1
|
Dugbartey GJ, Penney LN, Mills L, Zhang MY, Juriasingani S, Major S, McLeod P, Liu W, Haig A, Wood ME, Torregrossa R, Whiteman M, Turley E, Postenka C, Sener A. AP39, a novel mitochondria-targeted hydrogen sulfide donor, promotes cutaneous wound healing in an in vivo murine model of acute frostbite injury. Biomed Pharmacother 2025; 183:117869. [PMID: 39879854 DOI: 10.1016/j.biopha.2025.117869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Frostbite injury refers to cold tissue injury which typically affects the peripheral areas of the body, and is associated with limb loss and high rates of morbidity. Historically, treatment options have been limited to supportive care, leading to suboptimal outcomes for affected patients. The pathophysiology of frostbite injury has been understood in recent years to share similarity with that of cold ischemia-reperfusion injury as seen in solid organ transplantation, of which mitochondria play an important contributing role. The present study investigated whether AP39, a novel mitochondria-targeted slow-releasing hydrogen sulfide donor, applied topically in a vehicle cream at 200 nM or 1 µM could mitigate frostbite injury and promote wound healing in mice. Frostbite injury was induced continuously for 3 min on the dorsal skin of C57BL/6 mice (Mus musculus) using magnets frozen on dry ice (-80 °C). AP39, delivered via a vehicle cream, was used daily to treat frostbite injury until animals were euthanized on day 15 after induction of frostbite injury. Wound tissues were stained with hematoxylin and eosin along with immunofluorescence staining with cleaved caspase-3, CD31, KI-67, CD163, fibronectin and cytokeratin. While 200 nM AP39 improved granulation tissue maturation (p < 0.001), angiogenesis (p < 0.01) and cell proliferation (p < 0.001) compared to vehicle control, 1 µM AP39 further increased granulation tissue formation compared to other frostbite groups (p < 0.001). Thus, AP39 promoted frostbite wound healing, and therefore could be considered as a treatment option for patients with frostbite injury.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Department of Physiology and Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana
| | - Lucas N Penney
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Lauren Mills
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Max Y Zhang
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Smriti Juriasingani
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Sally Major
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada
| | - Patrick McLeod
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada
| | - Winnie Liu
- Department of Pathology, Schulich School of Medicine & Dentistry, University of Western, London, Ontario, Canada
| | - Aaron Haig
- Department of Pathology, Schulich School of Medicine & Dentistry, University of Western, London, Ontario, Canada
| | - Mark E Wood
- St. Luke's Campus, University of Exeter Medical School, Exeter EX1 2LU, UK
| | | | - Matthew Whiteman
- St. Luke's Campus, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Eva Turley
- Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Carl Postenka
- London Regional Cancer Program, London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Alp Sener
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
2
|
Taggart M, Holkup S, Tchir A, Mojoudi M, Lyon A, Hassan M, Taveras C, Ozgur OS, Markmann JF, Yeh H, Uygun K, Longchamp A. UW supplementation with AP39 improves liver viability following static cold storage. Sci Rep 2025; 15:1559. [PMID: 39789174 PMCID: PMC11718015 DOI: 10.1038/s41598-025-85302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/01/2025] [Indexed: 01/30/2025] Open
Abstract
Static cold storage of donor livers at 4 °C incompletely arrests metabolism, ultimately leading to decreases in ATP levels, oxidative stress, cell death, and organ failure. Hydrogen Sulfide (H2S) is an endogenously produced gas, previously demonstrated to reduce oxidative stress, reduce ATP depletion, and protect from ischemia and reperfusion injury. H2S is difficult to administer due to its rapid release curve, resulting in cellular death at high concentrations. AP39, a mitochondrially targeted, slow-release H2S donor, has been shown to reduce ischemia-reperfusion injury in hearts and kidneys. Thus, we investigated whether the addition of AP39 during 3-day static cold storage can improve liver graft viability. At the end of storage, livers underwent six hours of acellular normothermic machine perfusion, a model of transplantation. During simulated transplantation, livers stored with AP39 showed reduced resistance, reduced cellular damage (ALT and AST), and reduced apoptosis. Additionally, bile production and glucose, as well as energy charge were improved by the addition of AP39. These results indicate that AP39 supplementation improves liver viability during static cold storage.
Collapse
Affiliation(s)
- McLean Taggart
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Saige Holkup
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra Tchir
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
- Massachusetts Institute of Technology, Boston, MA, USA
| | - Mohammadreza Mojoudi
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Arnaud Lyon
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Madeeha Hassan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Christopher Taveras
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Ozge Sila Ozgur
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - James F Markmann
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Heidi Yeh
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Shriners Children's Boston, Boston, MA, USA.
| | - Alban Longchamp
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Shriners Children's Boston, Boston, MA, USA.
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Kawamura M, Parmentier C, Ray S, Clotet-Freixas S, Leung S, John R, Mazilescu L, Nogueira E, Noguchi Y, Goto T, Arulratnam B, Ganesh S, Tamang T, Lees K, Reichman TW, Andreazza AC, Kim PK, Konvalinka A, Selzner M, Robinson LA. Normothermic ex vivo kidney perfusion preserves mitochondrial and graft function after warm ischemia and is further enhanced by AP39. Nat Commun 2024; 15:8086. [PMID: 39278958 PMCID: PMC11402965 DOI: 10.1038/s41467-024-52140-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 08/28/2024] [Indexed: 09/18/2024] Open
Abstract
We previously reported that normothermic ex vivo kidney perfusion (NEVKP) is superior in terms of organ protection compared to static cold storage (SCS), which is still the standard method of organ preservation, but the mechanisms are incompletely understood. We used a large animal kidney autotransplant model to evaluate mitochondrial function during organ preservation and after kidney transplantation, utilizing live cells extracted from fresh kidney tissue. Male porcine kidneys stored under normothermic perfusion showed preserved mitochondrial function and higher ATP levels compared to kidneys stored at 4 °C (SCS). Mitochondrial respiration and ATP levels were further enhanced when AP39, a mitochondria-targeted hydrogen sulfide donor, was administered during warm perfusion. Correspondingly, the combination of NEVKP and AP39 was associated with decreased oxidative stress and inflammation, and with improved graft function after transplantation. In conclusion, our findings suggest that the organ-protective effects of normothermic perfusion are mediated by maintenance of mitochondrial function and enhanced by AP39 administration. Activation of mitochondrial function through the combination of AP39 and normothermic perfusion could represent a new therapeutic strategy for long-term renal preservation.
