1
|
Zhang JY, Li H, Zhang MJ, Sun ZJ. Lymphangiogenesis orchestrating tumor microenvironment: Face changing in immunotherapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189278. [PMID: 39929379 DOI: 10.1016/j.bbcan.2025.189278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/19/2025]
Abstract
In the era of immunotherapy, the lymphatic system has garnered significant attention from researchers. Increasing evidence highlights the complex regulation of lymphatic vessels (LVs) within the tumor microenvironment, unveiling a paradox in tumor progression: while LVs enhance immune surveillance, they simultaneously foster immune suppression. This review summarizes the regulatory factors of lymphangiogenesis, discusses the intricate effects of LVs on immunotherapy, and emphasizes the potential connection between lymphangiogenesis and tertiary lymphoid structure. Additionally, current therapeutic strategies targeting lymphangiogenesis are critically evaluated, with a forward-looking perspective on future research directions and regulatory approaches to achieve precise targeting and optimize immunotherapy paradigms.
Collapse
Affiliation(s)
- Jun-Ye Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Centre for Immunology and Metabolism, Taikang Centre for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Hao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Centre for Immunology and Metabolism, Taikang Centre for Life and Medical Sciences, Wuhan University, Wuhan 430079, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China
| | - Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Centre for Immunology and Metabolism, Taikang Centre for Life and Medical Sciences, Wuhan University, Wuhan 430079, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Centre for Immunology and Metabolism, Taikang Centre for Life and Medical Sciences, Wuhan University, Wuhan 430079, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China.
| |
Collapse
|
2
|
Gu J, He Y, He C, Zhang Q, Huang Q, Bai S, Wang R, You Q, Wang L. Advances in the structures, mechanisms and targeting of molecular chaperones. Signal Transduct Target Ther 2025; 10:84. [PMID: 40069202 PMCID: PMC11897415 DOI: 10.1038/s41392-025-02166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 03/15/2025] Open
Abstract
Molecular chaperones, a class of complex client regulatory systems, play significant roles in the prevention of protein misfolding and abnormal aggregation, the modulation of protein homeostasis, and the protection of cells from damage under constantly changing environmental conditions. As the understanding of the biological mechanisms of molecular chaperones has increased, their link with the occurrence and progression of disease has suggested that these proteins are promising targets for therapeutic intervention, drawing intensive interest. Here, we review recent advances in determining the structures of molecular chaperones and heat shock protein 90 (HSP90) chaperone system complexes. We also describe the features of molecular chaperones and shed light on the complicated regulatory mechanism that operates through interactions with various co-chaperones in molecular chaperone cycles. In addition, how molecular chaperones affect diseases by regulating pathogenic proteins has been thoroughly analyzed. Furthermore, we focus on molecular chaperones to systematically discuss recent clinical advances and various drug design strategies in the preclinical stage. Recent studies have identified a variety of novel regulatory strategies targeting molecular chaperone systems with compounds that act through different mechanisms from those of traditional inhibitors. Therefore, as more novel design strategies are developed, targeting molecular chaperones will significantly contribute to the discovery of new potential drugs.
Collapse
Affiliation(s)
- Jinying Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chenxi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qifei Huang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shangjun Bai
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial TCM Engineering Technology Research Center of Highly Efficient Drug Delivery Systems (DDSs), Nanjing, China.
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
3
|
Cong B, Cao X, Jiang WG, Ye L. Molecular and Cellular Machinery of Lymphatic Metastasis in Breast Cancer. Onco Targets Ther 2025; 18:199-209. [PMID: 39926374 PMCID: PMC11806925 DOI: 10.2147/ott.s503272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025] Open
Abstract
Breast cancer is one of the most common malignant tumours in women worldwide. A primary route for breast cancer cells to disseminate is through regional lymphatic vessels and nodes. Cancer cell-induced lymphangiogenesis plays a crucial role in lymphatic metastasis and is associated with poor survival of breast cancer. Advances in molecular biology have led to the identification of biomarkers associated with lymphangiogenesis and lymphatic metastasis, including lymphatic vessel endothelial cell (LVEC) markers and tumour microenvironment markers, such as vascular endothelial growth factor receptor 3 (VEGFR3), podoplanin (PDPN), and lymphatic endothelial hyaluronan receptor-1 (LYVE1). LVEC molecular markers play a profound role in both the formation of new lymphatic vessels and the invasive expansion of primary tumour. Abnormal expression of LVEC markers may contribute to lymphatic vessel disease and/or metastasis of cancer cells through the lymphatic system. These molecular markers may present a potential for targeted therapies and precision diagnostics for managing lymphatic metastasis in breast cancer. This review aims to provide a comprehensive summary of the current understanding of the molecular and cellular machinery underlying lymphatic metastasis in breast cancer, with a particular focus on the lymphangiogenic markers and their role in the lymphatic dissemination.
Collapse
Affiliation(s)
- Binbin Cong
- Cardiff China Medical Research Collaborative, Division of Cancer & Genetics, Cardiff University School of Medicine, Academic Avenue, Cardiff, UK
- Breast Cancer Centre, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Xiaoshan Cao
- Cardiff China Medical Research Collaborative, Division of Cancer & Genetics, Cardiff University School of Medicine, Academic Avenue, Cardiff, UK
- Breast Cancer Centre, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer & Genetics, Cardiff University School of Medicine, Academic Avenue, Cardiff, UK
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer & Genetics, Cardiff University School of Medicine, Academic Avenue, Cardiff, UK
| |
Collapse
|
4
|
Pan L, Huang C, Jin X, Wu J, Jin K, Lin J, Wang Y, Li J, Yin C, Wang X, Zhang L, Zhang G, Dong H, Guo J, Komuro I, Dai Y, Zou Y, Gong H. Cardiac secreted HSP90α exacerbates pressure overload myocardial hypertrophy and heart failure. Redox Biol 2025; 79:103466. [PMID: 39721497 PMCID: PMC11732234 DOI: 10.1016/j.redox.2024.103466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Sustained myocardial hypertrophy or left ventricular hypertrophy (LVH) triggered by pressure overload is strongly linked to adverse cardiovascular outcomes. Here, we investigated the clinical relationship between serum HSP90α (an isoform of HSP90) levels and LVH in patients with hypertension or aortic stenosis (AS) and explored underlying mechanisms in pressure overload mouse model. We built a pressure overload mouse model via transverse aortic constriction (TAC). Compared to controls, elevated serum HSP90α levels were observed in patients with hypertension or AS, and the levels positively correlated with LVH. Similarly, HSP90α levels increased in heart tissues from patients with obstructive hypertrophic cardiomyopathy (HCM), and in mice post-TAC. TAC induced the enhanced cardiac expression and secretion of HSP90α from cardiomyocytes and cardiac fibroblasts. Knockdown of HSP90α or blockade of extracellular HSP90α (eHSP90α) attenuated cardiac hypertrophy and dysfunction by inhibition of β-catenin/TCF7 signaling under pressure overload. Further analysis revealed that eHSP90α interacted with EC1-EC2 region of N-cadherin to activate β-catenin, enhancing the transcription of hypertrophic genes by TCF7, resulting in cardiac hypertrophy and dysfunction under pressure overload. These insights suggest the therapeutic potential of targeting HSP90α-initiated signaling pathway against cardiac hypertrophy and heart failure under pressure overload.
