1
|
Zhong J, Guo Y, Xin W. EMMPRIN aggravates angiogenesis and blood-retina barrier injury by regulating matrix metalloproteinases in diabetic retinopathy. Diab Vasc Dis Res 2025; 22:14791641251324556. [PMID: 40251743 DOI: 10.1177/14791641251324556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2025] Open
Abstract
Background: Diabetic retinopathy (DR) is a microangiopathy resulting from diabetes mellitus. Studies on vitreous samples have shed insights into the etiology of DR and highlighted the role of molecular targets in DR treatment. The present study probed into the role of extracellular matrix metalloproteinase inducer (EMMPRIN) in DR by examining its influence on inflammation, angiogenesis, matrix metalloproteinases (MMPs), and blood-retina barrier injury.Methods: After the induction of diabetes in rats through streptozotocin injection, SP-8356 (an inhibitor for EMMPRIN) was administered to rats for silencing EMMPRIN in vivo. Serum and vitreous EMMPRIN levels were assessed by ELISA and western blotting. The concentration and mRNA expression of proinflammatory cytokines in rat vitreous samples were quantified through ELISA or RT-qPCR. Western blotting or RT-qPCR was performed to measure protein or mRNA levels of MMPs, tight junction factors, and angiogenic factors.Results: High EMMPRIN levels were found in both serum and vitreous samples of DR rats. Inhibition of EMMPRIN using SP-8356 ameliorated DR-induced high levels of inflammatory cytokines, MMPs, and angiogenic factors and rescued DR-induced low expression levels of tight junction factors in rat vitreous samples.Conclusions: EMMPRIN accelerates inflammation, angiogenesis and blood-retina barrier injury in DR by regulating MMPs.
Collapse
Affiliation(s)
- Jie Zhong
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingzi Guo
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wang Xin
- Hubei University of Medicine, Shiyan, China
- Department of Ophthalmology, Postgraduate Training Base of Wuhan Central Hospital, Hubei University of Medicine, Wuhan, China
| |
Collapse
|
2
|
Balzamino BO, Cacciamani A, Dinice L, Cecere M, Pesci FR, Ripandelli G, Micera A. Retinal Inflammation and Reactive Müller Cells: Neurotrophins' Release and Neuroprotective Strategies. BIOLOGY 2024; 13:1030. [PMID: 39765697 PMCID: PMC11673524 DOI: 10.3390/biology13121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Millions of people worldwide suffer from retinal disorders. Retinal diseases require prompt attention to restore function or reduce progressive impairments. Genetics, epigenetics, life-styling/quality and external environmental factors may contribute to developing retinal diseases. In the physiological retina, some glial cell types sustain neuron activities by guaranteeing ion homeostasis and allowing effective interaction in synaptic transmission. Upon insults, glial cells interact with neuronal and the other non-neuronal retinal cells, at least in part counteracting the biomolecular changes that may trigger retinal complications and vision loss. Several epigenetic and oxidative stress mechanisms are quickly activated to release factors that in concert with growth, fibrogenic and angiogenic factors can influence the overall microenvironment and cell-to-cell response. Reactive Müller cells participate by secreting neurotrophic/growth/angiogenic factors, cytokines/chemokines, cytotoxic/stress molecules and neurogenic inflammation peptides. Any attempt to maintain/restore the physiological condition can be interrupted by perpetuating insults, vascular dysfunction and neurodegeneration. Herein, we critically revise the current knowledge on the cell-to-cell and cell-to-mediator interplay between Müller cells, astrocytes and microglia, with respect to pro-con modulators and neuroprotective/detrimental activities, as observed by using experimental models or analyzing ocular fluids, altogether contributing a new point of view to the field of research on precision medicine.
Collapse
Affiliation(s)
- Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (B.O.B.); (L.D.)
| | - Andrea Cacciamani
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Lucia Dinice
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (B.O.B.); (L.D.)
| | - Michela Cecere
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Francesca Romana Pesci
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Guido Ripandelli
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (B.O.B.); (L.D.)