Collapse
Affiliation(s)
- Masataka Kawamura
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of Nephrology, The Hospital for Sick Children, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
- Department of Urology, Osaka General Medical Center, Osaka, Japan
| | - Catherine Parmentier
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
| | - Samrat Ray
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
| | - Sergi Clotet-Freixas
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Division of Nephrology, McMaster University and St. Joseph's Healthcare, Hamilton, Canada
| | - Sharon Leung
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Rohan John
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Pathology, University Health Network, Toronto, Canada
| | - Laura Mazilescu
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of Nephrology, The Hospital for Sick Children, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
- Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Emmanuel Nogueira
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
| | - Yuki Noguchi
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
| | - Toru Goto
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
| | | | - Sujani Ganesh
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
| | - Tomas Tamang
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
| | - Kaitlin Lees
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Trevor W Reichman
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
| | - Ana C Andreazza
- Departments of Pharmacology & Toxicology and Psychiatry, Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, Canada
| | - Peter K Kim
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Ana Konvalinka
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - Markus Selzner
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada.
- Division of General Surgery, University Health Network, Toronto, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada.
| | - Lisa A Robinson
- Division of Nephrology, The Hospital for Sick Children, Toronto, Canada.
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
4
|
McLean ST, Holkup S, Tchir A, Mojoudi M, Hassan M, Taveras C, Ozge SO, James FM, Yeh H, Uygun K, Longchamp A. UW Supplementation with AP39 Improves Liver Viability Following Static Cold Storage. RESEARCH SQUARE 2024:rs.3.rs-4487319. [PMID: 38947096 PMCID: PMC11213193 DOI: 10.21203/rs.3.rs-4487319/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Static cold storage of donor livers at 4°C incompletely arrests metabolism, ultimately leading to decreases in ATP levels, oxidative stress, cell death, and organ failure. Hydrogen Sulfide (H2S) is an endogenously produced gas, previously demonstrated to reduce oxidative stress, reduce ATP depletion, and protect from ischemia and reperfusion injury. H2S is difficult to administer due to its rapid release curve, resulting in cellular death at high concentrations. AP39, a mitochondrially targeted, slow-release H2S donor, has been shown to reduce ischemia-reperfusion injury in hearts and kidneys. Thus, we investigated whether the addition of AP39 during 3-day static cold storage can improve liver graft viability. At the end of storage, livers underwent six hours of acellular normothermic machine perfusion, a model of transplantation. During simulated transplantation, livers stored with AP39 showed reduced resistance, reduced cellular damage (ALT and AST), and reduced apoptosis. Additionally, bile production and glucose, as well as energy charge were improved by the addition of AP39. These results indicate that AP39 supplementation improves liver viability during static cold storage.
Collapse
Affiliation(s)
| | - Saige Holkup
- Massachusetts General Hospital, Harvard Medical School
| | | | | | | | | | - S Ozgur Ozge
- Massachusetts General Hospital, Harvard Medical School
| | | | - Heidi Yeh
- Massachusetts General Hospital, Harvard Medical School
| | - Korkut Uygun
- Massachusetts General Hospital, Harvard Medical School
| | | |
Collapse
|
5
|
Abraham N, Gao Q, Kahan R, Alderete IS, Wang B, Howell DN, Anwar IJ, Ladowski JM, Nakata K, Jarrett E, Hlewicki K, Cywinska G, Neill R, Aardema C, Gerber DA, Roy-Chaudhury P, Hughes BA, Hartwig MG, Barbas AS. Subnormothermic Oxygenated Machine Perfusion (24 h) in DCD Kidney Transplantation. Transplant Direct 2024; 10:e1633. [PMID: 38807861 PMCID: PMC11132391 DOI: 10.1097/txd.0000000000001633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 05/30/2024] Open
Abstract
Background Ex vivo kidney perfusion is an evolving platform that demonstrates promise in preserving and rehabilitating the kidney grafts. Despite this, there is little consensus on the optimal perfusion conditions. Hypothermic perfusion offers limited functional assessment, whereas normothermic perfusion requires a more complex mechanical system and perfusate. Subnormothermic machine perfusion (SNMP) has the potential to combine the advantages of both approaches but has undergone limited investigation. Therefore, the present study sought to determine the suitability of SNMP for extended kidney preservation. Methods SNMP at 22-25 °C was performed on a portable device for 24 h with porcine kidneys. Graft assessment included measurement of mechanical parameters and biochemical analysis of the perfusate using point-of-care tests. To investigate the viability of kidneys preserved by SNMP, porcine kidney autotransplants were performed in a donation after circulatory death (DCD) model. SNMP was also compared with static cold storage (SCS). Finally, follow-up experiments were conducted in a subset of human kidneys to test the translational significance of findings in porcine kidneys. Results In the perfusion-only cohort, porcine kidneys all displayed successful perfusion for 24 h by SNMP, evidenced by stable mechanical parameters and biological markers of graft function. Furthermore, in the transplant cohort, DCD grafts with 30 min of warm ischemic injury demonstrated superior posttransplant graft function when preserved by SNMP in comparison with SCS. Finally, human kidneys that underwent 24-h perfusion exhibited stable functional and biological parameters consistent with observations in porcine organs. Conclusions These observations demonstrate the suitability and cross-species generalizability of subnormothermic machine perfusion to maintain stable kidney perfusion and provide foundational evidence for improved posttransplant graft function of DCD kidneys after SNMP compared with SCS.
