27051680] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
5-Hydroxytryptamine (5-HT, serotonin) is a neurotransmitter in both the central nervous system and peripheral structures, acting also as a hormone in platelets. Although its concentration in the gut covers >90% of all organism resources, serotonin is mainly known as a neurotransmitter that takes part in the pathology of mental diseases. Serotonin modulates not only CNS neurons, but also pain transmission and platelet aggregation. In the periphery, 5-HT influences muscle motility in the gut, bronchi, uterus, and vessels directly and through neurons. Serotonin synthesis starts from hydroxylation of orally delivered tryptophan, followed by decarboxylation. Serotonin acts via numerous types of receptors and clinically plays a role in several neural, mental, and other chronic disorders, such as migraine, carcinoid syndrome, and some dysfunctions of the alimentary system. 5-HT acts as a paracrine hormone and growth factor. 5-HT receptors in both the brain and gut are targets for drugs modifying serotonin neurotransmission. The aim of the present article is to review the 5-HT receptors in the gastrointestinal (GI) tract to determine the role of serotonin in GI physiology and pathology, including known GI diseases and the role of serotonin in GI pharmacotherapy.
Collapse
|
32
|
Chen J, Xie P, Huang Y, Gao H. Complex Interplay of Heme-Copper Oxidases with Nitrite and Nitric Oxide. Int J Mol Sci 2022; 23:979. [PMID: 35055165 PMCID: PMC8780969 DOI: 10.3390/ijms23020979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 12/19/2022] Open
Abstract
Nitrite and nitric oxide (NO), two active and critical nitrogen oxides linking nitrate to dinitrogen gas in the broad nitrogen biogeochemical cycle, are capable of interacting with redox-sensitive proteins. The interactions of both with heme-copper oxidases (HCOs) serve as the foundation not only for the enzymatic interconversion of nitrogen oxides but also for the inhibitory activity. From extensive studies, we now know that NO interacts with HCOs in a rapid and reversible manner, either competing with oxygen or not. During interconversion, a partially reduced heme/copper center reduces the nitrite ion, producing NO with the heme serving as the reductant and the cupric ion providing a Lewis acid interaction with nitrite. The interaction may lead to the formation of either a relatively stable nitrosyl-derivative of the enzyme reduced or a more labile nitrite-derivative of the enzyme oxidized through two different pathways, resulting in enzyme inhibition. Although nitrite and NO show similar biochemical properties, a growing body of evidence suggests that they are largely treated as distinct molecules by bacterial cells. NO seemingly interacts with all hemoproteins indiscriminately, whereas nitrite shows high specificity to HCOs. Moreover, as biologically active molecules and signal molecules, nitrite and NO directly affect the activity of different enzymes and are perceived by completely different sensing systems, respectively, through which they are linked to different biological processes. Further attempts to reconcile this apparent contradiction could open up possible avenues for the application of these nitrogen oxides in a variety of fields, the pharmaceutical industry in particular.
Collapse
Affiliation(s)
| | | | | | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.C.); (P.X.); (Y.H.)
| |
Collapse
|
33
|
Borisov VB, Forte E. Impact of Hydrogen Sulfide on Mitochondrial and Bacterial Bioenergetics. Int J Mol Sci 2021; 22:12688. [PMID: 34884491 PMCID: PMC8657789 DOI: 10.3390/ijms222312688] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
This review focuses on the effects of hydrogen sulfide (H2S) on the unique bioenergetic molecular machines in mitochondria and bacteria-the protein complexes of electron transport chains and associated enzymes. H2S, along with nitric oxide and carbon monoxide, belongs to the class of endogenous gaseous signaling molecules. This compound plays critical roles in physiology and pathophysiology. Enzymes implicated in H2S metabolism and physiological actions are promising targets for novel pharmaceutical agents. The biological effects of H2S are biphasic, changing from cytoprotection to cytotoxicity through increasing the compound concentration. In mammals, H2S enhances the activity of FoF1-ATP (adenosine triphosphate) synthase and lactate dehydrogenase via their S-sulfhydration, thereby stimulating mitochondrial electron transport. H2S serves as an electron donor for the mitochondrial respiratory chain via sulfide quinone oxidoreductase and cytochrome c oxidase at low H2S levels. The latter enzyme is inhibited by high H2S concentrations, resulting in the reversible inhibition of electron transport and ATP production in mitochondria. In the branched respiratory chain of Escherichia coli, H2S inhibits the bo3 terminal oxidase but does not affect the alternative bd-type oxidases. Thus, in E. coli and presumably other bacteria, cytochrome bd permits respiration and cell growth in H2S-rich environments. A complete picture of the impact of H2S on bioenergetics is lacking, but this field is fast-moving, and active ongoing research on this topic will likely shed light on additional, yet unknown biological effects.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
34
|
Nitric Oxide: From Gastric Motility to Gastric Dysmotility. Int J Mol Sci 2021; 22:ijms22189990. [PMID: 34576155 PMCID: PMC8470306 DOI: 10.3390/ijms22189990] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
It is known that nitric oxide (NO) plays a key physiological role in the control of gastrointestinal (GI) motor phenomena. In this respect, NO is considered as the main non-adrenergic, non-cholinergic (NANC) inhibitory neurotransmitter responsible for smooth muscle relaxation. Moreover, many substances (including hormones) have been reported to modulate NO production leading to changes in motor responses, further underlying the importance of this molecule in the control of GI motility. An impaired NO production/release has indeed been reported to be implicated in some GI dysmotility. In this article we wanted to focus on the influence of NO on gastric motility by summarizing knowledge regarding its role in both physiological and pathological conditions. The main role of NO on regulating gastric smooth muscle motor responses, with particular reference to NO synthases expression and signaling pathways, is discussed. A deeper knowledge of nitrergic mechanisms is important for a better understanding of their involvement in gastric pathophysiological conditions of hypo- or hyper-motility states and for future therapeutic approaches. A possible role of substances which, by interfering with NO production, could prove useful in managing such motor disorders has been advanced.
Collapse
|