Collapse
Affiliation(s)
- Le Pan
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenxing Huang
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xuejuan Jin
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; NHC Key Laboratory of Ischemic Heart Diseases, and Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China
| | - Kejia Jin
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jingyi Lin
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Wang
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jianxuan Li
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chao Yin
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiang Wang
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lei Zhang
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Guoping Zhang
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hangming Dong
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junli Guo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou, 571199, China
| | - Issei Komuro
- Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yuxiang Dai
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; NHC Key Laboratory of Ischemic Heart Diseases, and Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; NHC Key Laboratory of Ischemic Heart Diseases, and Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China.
| | - Hui Gong
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; NHC Key Laboratory of Ischemic Heart Diseases, and Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
5
|
Singh P, Jay DG. The Role of eHsp90 in Extracellular Matrix Remodeling, Tumor Invasiveness, and Metastasis. Cancers (Basel) 2024; 16:3873. [PMID: 39594828 PMCID: PMC11592750 DOI: 10.3390/cancers16223873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Identifying proteins that act in tumor invasiveness and metastasis remains a critical unmet need in our search for effective cancer therapy. Hsp90, an abundant intracellular chaperone protein, plays a key role in maintaining cell homeostasis, and its elevated activity is pivotal in cancer progression. Due to the reliance of cancer cells on Hsp90's chaperone function to sustain tumor growth and spread, Hsp90 inhibitors have been the subject of numerous clinical trials over the past two decades. However, these efforts have largely been unsuccessful, primarily due to the cellular toxicity caused by pan-Hsp90 inhibitors at doses required for anticancer efficacy. Therefore, novel approaches to target Hsp90 are necessary. An identified subpopulation of Hsp90 located outside cells (eHsp90) may offer a promising alternative as a therapeutic target against cancer. Studies including our own have shown that eHsp90 is released specifically by cancer cells, and eHsp90 has unique interactors and functions extracellularly to promote tumor invasiveness, the initial step in metastasis. Inhibition of eHsp90 has been shown to suppress metastasis in animal models, indicating its therapeutic potential, although the underlying mechanisms remain incompletely understood. Cancer cells modulate the tumor microenvironment (TME) during the invasion, especially the ECM proteins and the state of the ECM is a strong predictor of invasive and metastatic cancer. Given that most of the known eHsp90 clients are ECM proteins or are proteins involved in ECM modulation, ECM remodelling could be the key mechanism through which eHsp90 enhances invasiveness. This review will focus on ECM modulation by eHsp90 as a driver of cancer invasion and metastasis. We will also discuss the potency of inhibiting eHsp90 in inhibiting invasion and metastatic spread in preclinical models and the using circulating Hsp90 patient samples as a biomarker of cancer invasion and metastasis.
Collapse
Affiliation(s)
- Pragya Singh
- Graduate School of Biomedical Sciences, Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Daniel G. Jay
- Graduate School of Biomedical Sciences, Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
6
|
Reynolds TS, Blagg BSJ. Extracellular heat shock protein 90 alpha (eHsp90α)'s role in cancer progression and the development of therapeutic strategies. Eur J Med Chem 2024; 277:116736. [PMID: 39126794 PMCID: PMC11374465 DOI: 10.1016/j.ejmech.2024.116736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Heat shock protein 90 alpha (Hsp90α) is an abundantly expressed and evolutionarily conserved molecular chaperone. Hsp90α is the inducible Hsp90 isoform, and its expression and secretion extracellularly (eHsp90α) can be triggered in response to a variety of cellular stresses to protect/activate client proteins and to facilitate cellular adjustment to the stress. As a result, cancers often have high expression levels of intracellular and extracellular (plasma) Hsp90α, allowing them to support their oncogenesis and progression. In fact, (e)Hsp90α has been implicated in regulating processes such as cell signaling transduction, DNA repair, promotion of the Epithelial-to-Mesenchymal Transition (EMT), promotion of angiogenesis, immune response, and cell migration. Hsp90α levels have been correlated with cancer progression and severity in several cancers, indicating that it may be a useful biomarker or drug-target for cancer. To date, the development of intracellular Hsp90α-targeted therapies include standard N-terminal ATP-competitive inhibitors and allosteric regulators that bind to Hsp90α's middle or C-terminal domain. On-target toxicities and dosing complications as a result of Hsp90α inhibition has driven the development of eHsp90α-targeted therapies. Examples include anti-Hsp90α monoclonal antibodies and cell-impermeable Hsp90α small molecule inhibitors. This review aims to discuss the many roles Hsp90α plays in cancer progression with a focus on the current development of Hsp90α-targeted therapies.
Collapse
Affiliation(s)
- Tyelor S Reynolds
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
7
|
Liang X, Chen R, Wang C, Wang Y, Zhang J. Targeting HSP90 for Cancer Therapy: Current Progress and Emerging Prospects. J Med Chem 2024; 67:15968-15995. [PMID: 39256986 DOI: 10.1021/acs.jmedchem.4c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Heat shock protein 90 (HSP90), a highly conserved member of the heat shock protein family, regulates various proteins and signaling pathways involved in cancer, making it a promising target for cancer therapy. Traditional HSP90 inhibitors have demonstrated significant antitumor potential in preclinical trials, with over 20 compounds advancing to clinical trials and showing promising results. However, the limited clinical efficacy and shared toxicity of these inhibitors restrict their further clinical use. Encouragingly, developing novel inhibitors using conventional medicinal chemistry approaches─such as selective inhibitors, dual inhibitors, protein-protein interaction inhibitors, and proteolysis-targeting chimeras─is expected to address these challenges. Notably, the selective inhibitor TAS-116 has already been successfully marketed. In this Perspective, we summarize the structure, biological functions, and roles of HSP90 in cancer, analyze the clinical status of HSP90 inhibitors, and highlight the latest advancements in novel strategies, offering insights into their future development.