Collapse
Affiliation(s)
- Nader Abraham
- Department of Surgery, Duke University, Duke Ex-Vivo Organ Lab (DEVOL), Durham, NC
| | - Qimeng Gao
- Department of Surgery, Duke University, Duke Ex-Vivo Organ Lab (DEVOL), Durham, NC
| | - Riley Kahan
- Department of Surgery, Duke University, Duke Ex-Vivo Organ Lab (DEVOL), Durham, NC
| | - Isaac S. Alderete
- Department of Surgery, Duke University, Duke Ex-Vivo Organ Lab (DEVOL), Durham, NC
| | - Bangchen Wang
- Department of Pathology, Duke University, Durham, NC
| | | | - Imran J. Anwar
- Department of Surgery, Duke University, Duke Ex-Vivo Organ Lab (DEVOL), Durham, NC
| | - Joseph M. Ladowski
- Department of Surgery, Duke University, Duke Ex-Vivo Organ Lab (DEVOL), Durham, NC
| | - Kentaro Nakata
- Department of Surgery, Duke University, Duke Ex-Vivo Organ Lab (DEVOL), Durham, NC
| | | | | | - Greta Cywinska
- Department of Surgery, Duke University, Duke Ex-Vivo Organ Lab (DEVOL), Durham, NC
| | - Ryan Neill
- Department of Surgery, Duke University, Duke Ex-Vivo Organ Lab (DEVOL), Durham, NC
| | | | - David A. Gerber
- Department of Surgery, University of North Carolina, Chapel Hill, NC
| | | | - Benjamin A. Hughes
- Department of Surgery, Duke University, Duke Ex-Vivo Organ Lab (DEVOL), Durham, NC
| | - Matthew G. Hartwig
- Department of Surgery, Duke University, Duke Ex-Vivo Organ Lab (DEVOL), Durham, NC
| | - Andrew S. Barbas
- Department of Surgery, Duke University, Duke Ex-Vivo Organ Lab (DEVOL), Durham, NC
| |
Collapse
|
6
|
Dugbartey GJ. Cellular and molecular mechanisms of cell damage and cell death in ischemia-reperfusion injury in organ transplantation. Mol Biol Rep 2024; 51:473. [PMID: 38553658 PMCID: PMC10980643 DOI: 10.1007/s11033-024-09261-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/16/2024] [Indexed: 04/02/2024]
Abstract
Ischemia-reperfusion injury (IRI) is a critical pathological condition in which cell death plays a major contributory role, and negatively impacts post-transplant outcomes. At the cellular level, hypoxia due to ischemia disturbs cellular metabolism and decreases cellular bioenergetics through dysfunction of mitochondrial electron transport chain, causing a switch from cellular respiration to anaerobic metabolism, and subsequent cascades of events that lead to increased intracellular concentrations of Na+, H+ and Ca2+ and consequently cellular edema. Restoration of blood supply after ischemia provides oxygen to the ischemic tissue in excess of its requirement, resulting in over-production of reactive oxygen species (ROS), which overwhelms the cells' antioxidant defence system, and thereby causing oxidative damage in addition to activating pro-inflammatory pathways to cause cell death. Moderate ischemia and reperfusion may result in cell dysfunction, which may not lead to cell death due to activation of recovery systems to control ROS production and to ensure cell survival. However, prolonged and severe ischemia and reperfusion induce cell death by apoptosis, mitoptosis, necrosis, necroptosis, autophagy, mitophagy, mitochondrial permeability transition (MPT)-driven necrosis, ferroptosis, pyroptosis, cuproptosis and parthanoptosis. This review discusses cellular and molecular mechanisms of these various forms of cell death in the context of organ transplantation, and their inhibition, which holds clinical promise in the quest to prevent IRI and improve allograft quality and function for a long-term success of organ transplantation.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
- Department of Physiology & Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana.
| |
Collapse
|
7
|
Carrigan I, Mathur S, Bourgeois N, Dieudé M, Fantus D, Gongal P, Halpin A, Hirji A, Mansell H, Piotrowski C, Sapir-Pichhadze R, Vinson AJ. Updates in Kidney Transplantation From the 2022 Banff-Canadian Society of Transplantation Joint Meeting: Conference Report. Can J Kidney Health Dis 2023; 10:20543581231209185. [PMID: 38020483 PMCID: PMC10644765 DOI: 10.1177/20543581231209185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose of the Conference The 2022 Banff-Canadian Society of Transplantation Meeting in Banff, Alberta, brought together transplant professionals to review new developments across various aspects of solid organ transplantation (SOT) in Canada. Sources of Information Presentations included consensus recommendations from expert-led forums; experiences with new procedures and legislation; reports from public health data repositories; original clinical and laboratory research; and industry updates regarding novel technologies. Speakers referenced articles and reports published in peer-reviewed journals and online, and unpublished data and preliminary findings. Methods All authors attended presentations in-person or virtually. Recordings of select presentations were available for later review. Summaries emphasize concepts indicated by speakers as new and clinically relevant. Key Findings The COVID-19 pandemic disproportionately affected solid organ transplant recipients (SOTRs), who experience worse outcomes of COVID-19 infection than the general population. Vaccinations demonstrate an attenuated immunological response in SOTRs yet provide meaningful protection. Monoclonal antibodies are effective for both passive immunization and treatment of COVID-19 in SOTRs. Infection control protocols have driven the development of virtual methods for clinical research, such as using home blood draws and virtual follow-up to evaluate vaccine efficacy in SOTRs; and patient care delivery, such as employing telerehabilitation post transplant. Access to living kidney donation is limited by various disincentives experienced by potential donors, which may be overcome by more efficient evaluations including a One-Day Living Kidney Donor Assessment Clinic. The International Donation and Transplantation Legislative and Policy Forum provided a means of establishing consensus guidance for organ donation and transplantation (ODT) program policy to standardize delivery across jurisdictions. The implementation of a deemed consent model for organ and tissue donation in Nova Scotia may provide insight as to whether this model indeed improves access to organs. Canada's Indigenous population experiences unique barriers to transplantation, prompting efforts for more inclusive ODT policy-making. The Pan-Canadian ODT Data and Performance Reporting System Project has defined performance quality indicators, of which iTransplant and other point-of-care software solutions may facilitate collection; however, these endeavors ultimately require information technology infrastructure that exceeds the capabilities of the existing Canadian Organ Replacement Register and Canadian Transplant Registry. Pig-to-human xenotransplantation requires genetic modification of pigs and xenoantibody testing in recipients but may yet prove viable. Serum cell-free DNA, urine biomarkers, and genetic markers offer an alternative to routine biopsy for identifying subclinical rejection. Modified perfusion temperatures and perfusion solutions with hydrogen sulfide donor compounds may improve organ preservation. Molecular compatibility tools provide another means of improving SOTR outcomes, and the Genome Canada Transplant Consortium has been examining important considerations of their implementation. Limitations We were unable to capture all presentations and topics at the meeting due to the sizable quantity and variety. Topics ultimately excluded from this summary include those in pathology including Banff Classification updates; those unique to extra-renal SOT; as well as numerous abstract and poster presentations, allied health provider forums, and business meetings. A portion of the material was presented by speakers prior to peer-review or publication. Implications The various conference presentations summarized in this report identify methods by which individual clinicians and provincial ODT programs may improve access, delivery, and quality of SOT care in Canada, while additionally identifying gaps in the literature that investigators are encouraged to pursue.