| |
Collapse
|
3
|
Andrés-Blasco I, Gallego-Martínez A, Casaroli-Marano RP, Di Lauro S, Arévalo JF, Pinazo-Durán MD. Molecular-Genetic Biomarkers of Diabetic Macular Edema. J Clin Med 2024; 13:7426. [PMID: 39685883 DOI: 10.3390/jcm13237426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Diabetic macular edema (DME) is a leading cause of vision impairment and blindness among diabetic patients, requiring effective diagnostic and monitoring strategies. This systematic review aims to synthesize current knowledge on molecular biomarkers associated with DME, focusing on their potential to improve diagnostic accuracy and disease management. Methods: A comprehensive search was conducted in PubMed, Embase, Medline, and the Cochrane Central Register of Controlled Trials, covering literature from 2004 to 2023. Out of 1074 articles initially identified, 48 relevant articles were included in this systematic review. Results: We found that molecules involved in several cellular processes, such as neuroinflammation, oxidative stress, vascular dysfunction, apoptosis, and cell-to-cell communication, exhibit differential expression profiles in various biological fluids when comparing diabetic individuals with or without macular edema. Conclusions: The study of these molecules could lead to the proper identification of specific biomarkers that may improve the diagnosis, prognosis, and therapeutic management of DME patients.
Collapse
Affiliation(s)
- Irene Andrés-Blasco
- Ophthalmic Research Unit "Santiago Grisolía"/Fisabio, 46017 Valencia, Spain
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicina and Odontology, University of Valencia, 46017 Valencia, Spain
- Research Network in Inflammatory Diseases and Immunopathology of Organs and Systems "REI-RICORS", RD21/0002/0032, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Alex Gallego-Martínez
- Ophthalmic Research Unit "Santiago Grisolía"/Fisabio, 46017 Valencia, Spain
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicina and Odontology, University of Valencia, 46017 Valencia, Spain
| | - Ricardo Pedro Casaroli-Marano
- Research Network in Inflammatory Diseases and Immunopathology of Organs and Systems "REI-RICORS", RD21/0002/0032, Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Surgery, School of Medicine and Hospital Clínic de Barcelona, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Salvatore Di Lauro
- Department of Ophthalmology, University Clinic Hopital, 47003 Valladolid, Spain
| | - Jose Fernando Arévalo
- Research Network in Inflammatory Diseases and Immunopathology of Organs and Systems "REI-RICORS", RD21/0002/0032, Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Maria Dolores Pinazo-Durán
- Ophthalmic Research Unit "Santiago Grisolía"/Fisabio, 46017 Valencia, Spain
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicina and Odontology, University of Valencia, 46017 Valencia, Spain
- Research Network in Inflammatory Diseases and Immunopathology of Organs and Systems "REI-RICORS", RD21/0002/0032, Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Morales-Lopez O, Rodríguez-Cortés O, López-Sánchez P, Pérez-Cano HJ, García-Liévanos O, Lima-Gómez V, Somilleda-Ventura SA. TNFα and IL-8 vitreous concentrations variations with two antidiabetic therapies in patients with proliferative diabetic retinopathy: an observational study. BMC Ophthalmol 2024; 24:399. [PMID: 39251949 PMCID: PMC11382467 DOI: 10.1186/s12886-024-03659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Antidiabetic therapies are effective, but could indirectly modify the inflammatory response in the ocular microenvironment; therefore, a study was developed to evaluate the inflammatory cytokine profile in the vitreous humor of diabetic patients with retinopathy under treatment with antidiabetic drugs. METHODS Observational, comparative, retrospective, cross-sectional study. Interleukins 1β, 6, 8, 10, and tumor necrosis factor-alpha (TNFα) were evaluated in the vitreous humor obtained from patients with type 2 diabetes mellitus, proliferative diabetic retinopathy, and concomitant retinal detachment or vitreous hemorrhage, and who were already on antidiabetic treatment with insulin or metformin + glibenclamide. The quantification analysis of each cytokine was performed by the cytometric bead array (CBA) technique; medians and interquartile ranges were obtained, and the results were compared between groups using the Mann-Whitney U test, where a p-value < 0.05 was considered significant. RESULTS Thirty-eight samples; quantification of TNFα concentrations was higher in the group of patients administered insulin, while interleukin-8 was lower; in the metformin + glibenclamide combination therapy group, it occurred inversely. In the stratified analysis, the highest concentrations of interleukin-8 and TNFα occurred in patients with vitreous hemorrhage; however, the only statistical difference existed in patients with retinal detachment, whose TNFα concentration in the combined therapy group was the lowest value found (53.50 (33.03-86.66), p = 0.03). Interleukins 1β, 6, and 10 were not detected. CONCLUSION Interleukin-8 and TNFα concentrations are opposite between treatment groups; this change is more accentuated in patients with proliferative diabetic retinopathy and vitreous hemorrhage, where the highest concentrations of both cytokines are found, although only TNFα have statistical difference.