Collapse
Affiliation(s)
- Xinqi Liang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Ruixian Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Chengdi Wang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yuxi Wang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212 Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212 Sichuan, China
| |
Collapse
|
8
|
Huang J, Zhang Z, He P, Zhou J. Possible mechanisms underlying the regulation of postmenopausal osteoporosis by follicle-stimulating hormone. Heliyon 2024; 10:e35405. [PMID: 39170318 PMCID: PMC11336567 DOI: 10.1016/j.heliyon.2024.e35405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Objective To explore the possible mechanisms by which follicle-stimulating hormone (FSH) regulates postmenopausal osteoporosis through the FSH/FSH receptor (FSHr)/G protein/C/EBPβ/heat shock protein 90 alpha (HSP90α) signalling pathways. Methods We measured serum FSH, luteinising hormone (LH), and HSP90α levels in the serum and adipose tissue of women of childbearing age and menopausal status. In the in vivo studies, 12 B57CL female mice were divided equally into Sham, OVX, and OVX + FSHr Blocker groups. Serum levels of alkaline phosphatase, FSH, and HSP90α, along with StRACP vitality, were determined, and femur micro-computed tomography was performed. Additionally, FSH, FSHr, G protein, C/EBPβ, and HSP90α levels were assessed using quantitative polymerase chain reaction. Finally, we divided the human multiple myeloma cell line U266 into three groups. The activity of tartrate-resistant acid phosphatase (TRAP) in the supernatant at different stages was detected, and myeloma cells were stained with TRAP. Results HSP90α levels in adipose tissue supernatant and serum were lower in women of childbearing age than in menopausal women (P < 0.05). Serum FSH and HSP90α levels demonstrated a strong correlation. Treatment with FSHr blockers resulted in decreased FSH, FSHr, G protein, C/EBPβ, and HSP90α levels in mice. TRAP staining of osteoclast-like cells exhibited a significantly higher intensity in the M-CSF + RANKL + recombinant HSP90α group than in the M-CSF + RANKL and blank control groups (P < 0.05). Conclusions Our results indicate that FSH promotes HSP90α secretion by adipocytes via the FSHr/G protein/C/EBPβ pathway. This mechanism affects osteoclast activity and exacerbates osteoporosis.
Collapse
Affiliation(s)
- Jianxia Huang
- Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhifen Zhang
- Department of Gynecology, Hangzhou Obstetrics & Gynecology Hospital, Hangzhou, Zhejiang Province, China
| | - Pei He
- Department of Obstetrics, Hangzhou Obstetrics & Gynecology Hospital, Hangzhou, Zhejiang Province, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Abstract
Heat shock protein 90α (Hsp90α), an important molecular chaperone, plays a crucial role in regulating the activity of various intracellular signaling pathways and maintaining the stability of various signaling transduction proteins. In cancer, the expression level of Hsp90α is often significantly upregulated and is recognized as one of the key factors in cancer cell survival and proliferation. Cell death can help achieve numerous purposes, such as preventing aging, removing damaged or infected cells, facilitating embryonic development and tissue repair, and modulating immune response. The expression of Hsp90α is closely associated with specific modes of cell death including apoptosis, necrotic apoptosis, and autophagy-dependent cell death, etc. This review discusses the new results on the relationship between expression of Hsp90α and cell death in cancer. Hsp90α is frequently overexpressed in cancer and promotes cancer cell growth, survival, and resistance to treatment by regulating cell death, rendering it a promising target for cancer therapy.
Collapse
Affiliation(s)
- Bin Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 240001, Anhui, China
| | - Daohai Qian
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 240001, Anhui, China.
| |
Collapse
|
10
|
Zhu Y, Dai Z. HSP90: A promising target for NSCLC treatments. Eur J Pharmacol 2024; 967:176387. [PMID: 38311278 DOI: 10.1016/j.ejphar.2024.176387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
The emergence of targeted therapies and immunotherapies has improved the overall survival of patients with nonsmall cell lung cancer (NSCLC), but the 5-year survival rate remains low. New drugs are needed to overcome this dilemma. Moreover, the significant correlation between various client proteins of heat-shock protein (HSP) 90 and tumor occurrence, progression, and drug resistance suggests that HSP90 is a potential therapeutic target for NSCLC. However, the outcomes of clinical trials for HSP90 inhibitors have been disappointing, indicating significant toxicity of these drugs and that further screening of the beneficiary population is required. NSCLC patients with oncogenic-driven gene mutations or those at advanced stages who are resistant to multi-line treatments may benefit from HSP90 inhibitors. Enhancing the therapeutic efficacy and reducing the toxicity of HSP90 inhibitors can be achieved via the optimization of their drug structure, using them in combination therapies with low-dose HSP90 inhibitors and other drugs, and via targeted administration to tumor lesions. Here, we provide a review of the recent research on the role of HSP90 in NSCLC and summarize relevant studies of HSP90 inhibitors in NSCLC.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning Province, China
| | - Zhaoxia Dai
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning Province, China.
| |
Collapse
|
11
|
Zhu M, Li J, Chu Z, Li L, Meng B, Zhao Y, Gong X, Qu Z, Mi W, Jiang Y, Wu L, Dai X, Fang X, Zhai R. Development of cancer biomarker heat shock protein 90α certified reference material using two different isotope dilution mass spectrometry techniques. Anal Bioanal Chem 2024; 416:913-923. [PMID: 38117323 DOI: 10.1007/s00216-023-05079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Heat shock protein 90α (HSP90α) has been regarded as an important indicator for judging tumor metastasis and prognosis due to its significant upregulation in various tumors. Therefore, the accurate quantification of HSP90α is of great significance for clinical diagnosis and therapy of cancers. However, the lack of HSP90α certified reference material (CRM) leads to the accuracy and consistency of quantification methods not being effectively evaluated. Besides, quantitative results without traceability make comparisons between different studies difficult. In this study, an HSP90α solution CRM was developed from the recombinant protein raw material. The recombinant protein is a dimer, and the purity of the CRM candidate reached 96.71%. Both amino acid analysis-isotope dilution mass spectrometry (AAA-IDMS) and unique peptide analysis-isotope dilution mass spectrometry (UPA-IDMS) were performed to measure the content of HSP90α in the solution CRM candidate, and the certified value was assessed to be 66.2 ± 8.8 µg/g. Good homogeneity of the CRM was identified, and the stability examination suggested that the CRM was stable for at least 4 months at - 80 °C and for 7 days at 4 °C. With traceability to SI unit (kg), this CRM has potential to help establish a metrological traceability chain for quantification of HSP90α, which will make the quantification results standardized and comparable regardless of the quantitative methods.
Collapse
Affiliation(s)
- Manman Zhu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Jingjing Li
- Beijing Institute of Metrology, Beijing, 100191, People's Republic of China
| | - Zhanying Chu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Lan Li
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Bo Meng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Yang Zhao
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Ziyu Qu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Wei Mi
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Liqing Wu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Rui Zhai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
12
|
Pan Y, Zou Q, Yin W, Huang Z, Zhao Y, Mo Z, Li L, Yang J. Development of lymph node metastasis-related prognostic markers in breast cancer. J Proteomics 2024; 291:105045. [PMID: 37939914 DOI: 10.1016/j.jprot.2023.105045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Lymph node metastasis (LNM) from Breast cancer (BC) is commonly seen in BC progression. Currently, the identification of genes linked with LNM in BC remains in mystery. METHODS Genes related to BC LNM were screened, and a risk model was constructed based on LASSO-Cox analysis. Combined with the Kaplan-Meier curve, the ability of riskscore to distinguish different baseline characteristics was evaluated, and model was verified by the receiver operating characteristic (ROC) curve. The expression levels of prognostic marker genes were analyzed by qRT-PCR and western blot (WB). RESULTS A higher survival rate and longer survival time in low-risk BC patients. The 1, 3 and 5 year AUC values of the training set were 0.79, 0.74, and 0.73, respectively. Results for the validation set was similar to the training set. The differentially expressed genes between the high- and low-risk groups were significantly enriched in immune pathways. In addition, the low-risk group had higher levels of immune infiltration. qRT-PCR and WB results showed that in BC, CDH10, SMR3A, POU3F2, and FABP7 were down-regulated, and LHX1 was up-regulated. CONCLUSIONS We built a prognostic model of BC based on LNM-related genes, proffering evaluation for prognosis and precise cure of BC. SIGNIFICANCE At present, the genes related to lymph node metastasis in BC are still largely unknown and need to be further explored. Searching for potential lymph node metastasis-related genes of BC will provide meaningful biomarkers for BC treatment. Based on TCGA-BRCA data, we established an effective 11-gene prognostic risk model that could predict patient outcomes independently. Our model could classify BC patients and distinguish patients with poor prognosis effectively. Besides, the feature genes we identified might exert a predictive function in immunotherapy. The results of this study provide a new reference for the prognosis and treatment of BC patients with lymph node metastasis.