Collapse
Affiliation(s)
- Ian Carrigan
- Division of Nephrology, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Sunita Mathur
- School of Rehabilitation Therapy, Queen’s University, Kingston, ON, Canada
| | | | - Mélanie Dieudé
- Department of Microbiology, Infectious Diseases, and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche de Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Daniel Fantus
- Centre de Recherche de Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Division of Nephrology, Department of Medicine, Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Patricia Gongal
- Canadian Donation and Transplantation Research Program, Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada
| | - Anne Halpin
- Alberta Precision Laboratories, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Alim Hirji
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Holly Mansell
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Caroline Piotrowski
- Department of Community Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ruth Sapir-Pichhadze
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Amanda J. Vinson
- Division of Nephrology, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
8
|
Dugbartey GJ. Nitric oxide in kidney transplantation. Biomed Pharmacother 2023; 167:115530. [PMID: 37722191 DOI: 10.1016/j.biopha.2023.115530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023] Open
Abstract
Kidney transplantation is the treatment of choice for patients with kidney failure. Compared to dialysis therapy, it provides better quality of life and confers significant survival advantage at a relatively lower cost. However, the long-term success of this life-saving intervention is severely hampered by an inexorable clinical problem referred to as ischemia-reperfusion injury (IRI), and increases the incidence of post-transplant complications including loss of renal graft function and death of transplant recipients. Burgeoning evidence shows that nitric oxide (NO), a poisonous gas at high concentrations, and with a historic negative public image as an environmental pollutant, has emerged as a potential candidate that holds clinical promise in mitigating IRI and preventing acute and chronic graft rejection when it is added to kidney preservation solutions at low concentrations or when administered to the kidney donor prior to kidney procurement and to the recipient or to the reperfusion circuit at the start and during reperfusion after renal graft preservation. Interestingly, dysregulated or abnormal endogenous production and metabolism of NO is associated with IRI in kidney transplantation. From experimental and clinical perspectives, this review presents endogenous enzymatic production of NO as well as its exogenous sources, and then discusses protective effects of constitutive nitric oxide synthase (NOS)-derived NO against IRI in kidney transplantation via several signaling pathways. The review also highlights a few isolated studies of renal graft protection by NO produced by inducible NOS.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Accra College of Medicine, Magnolia St, JVX5+FX9, East Legon, Accra, Ghana.
| |
Collapse
|
9
|
Agius T, Songeon J, Lyon A, Longchamp J, Ruttimann R, Allagnat F, Déglise S, Corpataux JM, Golshayan D, Buhler L, Meier R, Yeh H, Markmann JF, Uygun K, Toso C, Klauser A, Lazeyras F, Longchamp A. Sodium Hydrosulfide Treatment During Porcine Kidney Ex Vivo Perfusion and Transplantation. Transplant Direct 2023; 9:e1508. [PMID: 37915463 PMCID: PMC10617874 DOI: 10.1097/txd.0000000000001508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 11/03/2023] Open
Abstract
Background In rodents, hydrogen sulfide (H2S) reduces ischemia-reperfusion injury and improves renal graft function after transplantation. Here, we hypothesized that the benefits of H2S are conserved in pigs, a more clinically relevant model. Methods Adult porcine kidneys retrieved immediately or after 60 min of warm ischemia (WI) were exposed to 100 µM sodium hydrosulfide (NaHS) (1) during the hypothermic ex vivo perfusion only, (2) during WI only, and (3) during both WI and ex vivo perfusion. Kidney perfusion was evaluated with dynamic contrast-enhanced MRI. MRI spectroscopy was further employed to assess energy metabolites including ATP. Renal biopsies were collected at various time points for histopathological analysis. Results Perfusion for 4 h pig kidneys with Belzer MPS UW + NaHS resulted in similar renal perfusion and ATP levels than perfusion with UW alone. Similarly, no difference was observed when NaHS was administered in the renal artery before ischemia. After autotransplantation, no improvement in histologic lesions or cortical/medullary kidney perfusion was observed upon H2S administration. In addition, AMP and ATP levels were identical in both groups. Conclusions In conclusion, treatment of porcine kidney grafts using NaHS did not result in a significant reduction of ischemia-reperfusion injury or improvement of kidney metabolism. Future studies will need to define the benefits of H2S in human, possibly using other molecules as H2S donors.
Collapse
Affiliation(s)
- Thomas Agius
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Julien Songeon
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Arnaud Lyon
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Department of Medicine, Transplantation Centre, Lausanne University Hospital, Lausanne, Switzerland
| | - Justine Longchamp
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Raphael Ruttimann
- Visceral and Transplant Surgery, Department of Surgery, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Sébastien Déglise
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Jean-Marc Corpataux
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Déla Golshayan
- Department of Medicine, Transplantation Centre, Lausanne University Hospital, Lausanne, Switzerland
| | - Léo Buhler
- Section of Medicine, Faculty of Science and Medicine, University of Fribourg, Switzerland
| | - Raphael Meier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Heidi Yeh
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - James F. Markmann
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Korkut Uygun
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Christian Toso
- Visceral and Transplant Surgery, Department of Surgery, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - Antoine Klauser
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | - Francois Lazeyras
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Dugbartey GJ, Juriasingani S, Richard-Mohamed M, Rasmussen A, Levine M, Liu W, Haig A, Whiteman M, Arp J, Luke PP, Sener A. Static Cold Storage with Mitochondria-Targeted Hydrogen Sulfide Donor Improves Renal Graft Function in an Ex Vivo Porcine Model of Controlled Donation-after-Cardiac-Death Kidney Transplantation. Int J Mol Sci 2023; 24:14017. [PMID: 37762319 PMCID: PMC10530714 DOI: 10.3390/ijms241814017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The global donor kidney shortage crisis has necessitated the use of suboptimal kidneys from donors-after-cardiac-death (DCD). Using an ex vivo porcine model of DCD kidney transplantation, the present study investigates whether the addition of hydrogen sulfide donor, AP39, to University of Wisconsin (UW) solution improves graft quality. Renal pedicles of male pigs were clamped in situ for 30 min and the ureters and arteries were cannulated to mimic DCD. Next, both donor kidneys were nephrectomized and preserved by static cold storage in UW solution with or without AP39 (200 nM) at 4 °C for 4 h followed by reperfusion with stressed autologous blood for 4 h at 37 °C using ex vivo pulsatile perfusion apparatus. Urine and arterial blood samples were collected hourly during reperfusion. After 4 h of reperfusion, kidneys were collected for histopathological analysis. Compared to the UW-only group, UW+AP39 group showed significantly higher pO2 (p < 0.01) and tissue oxygenation (p < 0.05). Also, there were significant increases in urine production and blood flow rate, and reduced levels of urine protein, serum creatinine, blood urea nitrogen, plasma Na+ and K+, as well as reduced intrarenal resistance in the UW+AP39 group compared to the UW-only group. Histologically, AP39 preserved renal structure by reducing the apoptosis of renal tubular cells and immune cell infiltration. Our finding could lay the foundation for improved graft preservation and reduce the increasingly poor outcomes associated with DCD kidney transplantation.