Collapse
Affiliation(s)
- Oscar Morales-Lopez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Octavio Rodríguez-Cortés
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Pedro López-Sánchez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Héctor Javier Pérez-Cano
- Centro de Investigación Biomédica, Fundación Hospital Nuestra Señora de la Luz I.A.P, Mexico City, Mexico
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Omar García-Liévanos
- Centro Interdisciplinario de Ciencias de la Salud Unidad Santo Tomás, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Selma Alin Somilleda-Ventura
- Centro de Investigación Biomédica, Fundación Hospital Nuestra Señora de la Luz I.A.P, Mexico City, Mexico.
- Centro Interdisciplinario de Ciencias de la Salud Unidad Santo Tomás, Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
5
|
Bizzotto M, Ostermaier A, Liesenhoff C, Ma W, Geerlof A, Priglinger SG, Priglinger CS, Ohlmann A. Galectin-1 Attenuates PDGF-Mediated AKT Signaling in Retinal Pigment Epithelial Cells. Int J Mol Sci 2024; 25:9267. [PMID: 39273216 PMCID: PMC11395115 DOI: 10.3390/ijms25179267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Galectins have the potential to interact with transmembrane glycoproteins to modulate their functions. Since galectin-1 interacts with PDGF-Rβ, we analyzed the effect of galectin-1 on PDGF-BB-mediated AKT signaling in primary human retinal pigment epithelial (RPE) cells and galectin-1-deficient immortalized human RPE cells (LGALS1-/-/ARPE-19) following incubation with PDGF-BB and galectin-1. Expression and localization of galectin-1, PDGF-Rβ and pAKT were investigated using western blot analysis and immunohistochemical staining. Cell proliferation of RPE cells was analyzed using BrdU ELISA. Following treatment of human RPE cells with human recombinant (hr)-galectin-1 and PDGF-BB, an intense clustering of PDGF-Rβ and colocalization with galectin-1 were detected. By Western blot analysis and immunocytochemistry of human RPE cells, an enhanced PDGF-BB-mediated expression of pAKT was observed, which was substantially reduced by additional incubation with hr-galectin-1. Vice versa, in LGALS1-/-/ARPE-19 cells, the PDGF-BB-induced pAKT signal was enhanced compared to wild-type cells. Furthermore, a decreased expression of PDGF-Rβ in human RPE cells was observed after treatment with PDGF-BB and hr-galectin-1, while in untreated LGALS1-/-/ARPE-19 cells, its constitutive expression was increased. In addition, after treatment of RPE cells with hr-galectin-1, the PDGF-BB-induced proliferation was markedly reduced. In summary, galectin-1 has the distinct potential to reduce PDGF-mediated pAKT signaling and proliferation in human RPE cells-an effect that is most likely facilitated via a decreased expression of PDGF-Rβ.
Collapse
Affiliation(s)
- Martina Bizzotto
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstrasse 8, 80336 Munich, Germany; (M.B.); (A.O.); (C.L.); (S.G.P.); (C.S.P.)
| | - Annabella Ostermaier
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstrasse 8, 80336 Munich, Germany; (M.B.); (A.O.); (C.L.); (S.G.P.); (C.S.P.)
| | - Caspar Liesenhoff
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstrasse 8, 80336 Munich, Germany; (M.B.); (A.O.); (C.L.); (S.G.P.); (C.S.P.)
| | - Wenxiu Ma
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstrasse 8, 80336 Munich, Germany; (M.B.); (A.O.); (C.L.); (S.G.P.); (C.S.P.)
| | - Arie Geerlof
- Protein Expression and Purification Facility, Institute of Structural Biology, Helmholtz Center Munich for Environmental Health, 85764 Neuherberg, Germany;
| | - Siegfried G. Priglinger
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstrasse 8, 80336 Munich, Germany; (M.B.); (A.O.); (C.L.); (S.G.P.); (C.S.P.)
| | - Claudia S. Priglinger
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstrasse 8, 80336 Munich, Germany; (M.B.); (A.O.); (C.L.); (S.G.P.); (C.S.P.)
| | - Andreas Ohlmann
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstrasse 8, 80336 Munich, Germany; (M.B.); (A.O.); (C.L.); (S.G.P.); (C.S.P.)