Collapse
Affiliation(s)
- Yinhua Pan
- Department of Breast and Thyroid Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Qingxiu District, Nanning 530021, China
| | - Quanqing Zou
- Department of Breast and Thyroid Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Qingxiu District, Nanning 530021, China
| | - Wu Yin
- Department of Pathology, The People's Hospital of Guangxi Zhuang Autonomous Region, No.6 Taoyuan Road, Qingxiu District, Nanning 530021, China
| | - Zhen Huang
- Department of Breast and Thyroid Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Qingxiu District, Nanning 530021, China
| | - Yingzhu Zhao
- Department of Breast and Thyroid Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Qingxiu District, Nanning 530021, China
| | - Zongming Mo
- Department of Breast and Thyroid Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Qingxiu District, Nanning 530021, China
| | - Lihui Li
- Department of Breast and Thyroid Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Qingxiu District, Nanning 530021, China
| | - Jianrong Yang
- Department of Breast and Thyroid Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Qingxiu District, Nanning 530021, China.
| |
Collapse
|
13
|
Liu L, Jiang D, Bai S, Zhang X, Kang Y. Research progress of exosomes in drug resistance of breast cancer. Front Bioeng Biotechnol 2024; 11:1214648. [PMID: 38239920 PMCID: PMC10794616 DOI: 10.3389/fbioe.2023.1214648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/24/2023] [Indexed: 01/22/2024] Open
Abstract
Since breast cancer is a heterogeneous disease, there are currently a variety of treatment methods available, including chemotherapy, endocrine therapy, molecular targeted therapy, immunotherapy, radiation therapy, etc. Breast cancer recurrence and metastasis, despite many treatment modalities, constitute a considerable threat to patients' survival time and pose a clinical challenge that is difficult to tackle precisely. Exosomes have a very special and crucial role in the treatment of drug resistance in breast cancer as a carrier of intercellular communication in the tumor microenvironment. Exosomes and breast cancer treatment resistance have been linked in a growing number of clinical investigations in recent years. This paper covers the status of research on exosomes in the treatment of breast cancer drug resistance and offers theoretical guidance for investigating new strategies to treat breast cancer drug resistance.
Collapse
Affiliation(s)
- Lihui Liu
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Daqing Jiang
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| | - Shi Bai
- School of Information Science and Engineering, Shenyang University of Technology, Shenyang, China
| | - Xinfeng Zhang
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| | - Yue Kang
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
15
|
Liu H, Shi H, Sun Y. Identification of a novel lymphangiogenesis signature associated with immune cell infiltration in colorectal cancer based on bioinformatics analysis. BMC Med Genomics 2024; 17:2. [PMID: 38167072 PMCID: PMC10763205 DOI: 10.1186/s12920-023-01781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Lymphangiogenesis plays an important role in tumor progression and is significantly associated with tumor immune infiltration. However, the role and mechanisms of lymphangiogenesis in colorectal cancer (CRC) are still unknown. Thus, the objective is to identify the lymphangiogenesis-related genes associated with immune infiltration and investigation of their prognosis value. METHODS mRNA expression profiles and corresponding clinical information of CRC samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The lymphangiogenesis-related genes (LymRGs) were collected from the Molecular Signatures database (MSigDB). Lymphangiogenesis score (LymScore) and immune cell infiltrating levels were quantified using ssGSEA. LymScore) and immune cell infiltrating levels-related hub genes were identified using weighted gene co-expression network analysis (WGCNA). Univariate Cox and LASSO regression analyses were performed to identify the prognostic gene signature and construct a risk model. Furthermore, a predictive nomogram was constructed based on the independent risk factor generated from a multivariate Cox model. RESULTS A total of 1076 LymScore and immune cell infiltrating levels-related hub genes from three key modules were identified by WGCNA. Lymscore is positively associated with natural killer cells as well as regulator T cells infiltrating. These modular genes were enriched in extracellular matrix and structure, collagen fibril organization, cell-substrate adhesion, etc. NUMBL, TSPAN11, PHF21A, PDGFRA, ZNF385A, and RIMKLB were eventually identified as the prognostic gene signature in CRC. And patients were divided into high-risk and low-risk groups based on the median risk score, the patients in the high-risk group indicated poor survival and were predisposed to metastasis and advanced stages. NUMBL and PHF21A were upregulated but PDGFRA was downregulated in tumor samples compared with normal samples in the Human Protein Atlas (HPA) database. CONCLUSION Our finding highlights the critical role of lymphangiogenesis in CRC progression and metastasis and provides a novel gene signature for CRC and novel therapeutic strategies for anti-lymphangiogenic therapies in CRC.
Collapse
Affiliation(s)
- Hong Liu
- Department of General Surgery, Wuxi Fifth People's Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| | - Huiwen Shi
- Department of General Surgery, No.971 Hospital of PLA Navy, Qingdao, China
| | - Yinggang Sun
- Department of General Surgery, The 960th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Jinan, China.
| |
Collapse
|
16
|
Peng P, Li N, Zhang N, Fu X, Peng S, Zhao Y, Ai B. Identifying Luteolin as a Potential Drug for Treating Lung Adenocarcinoma with COVID-19 Affection based on Integration Analysis of Pharmacology and Transcriptome. Curr Med Chem 2024; 31:5432-5447. [PMID: 37694790 DOI: 10.2174/0929867331666230908090326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a major type of lung cancer worldwide, and under the pandemic coronavirus disease 2019 (COVID-19), its cancer burden is enlarged. This study aimed to explore potential drug targets and potential drugs for developing effective treatments for patients with both lung cancer and COVID-19. METHODS The interaction network of molecule compounds-target genes was constructed based on Traditional Chinese Medicines (TCMs) and gene expression data from public databases. The potential effectiveness of drugs was analyzed by molecular docking and molecular dynamics simulation. Western blot, transfection assay, Immunohistochemistry (IHC) staining, and flow cytometry were performed to investigate the function of HSP90AA1 in LUAD cells. RESULT Eight target genes (GSK3B, HMOX1, HSP90AA1, ICAM1, MAPK1, PLAU, RELA and TNFSF15.) were identified, and two of them (HSP90AA1 and RELA) were significantly associated with LUAD prognosis. Luteolin was discovered to bind with HSP90AA1. Moreover, in vitro cell experiments demonstrated that HSP90AA1 had higher expression in A549 cells, promoted cell viability and suppressed apoptosis in A549 cells and H1299 cells. CONCLUSION HSP90AA1 was a target gene for further designing effective drugs for LUAD patients. Luteolin was a potential drug for treating patients with both LUAD and COVID-19.