Collapse
Affiliation(s)
- George J. Dugbartey
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5C1, Canada (J.A.)
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, ON N6A 5C1, Canada
- Multi-Organ Transplant Program, London Health Sciences Center, Western University, London, ON N6A 5C1, Canada;
- Physiology & Pharmacology Department, Accra College of Medicine, Accra P.O. Box CT 9828, Ghana
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG43, Ghana
| | - Smriti Juriasingani
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5C1, Canada (J.A.)
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mahms Richard-Mohamed
- Multi-Organ Transplant Program, London Health Sciences Center, Western University, London, ON N6A 5C1, Canada;
| | - Andrew Rasmussen
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, ON N6A 5C1, Canada
- Multi-Organ Transplant Program, London Health Sciences Center, Western University, London, ON N6A 5C1, Canada;
| | - Max Levine
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, ON N6A 5C1, Canada
- Multi-Organ Transplant Program, London Health Sciences Center, Western University, London, ON N6A 5C1, Canada;
| | - Winnie Liu
- Department of Pathology & Laboratory Medicine, Western University, London, ON N6A 5C1, Canada
| | - Aaron Haig
- Department of Pathology & Laboratory Medicine, Western University, London, ON N6A 5C1, Canada
| | - Matthew Whiteman
- St. Luke’s Campus, University of Exeter Medical School, Exeter EX1 2HZ, UK
| | - Jacqueline Arp
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5C1, Canada (J.A.)
| | - Patrick P.W. Luke
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5C1, Canada (J.A.)
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, ON N6A 5C1, Canada
- Multi-Organ Transplant Program, London Health Sciences Center, Western University, London, ON N6A 5C1, Canada;
| | - Alp Sener
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5C1, Canada (J.A.)
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, ON N6A 5C1, Canada
- Multi-Organ Transplant Program, London Health Sciences Center, Western University, London, ON N6A 5C1, Canada;
- Physiology & Pharmacology Department, Accra College of Medicine, Accra P.O. Box CT 9828, Ghana
| |
Collapse
|
11
|
Emre Aydıngöz S, Teimoori A, Orhan HG, Efe OE, Kibaroğlu S, Erdem ŞR. Effect of hydrogen sulfide on ischemia-reperfusion injury of kidney: A systematic review and meta-analysis of in vivo animal studies. Eur J Pharmacol 2023; 943:175564. [PMID: 36736943 DOI: 10.1016/j.ejphar.2023.175564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Hydrogen sulfide (H2S) has been shown to be effective against kidney ischemia-reperfusion injury (IRI) in animal studies. We aimed to evaluate the current evidence from in vivo animal studies for the protective effects of H2S against kidney IRI by systematically reviewing the literature and performing a meta-analysis. Based on the preregistered protocol (PROSPERO: CRD42021295469); PubMed, Medline, Embase, Web of Science, and Scopus were searched to identify in vivo animal studies evaluating the effect of H2S against kidney IRI. Standardized mean difference (SMD) with 95% confidence interval (CI) was calculated and pooled using random-effects meta-analysis. Twenty-two articles complied with eligibility criteria, from which the creatinine levels of 152 control animals and 182 animals treated with H2S from 27 individual experiments were pooled. H2S treatment significantly decreased serum creatinine (SMD = -1.82 [95% CI -1.12, -2.51], p < 0.0001), blood urea nitrogen (-2.50 [-1.46, -3.54], p < 0.0001), tissue malondialdehyde (-2.59 [-3.30, -1.88], p < 0.0001), tunel positive cells (-3.16 [-4.38, -1.94], p < 0.0001), and tubular damage score (-2.01 [-3.03, -0.99], p < 0.0001). There was a high heterogeneity across studies (I2 = 83.5% for serum creatinine level). In meta-regression analysis, the type of H2S donor and its application time accounted for 11.3% (p = 0.025) and 16.6% (p = 0.039) of heterogeneity, respectively. Accordingly, H2S protects the kidney against IRI only if it is given as GYY4137 before or during ischemia. Although H2S is a potential candidate against kidney IRI, further well-designed preclinical studies focusing on GYY4137 are warranted before clinical implication.
Collapse
Affiliation(s)
- Selda Emre Aydıngöz
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey.
| | - Arıyan Teimoori
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Halit Güner Orhan
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Oğuzhan Ekin Efe
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Seda Kibaroğlu
- Department of Pharmacology, Başkent University Institute of Health Sciences, Ankara, Turkey
| | - Ş Remzi Erdem
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
12
|
Abou Taka M, Dugbartey GJ, Sener A. The Optimization of Renal Graft Preservation Temperature to Mitigate Cold Ischemia-Reperfusion Injury in Kidney Transplantation. Int J Mol Sci 2022; 24:ijms24010567. [PMID: 36614006 PMCID: PMC9820138 DOI: 10.3390/ijms24010567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
Renal transplantation is the preferred treatment for patients with end-stage renal disease. The current gold standard of kidney preservation for transplantation is static cold storage (SCS) at 4 °C. However, SCS contributes to renal ischemia-reperfusion injury (IRI), a pathological process that negatively impacts graft survival and function. Recent efforts to mitigate cold renal IRI involve preserving renal grafts at higher or subnormothermic temperatures. These temperatures may be beneficial in reducing the risk of cold renal IRI, while also maintaining active biological processes such as increasing the expression of mitochondrial protective metabolites. In this review, we discuss different preservation temperatures for renal transplantation and pharmacological supplementation of kidney preservation solutions with hydrogen sulfide to determine an optimal preservation temperature to mitigate cold renal IRI and enhance renal graft function and recipient survival.