| |
Collapse
|
6
|
Alanazi AH, Shan S, Narayanan SP, Somanath PR. Comparative Proteomic Analysis of Type 2 Diabetic versus Non-Diabetic Vitreous Fluids. Life (Basel) 2024; 14:883. [PMID: 39063636 PMCID: PMC11278183 DOI: 10.3390/life14070883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a leading cause of vision loss, with complex mechanisms. The study aimed to comprehensively explore vitreous humor of diabetic and non-diabetic individuals, paving the way for identifying the potential molecular mechanisms underlying DR. METHODS Vitreous samples from type 2 diabetic and non-diabetic subjects, collected post-mortem, were analyzed using liquid chromatography-mass spectrometry. Pathway enrichment and gene ontology analyses were conducted to identify dysregulated pathways and characterize protein functions. RESULTS Pathway analysis revealed dysregulation in multiple metabolic and signaling pathways associated with diabetes, including glycerolipid metabolism, histidine metabolism, and Wnt signaling. Gene ontology analysis identified proteins involved in inflammation, immune response dysregulation, and calcium signaling. Notably, proteins such as Inositol 1,4,5-trisphosphate receptor type 2 (ITPR2), Calcium homeostasis endoplasmic reticulum protein (CHERP), and Coronin-1A (CORO1A) were markedly upregulated in diabetic vitreous, implicating aberrant calcium signaling, inflammatory responses, and cytoskeletal reorganization in DR. CONCLUSIONS Our study provides valuable insights into the intricate mechanisms underlying DR and highlights the significance of inflammation, immune dysregulation, and metabolic disturbances in disease progression. Identification of specific proteins as potential biomarkers underscores the multifactorial nature of DR. Future research in this area is vital for advancing therapeutic interventions and translating findings into clinical practice.
Collapse
Affiliation(s)
- Abdulaziz H. Alanazi
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
- Department of Clinical Practice, College of Pharmacy, Northern Border University, Rafha 91531, Saudi Arabia
| | - Shengshuai Shan
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Liu J, Liu S, Hui P, Teng S, Xie J, Sun Y. Ferrous ascorbate as a potential biomarker for diabetic retinopathy: a vitreous humour metabolomics study. BMC Ophthalmol 2024; 24:270. [PMID: 38914965 PMCID: PMC11194985 DOI: 10.1186/s12886-024-03530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND This study aimed to explore differences in vitreous humour metabolites and metabolic pathways between patients with and without diabetic retinopathy (DR) and identify potential metabolite biomarkers. METHODS Clinical data and vitreous fluid samples were collected from 125 patients (40 without diabetes, 85 with DR). The metabolite profiles of the vitreous fluid samples were analysed using ultra-high performance liquid chromatography, Q-Exactive mass spectrometry, and multivariate statistical analysis. A machine learning model based on Least Absolute Shrinkage and Selection Operator Regularized logistic regression was used to build a risk scoring model based on selected metabolite levels. Candidate metabolites were regressed to glycated haemoglobin levels by a logistic regression model. RESULTS Twenty differential metabolites were identified between the DR and control groups and were significantly enriched in five Kyoto Encyclopedia of Genes and Genomes pathways (arginine biosynthesis; tricarboxylic acid cycle; alanine, aspartate, and glutamate metabolism; tyrosine metabolism; and D-glutamate metabolism). Ferrous ascorbate significantly contributes to poorer glycaemic control outcomes, offering insights into potential new pathogenic pathways in DR. CONCLUSIONS Disorders in the metabolic pathways of arginine biosynthesis, tricarboxylic acid cycle, alanine, aspartate, glutamate metabolism, tyrosine metabolism, and D-glutamate metabolism were associated with DR. Risk scores based on vitreous fluid metabolites can be used for the diagnosis and management of DR. Ferrous ascorbate can provide insights into potential new pathogenic pathways for DR.