Collapse
Affiliation(s)
- Ping Peng
- Department of thoracic surgery, Tongji Hospital, Wuhan, 430000, China
| | - Na Li
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, Yuce Biotechnology Co., Ltd, Shenzhen, 518000, China
| | - Ni Zhang
- Department of thoracic surgery, Tongji Hospital, Wuhan, 430000, China
| | - Xiangning Fu
- Department of thoracic surgery, Tongji Hospital, Wuhan, 430000, China
| | - Shu Peng
- Department of thoracic surgery, Tongji Hospital, Wuhan, 430000, China
| | - Yujie Zhao
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, Yuce Biotechnology Co., Ltd, Shenzhen, 518000, China
| | - Bo Ai
- Department of thoracic surgery, Tongji Hospital, Wuhan, 430000, China
| |
Collapse
|
17
|
Singh P, Ramanathan V, Zhang Y, Georgakoudi I, Jay DG. Extracellular Hsp90 Binds to and Aligns Collagen-1 to Enhance Breast Cancer Cell Invasiveness. Cancers (Basel) 2023; 15:5237. [PMID: 37958410 PMCID: PMC10648158 DOI: 10.3390/cancers15215237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Cancer cell-secreted eHsp90 binds and activates proteins in the tumor microenvironment crucial in cancer invasion. Therefore, targeting eHsp90 could inhibit invasion, preventing metastasis-the leading cause of cancer-related mortality. Previous eHsp90 studies have solely focused on its role in cancer invasion through the 2D basement membrane (BM), a form of extracellular matrix (ECM) that lines the epithelial compartment. However, its role in cancer invasion through the 3D Interstitial Matrix (IM), an ECM beyond the BM, remains unexplored. Using a Collagen-1 binding assay and second harmonic generation (SHG) imaging, we demonstrate that eHsp90 directly binds and aligns Collagen-1 fibers, the primary component of IM. Furthermore, we show that eHsp90 enhances Collagen-1 invasion of breast cancer cells in the Transwell assay. Using Hsp90 conformation mutants and inhibitors, we established that the Hsp90 dimer binds to Collagen-1 via its N-domain. We also demonstrated that while Collagen-1 binding and alignment are not influenced by Hsp90's ATPase activity attributed to the N-domain, its open conformation is crucial for increasing Collagen-1 alignment and promoting breast cancer cell invasion. These findings unveil a novel role for eHsp90 in invasion through the IM and offer valuable mechanistic insights into potential therapeutic approaches for inhibiting Hsp90 to suppress invasion and metastasis.
Collapse
Affiliation(s)
- Pragya Singh
- Department of Developmental, Molecular and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; (P.S.); (I.G.)
| | - Varshini Ramanathan
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155, USA; (V.R.); (Y.Z.)
| | - Yang Zhang
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155, USA; (V.R.); (Y.Z.)
| | - Irene Georgakoudi
- Department of Developmental, Molecular and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; (P.S.); (I.G.)
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155, USA; (V.R.); (Y.Z.)
| | - Daniel G. Jay
- Department of Developmental, Molecular and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; (P.S.); (I.G.)
| |
Collapse
|
18
|
Li J, Yu J, Huang W, Sang F, Li J, Ren Y, Huang H, Wang M, Li K, Zhang J, Li H, Cui X, Zhang J, Hu M, Yuan F, Guo W, Zhang F, Mu H, Hu Y. Extracellular HSP90 promotes differentiation of lens epithelial cells to fiber cells by activating LRP1-YAP-PROX1 axis. FASEB J 2023; 37:e22783. [PMID: 36705056 DOI: 10.1096/fj.202201187rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
Capsular residual lens epithelial cells (CRLEC) undergo differentiation to fiber cells for lens regeneration or tansdifferentiation to myofibroblasts leading to posterior capsular opacification (PCO) after cataract surgery. The underlying regulatory mechanism remains unclear. Using human lens epithelial cell lines and the ex vivo cultured rat lens capsular bag model, we found that the lens epithelial cells secrete HSP90α extracellularly (eHSP90) through an autophagy-associated pathway. Administration of recombinant GST-HSP90α protein or its M-domain induces the elongation of rat CRLEC cells with concomitant upregulation of the crucial fiber cell transcriptional factor PROX1and its downstream targets, β- and γ-crystallins and structure proteins. This regulation is abolished by PROX1 siRNA. GST-HSP90α upregulates PROX1 by binding to LRP1 and activating LRP1-AKT mediated YAP degradation. The upregulation of GST-HSP90α on PROX1 expression and CRLEC cell elongation is inhibited by LRP1 and AKT inhibitors, but activated by YAP-1 inhibitor (VP). These data demonstrated that the capsular residue epithelial cells upregulate and secrete eHSP90α, which in turn drive the differentiation of lens epithelial cell to fiber cells. The recombinant HSP90α protein is a potential novel differentiation regulator during lens regeneration.