Collapse
Affiliation(s)
- Maria Abou Taka
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada
| | - George J. Dugbartey
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Department of Surgery, Division of Urology, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG 1181, Ghana
| | - Alp Sener
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Department of Surgery, Division of Urology, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Correspondence: ; Tel.: +519-685-8500 (ext. 33352)
| |
Collapse
|
13
|
Li JH, Xu X, Wang YF, Xie HY, Chen JY, Dong NG, Badiwala M, Xin LM, Ribeiro RVP, Yin H, Zhang H, Zhang JZ, Huo F, Yang JY, Yang HJ, Pan H, Li SG, Qiao YB, Luo J, Li HY, Jia JJ, Yu H, Liang H, Yang SJ, Wang H, Liu ZY, Zhang LC, Hu XY, Wu H, Hu YQ, Tang PF, Ye QF, Zheng SS. Chinese expert consensus on organ protection of transplantation (2022 edition). Hepatobiliary Pancreat Dis Int 2022; 21:516-526. [PMID: 36376226 DOI: 10.1016/j.hbpd.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Jian-Hui Li
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yan-Feng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Hai-Yang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jing-Yu Chen
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, Wuxi 214023, China
| | - Nian-Guo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mitesh Badiwala
- Peter Munk Cardiac Centre, Toronto General Hospital-University Health Network, Toronto, Canada
| | - Li-Ming Xin
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | | | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Hao Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Jian-Zheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Feng Huo
- Department of Surgery, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510040, China
| | - Jia-Yin Yang
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hong-Ji Yang
- Organ Transplantation Center, Sichuan Provincial People's Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hui Pan
- Department of Lung Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shao-Guang Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Yin-Biao Qiao
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jia Luo
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Hao-Yu Li
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jun-Jun Jia
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Yu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Han Liang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Si-Jia Yang
- Department of Lung Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Zhong-Yang Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Li-Cheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Xiao-Yi Hu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Wu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yi-Qing Hu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Pei-Fu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Qi-Fa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
14
|
Dugbartey GJ, Alornyo KK, Adams I, Atule S, Obeng-Kyeremeh R, Amoah D, Adjei S. Targeting hepatic sulfane sulfur/hydrogen sulfide signaling pathway with α-lipoic acid to prevent diabetes-induced liver injury via upregulating hepatic CSE/3-MST expression. Diabetol Metab Syndr 2022; 14:148. [PMID: 36229864 PMCID: PMC9558364 DOI: 10.1186/s13098-022-00921-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Diabetes-induced liver injury is a complication of diabetes mellitus of which there are no approved drugs for effective treatment or prevention. This study investigates possible hepatoprotective effect of alpha-lipoic acid (ALA), and sulfane sulfur/hydrogen sulfide pathway as a novel protective mechanism in a rat model of type 2 diabetes-induced liver injury. METHODS Thirty Sprague-Dawley rats underwent fasting for 12 h after which fasting blood glucose was measured and rats were randomly assigned to diabetic and non-diabetic groups. Type 2 diabetes mellitus (T2DM) was induced in diabetic group by administration of nicotinamide (110 mg/kg) and streptozotocin (55 mg/kg). Diabetic rats were treated daily with ALA (60 mg/kg/day p.o.) or 40 mg/kg/day DL-propargylglycine (PPG, an inhibitor of endogenous hydrogen sulfide production) for 6 weeks and then sacrificed. Liver, pancreas and blood samples were collected for analysis. Untreated T2DM rats received distilled water. RESULTS Hypoinsulinemia, hyperglycemia, hepatomegaly and reduced hepatic glycogen content were observed in untreated T2DM rats compared to healthy control group (p < 0.001). Also, the pancreas of untreated T2DM rats showed severely damaged pancreatic islets while liver damage was characterized by markedly increased hepatocellular vacuolation, sinusoidal enlargement, abnormal intrahepatic lipid accumulation, severe transaminitis, hyperbilirubinemia, and impaired hepatic antioxidant status and inflammation compared to healthy control rats (p < 0.01). While pharmacological inhibition of hepatic sulfane sulfur/hydrogen sulfide with PPG administration aggravated these pathological changes (p < 0.05), ALA strongly prevented these changes. ALA also significantly increased hepatic expression of hydrogen sulfide-producing enzymes (cystathionine γ-lyase and 3-mecaptopyruvate sulfurtransferase) as well as hepatic sulfane sulfur and hydrogen sulfide levels compared to all groups (p < 0.01). CONCLUSIONS To the best of our knowledge, this is the first experimental evidence showing that ALA prevents diabetes-induced liver injury by activating hepatic sulfane sulfur/hydrogen sulfide pathway via upregulation of hepatic cystathionine γ-lyase and 3-mecaptopyruvate sulfurtransferase expressions. Therefore, ALA could serve as a novel pharmacological agent for the treatment and prevention of diabetes-induced liver injury, with hepatic sulfane sulfur/hydrogen sulfide as a novel therapeutic target.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ismaila Adams
- Department of Medical Pharmacology, University of Ghana Medical School, Korle-Bu, Accra, Ghana
| | - Stephen Atule
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Richard Obeng-Kyeremeh
- Department of Animal Experimentation, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Daniel Amoah
- Department of Animal Experimentation, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Samuel Adjei
- Department of Animal Experimentation, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
15
|