Collapse
Affiliation(s)
- Jinmeng Liu
- Ophthalmology Department, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin province, China
| | - Shuang Liu
- Ophthalmology Department, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin province, China
| | - Peng Hui
- Ophthalmology Department, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin province, China
| | - Siying Teng
- Ophthalmology Department, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin province, China
| | - Jinghui Xie
- Ophthalmology Department, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin province, China
| | - Yabin Sun
- Ophthalmology Department, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin province, China.
| |
Collapse
|
8
|
Gurelik IG, Ozdemir HB, Acar B. The effect of adjuvant Mitomycin C during vitrectomy on functional and anatomical outcomes in patients with severe diabetic tractional retinal detachment. Int Ophthalmol 2024; 44:210. [PMID: 38691217 DOI: 10.1007/s10792-024-03152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
PURPOSE To evaluate the effect of adjuvant Mitomycin C (MMC) use on the anatomical and functional success of vitreoretinal surgery (VRS) in severe diabetic tractional retinal detachment (dTRD) patients. METHODS A retrospective analysis of consecutive patients undergoing VRS due to severe dTRD was conducted. Patients were categorized into those who received 20 µg/0.1 mL MMC via MMC sandwich method (Group 1) and those who did not (Group 2). Demographics, surgical characteristics, visual outcomes, and complications that may related to MMC were analyzed. RESULTS A total of 25 eyes were included, 13 in Group 1 and 12 in Group 2. No statistical difference was observed in baseline characteristics between the groups. The mean best-corrected visual acuity was 1.90 ± 0.43 logMAR and 1.93 ± 0.41 logMAR preoperatively and 1.60 ± 0.78 logMAR and 1.56 ± 0.78 logMAR postoperatively in Groups 1 and 2, respectively (p = 0.154). The postoperative mean intraocular pressure was 16.23 ± 2.55 mmHg and 13.08 ± 4.94 mmHg in Groups 1 and 2, respectively (p = 0.225). The rate of re-surgery was significantly lower in Group 1 (0% vs. 41.7% in Group 2, p = 0.015). Retina was attached in all patients at the last visit. No MMC-related complication was recorded. CONCLUSION Intraoperative adjuvant MMC application for severe dTRD significantly reduces re-surgery rates with good anatomical and functional outcomes safely.
Collapse
Affiliation(s)
- Ihsan Gokhan Gurelik
- Ophthalmology Department, Gazi University School of Medicine, Gazi Universitesi Tip Fakültesi Goz Hastaliklari Anabilim Dali, Besevler, 06500, Ankara, Turkey
| | - Huseyin Baran Ozdemir
- Ophthalmology Department, Gazi University School of Medicine, Gazi Universitesi Tip Fakültesi Goz Hastaliklari Anabilim Dali, Besevler, 06500, Ankara, Turkey.
| | - Burak Acar
- Ophthalmology Department, Gazi University School of Medicine, Gazi Universitesi Tip Fakültesi Goz Hastaliklari Anabilim Dali, Besevler, 06500, Ankara, Turkey
| |
Collapse
|
9
|
Zheng Y, Woodward R, Feng HL, Lee T, Zhang X, Pant P, Thomas AS, Fekrat S. IMPLICATIONS OF COMPLETE POSTERIOR VITREOUS DETACHMENT IN EYES WITH CENTRAL RETINAL VEIN OCCLUSION. Retina 2024; 44:159-165. [PMID: 37683266 DOI: 10.1097/iae.0000000000003932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
BACKGROUND/PURPOSE To evaluate the status of the posterior vitreous hyaloid on presenting optical coherence tomography images of the macula and its relationship to clinical characteristics, treatment patterns, and outcomes in eyes with central retinal vein occlusion. METHODS This is a retrospective longitudinal cohort study of consecutive patients with acute, treatment-naive central retinal vein occlusion diagnosed between 2009 and 2021 who had at least 12 months of follow-up. Clinical characteristics, treatment patterns, and outcomes were analyzed between eyes stratified based on the presence or absence of a complete posterior vitreous detachment (PVD) on optical coherence tomography at presentation. RESULTS Of 102 acute, treatment-naive central retinal vein occlusions identified, 52 (51%) had complete PVD at presentation and 50 (49%) did not. Central subfield thickness was significantly lower in those with complete PVD (12 months: 284.9 ± 122.9 µ m vs. 426.8 ± 286.4 µ m, P < 0.001; last follow-up: 278 ± 127.9 vs. 372.8 ± 191.0 µ m, P = 0.022). One-year intravitreal injection burden was significantly less for those with a complete PVD than those without (5.1 ± 3.6 injections vs. 6.7 ± 3.3 injections, P = 0.013). CONCLUSION Central retinal vein occlusion with complete PVD on presentation had significantly lower central subfield thickness and 1-year injection burden. Assessment of the vitreomacular interface in central retinal vein occlusion may serve as a prognostic imaging biomarker.