Collapse
Affiliation(s)
- Jing Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China.,Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| | - Jingjing Yu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Weikang Huang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Fan Sang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Junmin Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Yanzhu Ren
- Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| | - Huili Huang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Mingli Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Kejia Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Xiukun Cui
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Jing Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Mengyue Hu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Fengling Yuan
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Weikai Guo
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Fengyan Zhang
- Department of ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongmei Mu
- Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China.,Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China.,Department of ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Hashemi M, Arani HZ, Orouei S, Fallah S, Ghorbani A, Khaledabadi M, Kakavand A, Tavakolpournegari A, Saebfar H, Heidari H, Salimimoghadam S, Entezari M, Taheriazam A, Hushmandi K. EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions. Biomed Pharmacother 2022; 155:113774. [DOI: 10.1016/j.biopha.2022.113774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
|
20
|
Su K, Liu Y, Wang P, He K, Wang F, Chi H, Rao M, Li X, Wen L, Song Y, Zhang J, Gu T, Xu K, Li Q, Chen J, Wu Z, Li H, Huang W, Chen L, Tong J, Li H, Feng X, Chen S, Yang B, Jin H, Yang Y, Liu H, Yang C, Wu M, Xiong F, Peng K, Zhu L, Xu Y, Tang X, Tan Z, Luo X, Zheng H, Zhang Y, Guo L, Han Y. Heat-shock protein 90α is a potential prognostic and predictive biomarker in hepatocellular carcinoma: a large-scale and multicenter study. Hepatol Int 2022; 16:1208-1219. [PMID: 35972640 PMCID: PMC9525341 DOI: 10.1007/s12072-022-10391-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/09/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Although the diagnostic value of plasma heat-shock protein 90α (HSP90α) in hepatocellular carcinoma (HCC) has been previously reported, the causal effect of the plasma HSP90α levels on HCC prognosis remains largely unclear. To this extent, we sought to assess whether the plasma HSP90α acts as a prognostic factor for HCC patients. METHODS A total of 2150 HCC patients were included in this retrospective study between August 2016 and July 2021. Plasma HSP90α levels were tested within a week before treatment and their association with prognosis was assessed. RESULTS An optimal cutoff value of 143.5 for the HSP90α based on the overall survival (OS) was determined using the X-tile software. HCC patients with HSP90α < 143.5 ng/mL (low HSP90α) before and after propensity score matching (PSM) indicated longer median OS (mOS) relative to those with HSP90α ≥ 143.5 ng/mL (high HSP90α) (37.0 vs. 9.0 months, p < 0.001; 19.2 vs. 9.6 months, p < 0.001; respectively). In addition, the high HSP90α plasma level is an independent poor prognostic factor for OS in HCC patients. In our subgroup analysis, including the supportive care group, surgery group, transarterial chemoembolization (TACE) group, adjuvant TACE group, an immune checkpoint inhibitor (ICI) plus targeted therapy group, and TACE plus ICI group, the high HSP90α group demonstrated better OS compared to the low HSP90α group. Moreover, in the supportive care, TACE, ICI plus targeted therapy, TACE plus ICI groups, and high HSP90α levels were also an independent poor prognostic factors for OS. CONCLUSIONS Our study confirmed that the plasma HSP90α level can be used as a prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Ke Su
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China
| | - Yanlin Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China
| | - Pan Wang
- Clinical Skills Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Kun He
- Clinical Research Institute, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Fei Wang
- Department of General Surgery, Luxian People's Hospital, Luzhou, 646199, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Mingyue Rao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China
| | - Xueting Li
- Department of Oncology, 363 Hospital, Chengdu, 610041, China
| | - Lianbin Wen
- Department of Geriatric Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Yanqiong Song
- Department of Radiotherapy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610042, China
| | - Jianwen Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China
| | - Tao Gu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China
| | - Ke Xu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China
| | - Qi Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China
| | - Jiali Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China
| | - Zhenying Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China
| | - Han Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China
| | - Weihong Huang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Lan Chen
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jian Tong
- Department of Spinal Surgery, No.1 Orthopedics Hospital of Chengdu, Chengdu, 610000, China
| | - Hongyan Li
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xunjie Feng
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Siyu Chen
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Binbin Yang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Hongping Jin
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Yue Yang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Hanlin Liu
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Chao Yang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Ming Wu
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Fangyu Xiong
- Department of Medical Inspection Technology, Southwest Medical University, Luzhou, 646000, China
| | - Keyi Peng
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Lechuan Zhu
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Yaoyang Xu
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Xue Tang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Zunyuan Tan
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Xiaotong Luo
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Hanyue Zheng
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Yuxin Zhang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Lu Guo
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, China.
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 46000, Sichuan, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, China.
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, China.
| |
Collapse
|
21
|
Arkhypov I, Özbay Kurt FG, Bitsch R, Novak D, Petrova V, Lasser S, Hielscher T, Groth C, Lepper A, Hu X, Li W, Utikal J, Altevogt P, Umansky V. HSP90α induces immunosuppressive myeloid cells in melanoma via TLR4 signaling. J Immunother Cancer 2022; 10:e005551. [PMID: 36113897 PMCID: PMC9486388 DOI: 10.1136/jitc-2022-005551] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Tumor cells modulate host immunity by secreting extracellular vesicles (EV) and soluble factors. Their interactions with myeloid cells lead to the generation of myeloid-derived suppressor cells (MDSC), which inhibit the antitumor function of T and NK cells. We demonstrated previously that EV derived from mouse and human melanoma cells induced immunosuppressive activity via increased expression of programmed cell death ligand 1 (PD-L1) on myeloid cells that was dependent on the heat-shock protein 90α (HSP90α) in EV. Here, we investigated whether soluble HSP90α could convert monocytes into MDSC. METHODS CD14 monocytes were isolated from the peripheral blood of healthy donors, incubated with human recombinant HSP90α (rHSP90α) alone or in the presence of inhibitors of TLR4 signaling and analyzed by flow cytometry. Inhibition of T cell proliferation assay was applied to assess the immunosuppressive function of rHSP90α-treated monocytes. HSP90α levels were measured by ELISA in plasma of patients with advanced melanoma and correlated with clinical outcome. RESULTS We found that the incubation of monocytes with rHSP90α resulted in a strong upregulation of PD-L1 expression, whereas reactive oxygen species (ROS) and nitric oxide (NO) production as well as the expression of arginase-1, ectoenzymes CD39 and CD73 remained unchanged. The PD-L1 upregulation was blocked by anti-TLR4 antibodies and a nuclear factor-κB inhibitor. rHSP90α-treated monocytes displayed the downregulation of HLA-DR expression and acquired the resistance to apoptosis. Moreover, these monocytes were converted into MDSC as indicated by their capacity to inhibit T cell proliferation, which was mediated by TLR4 signaling as well as PD-L1 and indoleamine 2,3-dioxygenase (IDO) 1 expression. Higher levels of HSP90α in plasma of patients with melanoma correlated with augmented PD-L1 expression on circulating monocytic (M)-MDSC. Patients with melanoma with high levels of HSP90α displayed shorter progression-free survival (PFS) on the treatment with immune checkpoint inhibitors (ICIs). CONCLUSION Our findings demonstrated that soluble rHSP90α increased the resistance of normal human monocytes to apoptosis and converted them into immunosuppressive MDSC via TLR4 signaling that stimulated PD-L1 and IDO-1 expression. Furthermore, patients with melanoma with high concentrations of HSP90α displayed increased PD-L1 expression on M-MDSC and reduced PFS after ICI therapy, suggesting HSP90α as a promising therapeutic target for overcoming immunosuppression in melanoma.
Collapse
Affiliation(s)
- Ihor Arkhypov
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Centre, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
- DFKZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Feyza Gül Özbay Kurt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Centre, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
- DFKZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rebekka Bitsch
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Centre, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
- DFKZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Centre, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
- DFKZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Vera Petrova
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Centre, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
- DFKZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Samantha Lasser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Centre, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
- DFKZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher Groth
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Centre, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
- DFKZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alisa Lepper
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Centre, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
- DFKZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Xiaoying Hu
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Centre, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
- DFKZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Wei Li
- Department of Dermatology and the USC-Norris Comprehensive Cancer Centre, University of Southern California Keck Medical Center, Los Angeles, California, USA
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Centre, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
- DFKZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Centre, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
- DFKZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Centre, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
- DFKZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
22
|
Maiti S, Picard D. Cytosolic Hsp90 Isoform-Specific Functions and Clinical Significance. Biomolecules 2022; 12:1166. [PMID: 36139005 PMCID: PMC9496497 DOI: 10.3390/biom12091166] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
The heat shock protein 90 (Hsp90) is a molecular chaperone and a key regulator of proteostasis under both physiological and stress conditions. In mammals, there are two cytosolic Hsp90 isoforms: Hsp90α and Hsp90β. These two isoforms are 85% identical and encoded by two different genes. Hsp90β is constitutively expressed and essential for early mouse development, while Hsp90α is stress-inducible and not necessary for survivability. These two isoforms are known to have largely overlapping functions and to interact with a large fraction of the proteome. To what extent there are isoform-specific functions at the protein level has only relatively recently begun to emerge. There are studies indicating that one isoform is more involved in the functionality of a specific tissue or cell type. Moreover, in many diseases, functionally altered cells appear to be more dependent on one particular isoform. This leaves space for designing therapeutic strategies in an isoform-specific way, which may overcome the unfavorable outcome of pan-Hsp90 inhibition encountered in previous clinical trials. For this to succeed, isoform-specific functions must be understood in more detail. In this review, we summarize the available information on isoform-specific functions of mammalian Hsp90 and connect it to possible clinical applications.