Dugbartey GJ, Wonje QL, Alornyo KK, Adams I, Diaba DE. Alpha-lipoic acid treatment improves adverse cardiac remodelling in the diabetic heart - The role of cardiac hydrogen sulfide-synthesizing enzymes. Biochem Pharmacol 2022; 203:115179. [PMID: 35853498 DOI: 10.1016/j.bcp.2022.115179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 07/12/2022] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Alpha-lipoic acid (ALA) is a licensed drug for the treatment of diabetic neuropathy. We recently reported that it also improves diabetic cardiomyopathy (DCM) in type 2 diabetes mellitus (T2DM). In this study, we present evidence supporting our hypothesis that the cardioprotective effect of ALA is via upregulation of cardiac hydrogen sulfide (H2S)-synthesizing enzymes. METHODS Following 12 h of overnight fasting, T2DM was induced in 23 out of 30 male Sprague-Dawley rats by intraperitoneal administration of nicotinamide (110 mg/kg) followed by streptozotocin (55 mg/kg) while the rest served as healthy control (HC). T2DM rats then received either oral administration of ALA (60 mg/kg/day; n = 7) or 40 mg/kg/day DL-propargylglycine (PAG, an endogenous H2S inhibitor; n = 7) intraperitoneally for 6 weeks after which all rats were sacrificed and samples collected for analysis. Untreated T2DM rats served as diabetic control (DCM; n = 9). RESULTS T2DM resulted in weight loss, islet destruction, reduced pancreatic β-cell function and hyperglycemia. Histologically, DCM rats showed significant myocardial damage evidenced by myocardial degeneration, cardiomyocyte vacuolation and apoptosis, cardiac fibrosis and inflammation, which positively correlated with elevated levels of cardiac damage markers compared to HC rats (p < 0.001). These pathological alterations worsened significantly in PAG-treated rats (p < 0.05). However, ALA treatment restored normoinsulemia, normoglycemia, prevented DCM, and improved lipid and antioxidant status. Mechanistically, ALA significantly upregulated the expression of cardiac H2S-synthesizing enzymes and increased plasma H2S concentration compared to DCM rats (p < 0.001). CONCLUSION ALA preserves myocardial integrity in T2DM likely by maintaining the expression of cardiac H2S-synthezing enzymes and increasing plasma H2S level.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Quinsker L Wonje
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ismaila Adams
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Deborah E Diaba
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
16
|
Dugbartey GJ, Alornyo KK, Diaba DE, Adams I. Activation of renal CSE/H 2S pathway by alpha-lipoic acid protects against histological and functional changes in the diabetic kidney. Biomed Pharmacother 2022; 153:113386. [PMID: 35834985 DOI: 10.1016/j.biopha.2022.113386] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION We previously reported that alpha-lipoic acid (ALA) supplementation protects against progression of diabetic kidney disease (DKD). In this study, we aim to investigate whether the mechanism of renal protection by ALA involves renal cystathionine γ-lyase/hydrogen sulfide (CSE/H2S) system in type 2 diabetes mellitus (T2DM). METHODS Thirty-seven male Sprague-Dawley rats underwent 12 h of overnight fasting. To induce T2DM, 30 of these rats received intraperitoneal administration of nicotinamide (110 mg/kg) and streptozotocin (55 mg/kg). T2DM rats then received either oral administration of ALA (60 mg/kg/day) or intraperitoneal administration of 40 mg/kg/day DL-propargylglycine (PAG, a CSE inhibitor) or both for 6 weeks after which rats were sacrificed and samples collected for analysis. Untreated diabetic and non-diabetic rats served as diabetic and healthy controls respectively. RESULTS T2DM was characterized by reduced pancreatic β-cell function and hyperglycemia. Histologically, untreated diabetic rats showed significantly damaged pancreatic islets, glomerular and tubular injury, with elevated levels of renal function markers compared to healthy control rats (p < 0.001). These pathological changes worsened significantly following PAG administration (p < 0.05). While some renal protection was observed in ALA+PAG rats, ALA administration in untreated diabetic rats provided superior protection comparable to healthy control rats, with improved antioxidant status, lipid profile and reduced inflammation. Mechanistically, ALA significantly activated renal CSE/H2S system in diabetic rats, which was markedly suppressed in PAG-treated rats (p < 0.001). CONCLUSION Our data suggest that ALA protects against DKD development and progression by activating renal CSE/H2S pathway. Hence, CSE/H2S pathway may represent a therapeutic target in the treatment or prevention of DKD in diabetic patients.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Deborah E Diaba
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ismaila Adams
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
17
|
Rampino T, Gregorini M, Germinario G, Pattonieri EF, Erasmi F, Grignano MA, Bruno S, Alomari E, Bettati S, Asti A, Ramus M, De Amici M, Testa G, Bruno S, Ceccarelli G, Serpieri N, Libetta C, Sepe V, Blasevich F, Odaldi F, Maroni L, Vasuri F, La Manna G, Ravaioli M. Extracellular Vesicles Derived from Mesenchymal Stromal Cells Delivered during Hypothermic Oxygenated Machine Perfusion Repair Ischemic/Reperfusion Damage of Kidneys from Extended Criteria Donors. BIOLOGY 2022; 11:biology11030350. [PMID: 35336724 PMCID: PMC8945029 DOI: 10.3390/biology11030350] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary In this study, we explore for the first time an innovative tool for organ preservation aimed to preventing ischemia reperfusion injury (IRI) in marginal kidneys from expanded criteria donors (ECD) unsuitable for transplantation. Ex vivo hypothermic oxygenated perfusion (HOPE) with and without MSC-derived EV and normothermic reperfusion (NR) with artificial blood composed of bovine hemoglobin were applied on kidneys to evaluate global renal ischemic damage score, renal ultrastructure, mitochondrial distress, apoptosis, cell proliferation index, and the mediators of energy metabolism. Our study demonstrates that kidney conditioning with HOPE+EV arrests the ischemic damage, prevents reoxygenation-dependent injury, and preserves tissue integrity. EV delivery during HOPE can be considered a new organ preservation strategy to increase the donor pool and improving transplant outcome. The originality of our study lies an EV and HOPE combined novel setting use in kidneys from ECD, but also in any condition for graft dysfunction such as ischemia/reperfusion. Abstract The poor availability of kidney for transplantation has led to a search for new strategies to increase the donor pool. The main option is the use of organs from extended criteria donors. We evaluated the effects of hypothermic oxygenated perfusion (HOPE) with and without extracellular vesicles (EV) derived from mesenchymal stromal cells on ischemic/reperfusion injury of marginal kidneys unsuitable for transplantation. For normothermic reperfusion (NR), we used artificial blood as a substitute for red blood cells. We evaluated the global renal ischemic dam-age score (GRS), analyzed the renal ultrastructure (RU), cytochrome c oxidase (COX) IV-1 (a mitochondrial distress marker), and caspase-3 renal expression, the tubular cell proliferation index, hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) tissue levels, and effluent lactate and glucose levels. HOPE+EV kidneys had lower GRS and better RU, higher COX IV-1 expression and HGF and VEGF levels and lower caspase-3 expression than HOPE kidneys. During NR, HOPE+EV renal effluent had lower lactate release and higher glucose levels than HOPE renal effluent, suggesting that the gluconeogenesis system in HOPE+EV group was pre-served. In conclusion, EV delivery during HOPE can be considered a new organ preservation strategy for increasing the donor pool and improving transplant outcome.