Collapse
Affiliation(s)
- Yuxi Zheng
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Richmond Woodward
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Henry L Feng
- Illinois Retina Associates, Rush University Medical Center, Chicago, Illinois ; and
| | - Terry Lee
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Xinxin Zhang
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Praruj Pant
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | | | - Sharon Fekrat
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
10
|
Ramos H, Hernández C, Simó R, Simó-Servat O. Inflammation: The Link between Neural and Vascular Impairment in the Diabetic Retina and Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24108796. [PMID: 37240138 DOI: 10.3390/ijms24108796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The etiology of diabetic retinopathy (DR) is complex, multifactorial and compromises all the elements of the retinal neurovascular unit (NVU). This diabetic complication has a chronic low-grade inflammatory component involving multiple inflammatory mediators and adhesion molecules. The diabetic milieu promotes reactive gliosis, pro-inflammatory cytokine production and leukocyte recruitment, which contribute to the disruption of the blood retinal barrier. The understanding and the continuous research of the mechanisms behind the strong inflammatory component of the disease allows the design of new therapeutic strategies to address this unmet medical need. In this context, the aim of this review article is to recapitulate the latest research on the role of inflammation in DR and to discuss the efficacy of currently administered anti-inflammatory treatments and those still under development.
Collapse
Affiliation(s)
- Hugo Ramos
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| |
Collapse
|
11
|
Iyer SS, Radhakrishnan NS, Roohipourmoallai R, Guerin CM, Maylath JS, Garson N. Chronic ocular small vessel disease: An overview of diabetic retinopathy and its relationship with cardiovascular health. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2023; 29:100270. [PMID: 38510674 PMCID: PMC10945896 DOI: 10.1016/j.ahjo.2023.100270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/22/2024]
Abstract
Diabetic retinopathy (DR) is a potentially blinding disease originating from small vessel damage in the retina in chronic hyperglycemic states. DR has a complex multi-pathway driven pathogenesis resulting in diabetic macular edema and retinal ischemia, the former being the most common cause of vision impairment in DR. Hypoxia induced cytokines stimulate vascular endothelial growth factor (VEGF) production and subsequent angiogenesis with resultant mechanical retinal damage over time. Anti-VEGF therapy is effective for the treatment of center-involving diabetic macular edema. There is evolving evidence showing the effectiveness of anti-VEGF as both adjuvant and monotherapy in the treatment of proliferative DR, however laser photocoagulation continues to remain the standard of care. DR in large cohort studies has been shown to be an independent risk factor for the development of cardiovascular disease and mortality. In addition, changes in retinal vascular caliber ratios may have implications for risk of macrovascular events with a gender discrepancy towards women.
Collapse
Affiliation(s)
- Siva S.R. Iyer
- Vitreoretinal Associates, Gainesville, FL, United States of America
| | - Nila S. Radhakrishnan
- University of Florida College of Medicine, Department of Medicine, United States of America
| | - Ramak Roohipourmoallai
- University of South Florida College of Medicine, Department of Ophthalmology, United States of America
| | - Cynthia M. Guerin
- Texas Tech Department of Ophthalmology and Visual Sciences, United States of America
| | - Jeremy S. Maylath
- Texas Tech Department of Ophthalmology and Visual Sciences, United States of America
| | - Nickolas Garson
- University of Florida College of Medicine, Department of Ophthalmology, United States of America
| |
Collapse
|
12
|
Exosomal miRNA Profiling in Vitreous Humor in Proliferative Diabetic Retinopathy. Cells 2022; 12:cells12010123. [PMID: 36611916 PMCID: PMC9818905 DOI: 10.3390/cells12010123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs which mediate some of the pathological mechanisms of diabetic retinopathy. The aim of this study was to identify differentially expressed miRNAs in the vitreal exosomes of proliferative diabetic retinopathy (PDR) patients and non-diabetic controls. Exosomes were extracted from the vitreous samples of 10 PDR patients and 10 controls. The expression of 372 miRNAs was determined using a quantitative polymerase chain reaction (qPCR) panel. We have demonstrated a significant dysregulation in 26 miRNAs. The most remarkable findings include a profound attenuation of the miR-125 family, as well as enhanced miR-21-5p expression in the diabetic samples. We also showed the downregulation of miR-204-5p and the upregulation of let-7g in PDR compared to the controls. This study identified miR-125 and miR-21 as potential targets for further functional analysis regarding their putative role in the pathogenesis of PDR.