Collapse
Affiliation(s)
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH-1211 Geneve, Switzerland
| |
Collapse
|
23
|
Sager RA, Khan F, Toneatto L, Votra SD, Backe SJ, Woodford MR, Mollapour M, Bourboulia D. Targeting extracellular Hsp90: A unique frontier against cancer. Front Mol Biosci 2022; 9:982593. [PMID: 36060252 PMCID: PMC9428293 DOI: 10.3389/fmolb.2022.982593] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular chaperone Heat Shock Protein-90 (Hsp90) is known to interact with over 300 client proteins as well as regulatory factors (eg. nucleotide and proteins) that facilitate execution of its role as a chaperone and, ultimately, client protein activation. Hsp90 associates transiently with these molecular modulators during an eventful chaperone cycle, resulting in acquisition of flexible structural conformations, perfectly customized to the needs of each one of its client proteins. Due to the plethora and diverse nature of proteins it supports, the Hsp90 chaperone machinery is critical for normal cellular function particularly in response to stress. In diseases such as cancer, the Hsp90 chaperone machinery is hijacked for processes which encompass many of the hallmarks of cancer, including cell growth, survival, immune response evasion, migration, invasion, and angiogenesis. Elevated levels of extracellular Hsp90 (eHsp90) enhance tumorigenesis and the potential for metastasis. eHsp90 has been considered one of the new targets in the development of anti-cancer drugs as there are various stages of cancer progression where eHsp90 function could be targeted. Our limited understanding of the regulation of the eHsp90 chaperone machinery is a major drawback for designing successful Hsp90-targeted therapies, and more research is still warranted.
Collapse
Affiliation(s)
- Rebecca A. Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Farzana Khan
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Lorenzo Toneatto
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - SarahBeth D. Votra
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Sarah J. Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Mark R. Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
- *Correspondence: Dimitra Bourboulia,
| |
Collapse
|
24
|
Huang B, Pan J, Liu H, Tang Y, Li S, Bian Y, Ning S, Li J, Zhang L. High Expression of Plasma Extracellular HSP90α is Associated With the Poor Efficacy of Chemotherapy and Prognosis in Small Cell Lung Cancer. Front Mol Biosci 2022; 9:913043. [PMID: 35898306 PMCID: PMC9309551 DOI: 10.3389/fmolb.2022.913043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose: eHSP90α is closely related to tumor progression and prognosis. This study aimed to investigate the significance of eHSP90α in the response evaluation and prediction of small cell lung cancer. Methods: We analyzed the relationship between eHSP90α expression and clinicopathological features in 105 patients with small cell lung cancer. Univariate and multivariate analyses were used to determine the association of parameters and ratios with response assessment, progression-free survival (PFS), and overall survival (OS). Results: In SCLC patients, eHSP90α and NSE were positively correlated. The cutoff values of eHSP90α in OS, PFS, and response evaluation were 61.2 ng/ml, 48.7 ng/ml, and 48.7 ng/ml, respectively. eHSP90α could better predict OS, PFS, and response evaluation (AUC OS 0.791, PFS 0.662, 0.685). Radiotherapy and eHSP90α were independent variables for effective chemotherapy through univariate and multivariate analysis. In contrast, radiotherapy, eHSP90α, NSE, and M stage were independent variables for OS. eHSP90α, and M stage were independent variables for PFS. Kaplan-Meier analysis showed that higher eHSP90α expression predicted poorer OS and earlier progression in patients. Conclusions: This study aims to provide new evidence for the efficacy response and prognostic assessment of SCLC. eHSP90α may be a better biomarker for SCLC.
Collapse
Affiliation(s)
- Baoyue Huang
- Department of Research, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
| | - Jinmiao Pan
- Department of Research, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
| | - Haizhou Liu
- Department of Research, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
- Department of Research, Guangxi Cancer Molecular Medicine Engineering Research Center, Nanning, China
| | - Yamei Tang
- Department of Research, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
| | - Shirong Li
- Department of Research, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
| | - Yingzhen Bian
- Department of Research, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
| | - Shufang Ning
- Department of Research, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
- Department of Research, Guangxi Cancer Molecular Medicine Engineering Research Center, Nanning, China
| | - Jilin Li
- Department of Research, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
- Department of Research, Guangxi Cancer Molecular Medicine Engineering Research Center, Nanning, China
- *Correspondence: Jilin Li, ; Litu Zhang,
| | - Litu Zhang
- Department of Research, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
- Department of Research, Guangxi Cancer Molecular Medicine Engineering Research Center, Nanning, China
- *Correspondence: Jilin Li, ; Litu Zhang,
| |
Collapse
|
25
|
Extracellular Heat Shock Protein-90 (eHsp90): Everything You Need to Know. Biomolecules 2022; 12:biom12070911. [PMID: 35883467 PMCID: PMC9313274 DOI: 10.3390/biom12070911] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/15/2022] Open
Abstract
“Extracellular” Heat Shock Protein-90 (Hsp90) was initially reported in the 1970s but was not formally recognized until 2008 at the 4th International Conference on The Hsp90 Chaperone Machine (Monastery Seeon, Germany). Studies presented under the topic of “extracellular Hsp90 (eHsp90)” at the conference provided direct evidence for eHsp90’s involvement in cancer invasion and skin wound healing. Over the past 15 years, studies have focused on the secretion, action, biological function, therapeutic targeting, preclinical evaluations, and clinical utility of eHsp90 using wound healing, tissue fibrosis, and tumour models both in vitro and in vivo. eHsp90 has emerged as a critical stress-responding molecule targeting each of the pathophysiological conditions. Despite the studies, our current understanding of several fundamental questions remains little beyond speculation. Does eHsp90 indeed originate from purposeful live cell secretion or rather from accidental dead cell leakage? Why did evolution create an intracellular chaperone that also functions as a secreted factor with reported extracellular duties that might be (easily) fulfilled by conventional secreted molecules? Is eHsp90 a safer and more optimal drug target than intracellular Hsp90 chaperone? In this review, we summarize how much we have learned about eHsp90, provide our conceptual views of the findings, and make recommendations on the future studies of eHsp90 for clinical relevance.