Collapse
Affiliation(s)
- Teresa Rampino
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Marilena Gregorini
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-503896
| | - Giuliana Germinario
- Department of General Surgery and Transplantation, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.G.); (F.O.); (L.M.); (M.R.)
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Eleonora Francesca Pattonieri
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Fulvia Erasmi
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Maria Antonietta Grignano
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (S.B.); (E.A.)
- Biopharmatec TEC, University of Parma, Tecnopolo Padiglione 33, 43124 Parma, Italy;
| | - Esra Alomari
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (S.B.); (E.A.)
| | - Stefano Bettati
- Biopharmatec TEC, University of Parma, Tecnopolo Padiglione 33, 43124 Parma, Italy;
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Annalia Asti
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Marina Ramus
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Mara De Amici
- Laboratory of Immuno-Allergology of Clinical Chemistry and Pediatric Clinic, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Giorgia Testa
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Stefania Bruno
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy;
| | - Gabriele Ceccarelli
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Nicoletta Serpieri
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Carmelo Libetta
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Vincenzo Sepe
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Flavia Blasevich
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Neurological Institute Carlo Besta, 20133 Milan, Italy;
| | - Federica Odaldi
- Department of General Surgery and Transplantation, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.G.); (F.O.); (L.M.); (M.R.)
| | - Lorenzo Maroni
- Department of General Surgery and Transplantation, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.G.); (F.O.); (L.M.); (M.R.)
| | - Francesco Vasuri
- “F. Addarii” Institute of Oncology and Transplantation Pathology, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
| | - Gaetano La Manna
- Department of Nephrology, S.Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy;
| | - Matteo Ravaioli
- Department of General Surgery and Transplantation, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.G.); (F.O.); (L.M.); (M.R.)
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
18
|
Dugbartey GJ, Zhang MY, Liu W, Haig A, McLeod P, Arp J, Sener A. Sodium thiosulfate-supplemented UW solution protects renal grafts against prolonged cold ischemia-reperfusion injury in a murine model of syngeneic kidney transplantation. Biomed Pharmacother 2021; 145:112435. [PMID: 34798469 DOI: 10.1016/j.biopha.2021.112435] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Cold ischemia-reperfusion injury (IRI) is an inevitable event that increases post-transplant complications. We have previously demonstrated that supplementation of University of Wisconsin (UW) solution with non-FDA-approved hydrogen sulfide (H2S) donor molecules minimizes cold IRI and improves renal graft function after transplantation. The present study investigates whether an FDA-approved H2S donor molecule, sodium thiosulfate (STS), will have the same or superior effect in a clinically relevant rat model of syngeneic orthotopic kidney transplantation. METHOD Thirty Lewis rats underwent bilateral nephrectomy followed by syngeneic orthotopic transplantation of the left kidney after 24-hour preservation in either UW or UW+STS solution at 4 °C. Rats were monitored to post-transplant day 14 and sacrificed to assess renal function (urine output, serum creatinine and blood urea nitrogen). Kidney sections were stained with H&E, TUNEL, CD68, and myeloperoxidase (MPO) to detect acute tubular necrosis (ATN), apoptosis, macrophage infiltration, and neutrophil infiltration. RESULT UW+STS grafts showed significantly improved graft function immediately after transplantation, with improved recipient survival compared to UW grafts (p < 0.05). Histopathological examination revealed significantly reduced ATN, apoptosis, macrophage and neutrophil infiltration and downregulation of pro-inflammatory and pro-apoptotic genes in UW+STS grafts compared to UW grafts (p < 0.05). CONCLUSION We show for the first time that preservation of renal grafts in STS-supplemented UW solution protects against prolonged cold IRI by suppressing apoptotic and inflammatory pathways, and thereby improving graft function and prolonging recipient survival. This could represent a novel clinically applicable therapeutic strategy to minimize the detrimental clinical outcome of prolonged cold IRI in kidney transplantation.
Collapse
Affiliation(s)
- George J Dugbartey
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Max Y Zhang
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada
| | - Winnie Liu
- Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada
| | - Aaron Haig
- Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada
| | - Patrick McLeod
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada
| | - Jacqueline Arp
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada
| | - Alp Sener
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
19
|
Dugbartey GJ, Juriasingani S, Zhang MY, Sener A. H 2S donor molecules against cold ischemia-reperfusion injury in preclinical models of solid organ transplantation. Pharmacol Res 2021; 172:105842. [PMID: 34450311 DOI: 10.1016/j.phrs.2021.105842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022]
Abstract
Cold ischemia-reperfusion injury (IRI) is an inevitable and unresolved problem that poses a great challenge in solid organ transplantation (SOT). It represents a major factor that increases acute tubular necrosis, decreases graft survival, and delays graft function. This complicates graft quality, post-transplant patient care and organ transplantation outcomes, and therefore undermines the success of SOT. Herein, we review recent advances in research regarding novel pharmacological strategies involving the use of different donor molecules of hydrogen sulfide (H2S), the third established member of the gasotransmitter family, against cold IRI in different experimental models of SOT (kidney, heart, lung, liver, pancreas and intestine). Additionally, we discuss the molecular mechanisms underlying the effects of these H2S donor molecules in SOT, and suggestions for clinical translation. Our reviewed findings showed that storage of donor organs in H2S-supplemented preservation solution or administration of H2S to organ donor prior to organ procurement and to recipient at the start and during reperfusion is a novel, simple and cost-effective pharmacological approach to minimize cold IRI, limit post-transplant complications and improve transplantation outcomes. In conclusion, experimental evidence demonstrate that H2S donors can significantly mitigate cold IRI during SOT through inhibition of a complex cascade of interconnected cellular and molecular events involving microcirculatory disturbance and microvascular dysfunction, mitochondrial injury, inflammatory responses, cell damage and cell death, and other damaging molecular pathways while promoting protective pathways. Translating these promising findings from bench to bedside will lay the foundation for the use of H2S donor molecules in clinical SOT in the future.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Smriti Juriasingani
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada
| | - Max Y Zhang
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada
| | - Alp Sener
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|