Collapse
|
13
|
Lazzara F, Longo AM, Giurdanella G, Lupo G, Platania CBM, Rossi S, Drago F, Anfuso CD, Bucolo C. Vitamin D3 preserves blood retinal barrier integrity in an in vitro model of diabetic retinopathy. Front Pharmacol 2022; 13:971164. [PMID: 36091806 PMCID: PMC9458952 DOI: 10.3389/fphar.2022.971164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
The impairment of the blood retinal barrier (BRB) represents one of the main features of diabetic retinopathy, a secondary microvascular complication of diabetes. Hyperglycemia is a triggering factor of vascular cells damage in diabetic retinopathy. The aim of this study was to assess the effects of vitamin D3 on BRB protection, and to investigate its regulatory role on inflammatory pathways. We challenged human retinal endothelial cells with high glucose (HG) levels. We found that vitamin D3 attenuates cell damage elicited by HG, maintaining cell viability and reducing the expression of inflammatory cytokines such as IL-1β and ICAM-1. Furthermore, we showed that vitamin D3 preserved the BRB integrity as demonstrated by trans-endothelial electrical resistance, permeability assay, and cell junction morphology and quantification (ZO-1 and VE-cadherin). In conclusion this in vitro study provided new insights on the retinal protective role of vitamin D3, particularly as regard as the early phase of diabetic retinopathy, characterized by BRB breakdown and inflammation.
Collapse
Affiliation(s)
- Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Anna Maria Longo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Giovanni Giurdanella
- Faculty of Medicine and Surgery, University of Enna “Kore”, Enna, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
- *Correspondence: Claudio Bucolo,
| |
Collapse
|
14
|
Joachim SC. Towards an Understanding of Retinal Diseases and Novel Treatment. Int J Mol Sci 2022; 23:ijms23147576. [PMID: 35886925 PMCID: PMC9317684 DOI: 10.3390/ijms23147576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 12/10/2022] Open
Affiliation(s)
- Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| |
Collapse
|
15
|
Chen Q, Xi X, Ma J, Wang X, Xia Y, Xi W, Deng Y, Li Y. The mechanism by which crocetin regulates the lncRNA NEAT1/miR-125b-5p/SOX7 molecular axis to inhibit high glucose-induced diabetic retinopathy. Exp Eye Res 2022; 222:109157. [PMID: 35718188 DOI: 10.1016/j.exer.2022.109157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Diabetic retinopathy (DR) is a high-incidence microvascular complication with retinal neovascularization that generates irreversible visual impairment. However, the mechanism of DR is unclear and needs to be further explored. To explore the expression of NEAT1 and miR-125b-5p and the proliferation activity, migration ability, and angiogenesis ability of human retinal microvascular endothelial cells (hRMECs), RT-qPCR, CCK-8, Transwell, and tube formation assays were performed. Additionally, western blotting was used to detect the expression of SOX7, VEGFA and CD31. Furthermore, a dual-luciferase reporter gene was used to verify the targeting connection. The DR mouse model was constructed by STZ. The effect of crocetin on DR angiogenesis was detected by hematoxylin-eosin (HE) staining, immunohistochemistry (IHC), retinal digest preparations and Western blotting. The results showed that crocetin inhibited the high-glucose (Hg)-induced upregulation of NEAT1 and SOX7 and the downregulation of miR-125b-5p. Crocetin inhibited Hg-induced proliferation, migration and angiogenesis by upregulating the targeted inhibition of SOX7 by miR-125b-5p through the inhibition of NEAT1. To summarize, our study revealed that crocetin has a protective effect against Hg-induced DR by regulating the lncRNA NEAT1/miR-125b-5p/SOX7 molecular axis.
Collapse
Affiliation(s)
- Qianbo Chen
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, 650031, Yunnan, China
| | - Xiaoting Xi
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, 650031, Yunnan, China
| | - Jia Ma
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, 650031, Yunnan, China
| | - Xuewei Wang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, 650031, Yunnan, China
| | - Yuan Xia
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, 650031, Yunnan, China
| | - Wang Xi
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, 650031, Yunnan, China
| | - Yachun Deng
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, 650031, Yunnan, China
| | - Yan Li
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, 650031, Yunnan, China.
| |
Collapse
|