Collapse
|
26
|
Pan- and isoform-specific inhibition of Hsp90: Design strategy and recent advances. Eur J Med Chem 2022; 238:114516. [DOI: 10.1016/j.ejmech.2022.114516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/11/2022]
|
27
|
Chen S, Tian Y, Ju A, Li B, Fu Y, Luo Y. Suppression of CCT3 Inhibits Tumor Progression by Impairing ATP Production and Cytoplasmic Translation in Lung Adenocarcinoma. Int J Mol Sci 2022; 23:ijms23073983. [PMID: 35409343 PMCID: PMC9000022 DOI: 10.3390/ijms23073983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022] Open
Abstract
Heat shock proteins are highly expressed in various cancers and exert critical functions in tumor progression. However, their expression patterns and functions in lung adenocarcinoma (LUAD) remain largely unknown. We identified that chaperonin-containing T-complex protein-1 subunit 3 (CCT3) was highly expressed in LUAD cells and was positively correlated with LUAD malignancy in the clinical samples. Animal studies showed that silencing CCT3 dramatically inhibited tumor growth and metastasis of LUAD. Proliferation and migration were markedly suppressed in CCT3-deficient LUAD cells. Moreover, the knockdown of CCT3 promoted apoptosis and cell cycle arrest. Mechanistically, the function of glycolysis was significantly inhibited and the total intracellular ATP levels were reduced by at least 25% in CCT3-deficient cells. In addition, the knockdown of CCT3 decreased the protein translation and led to a significant reduction in eukaryotic translation initiation factor 3 (EIF3G) protein, which was identified as a protein that interacts with CCT3. Impaired protein synthesis and cell growth in EIF3G-deficient cells were consistent with those caused by CCT3 knockdown in LUAD cells. Taken together, our study demonstrated in multiple ways that CCT3 is a critical factor for supporting growth and metastasis of LUAD, and for the first time, its roles in maintaining intracellular ATP levels and cytoplasmic translation are reported. Our novel findings provide a potential therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Shuohua Chen
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (S.C.); (Y.T.); (A.J.); (B.L.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
| | - Yang Tian
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (S.C.); (Y.T.); (A.J.); (B.L.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
| | - Anji Ju
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (S.C.); (Y.T.); (A.J.); (B.L.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
| | - Boya Li
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (S.C.); (Y.T.); (A.J.); (B.L.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
| | - Yan Fu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (S.C.); (Y.T.); (A.J.); (B.L.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
| | - Yongzhang Luo
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (S.C.); (Y.T.); (A.J.); (B.L.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
28
|
Radiofrequency Irradiation Mitigated UV-B-Induced Skin Pigmentation by Increasing Lymphangiogenesis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020454. [PMID: 35056769 PMCID: PMC8780734 DOI: 10.3390/molecules27020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 11/18/2022]
Abstract
Dermal macrophages containing melanin increase skin pigmentation since dermal melanin removal is slower than epidermal melanin removal. Lymphatic vessels are also involved in melanin clearance. We evaluated whether radiofrequency (RF) irradiation induced an increase in HSP90, which promotes lymphangiogenesis by activating the BRAF/MEK/ERK pathway and decreasing tyrosinase activity, in the UV-B exposed animal model. The HSP90/BRAF/MEK/ERK pathway was upregulated by RF. Tyrosinase activity and the VEGF-C/VEGFR 3/PI3K/pAKT1/2/pERK1/2 pathway, which increase lymphangiogenesis, as well as the expression of the lymphatic endothelial marker LYVE-1, were increased by RF. Additionally, the number of melanin-containing dermal macrophages, the melanin content in the lymph nodes, and melanin deposition in the skin were decreased by RF. In conclusion, RF increased HSP90/BRAF/MEK/ERK expression, which decreased tyrosinase activity and increased lymphangiogenesis to eventually promote the clearance of dermal melanin-containing macrophages, thereby decreasing skin pigmentation.
Collapse
|
29
|
Natale G, Stouthandel MEJ, Van Hoof T, Bocci G. The Lymphatic System in Breast Cancer: Anatomical and Molecular Approaches. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1272. [PMID: 34833492 PMCID: PMC8624129 DOI: 10.3390/medicina57111272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022]
Abstract
Breast cancer is one of the most important causes of premature mortality among women and it is one of the most frequently diagnosed tumours worldwide. For this reason, routine screening for prevention and early diagnosis is important for the quality of life of patients. Breast cancer cells can enter blood and lymphatic capillaries, then metastasizing to the regional lymph nodes in the axilla and to both visceral and non-visceral sites. Rather than at the primary site, they seem to enter the systemic circulation mainly through the sentinel lymph node and the biopsy of this indicator can influence the axillary dissection during the surgical approach to the pathology. Furthermore, secondary lymphoedema is another important issue for women following breast cancer surgical treatment or radiotherapy. Considering these fundamental aspects, the present article aims to describe new methodological approaches to assess the anatomy of the lymphatic network in the axillary region, as well as the molecular and physiological control of lymphatic vessel function, in order to understand how the lymphatic system contributes to breast cancer disease. Due to their clinical implications, the understanding of the molecular mechanisms governing lymph node metastasis in breast cancer are also examined. Beyond the investigation of breast lymphatic networks and lymphatic molecular mechanisms, the discovery of new effective anti-lymphangiogenic drugs for future clinical settings appears essential to support any future development in the treatment of breast cancer.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Museum of Human Anatomy “Filippo Civinini”, University of Pisa, 56126 Pisa, Italy
| | - Michael E. J. Stouthandel
- Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (M.E.J.S.); (T.V.H.)
| | - Tom Van Hoof
- Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (M.E.J.S.); (T.V.H.)
| | - Guido Bocci
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
30
|
Poggio P, Sorge M, Seclì L, Brancaccio M. Extracellular HSP90 Machineries Build Tumor Microenvironment and Boost Cancer Progression. Front Cell Dev Biol 2021; 9:735529. [PMID: 34722515 PMCID: PMC8551675 DOI: 10.3389/fcell.2021.735529] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
HSP90 is released by cancer cells in the tumor microenvironment where it associates with different co-chaperones generating complexes with specific functions, ranging from folding and activation of extracellular clients to the stimulation of cell surface receptors. Emerging data indicate that these functions are essential for tumor growth and progression. The understanding of the exact composition of extracellular HSP90 complexes and the molecular mechanisms at the basis of their functions in the tumor microenvironment may represent the first step to design innovative diagnostic tools and new effective therapies. Here we review the impact of extracellular HSP90 complexes on cancer cell signaling and behavior.
Collapse
Affiliation(s)
- Pietro Poggio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
31
|
Wang YY, Liu C, Chen X, Ji J, Zhu SL, Sun Q, Zhang K, Zhu J, Zhao S, Wang YW, Ma R, Wang JL. Heat shock protein 90α in nipple discharge as a potential tumor marker for breast cancer. CHINESE J PHYSIOL 2021; 64:251-256. [PMID: 34708717 DOI: 10.4103/cjp.cjp_72_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Heat shock protein 90α (HSP90α) has been confirmed to be upregulated in the blood in various types of tumors and may therefore serve as a potential tumor marker. However, whether HSP90α exists in nipple discharge remains unknown, and its expression and diagnostic value in nipple discharge remain unclear. In this study, the expression of HSP90α, carcinoembryonic antigen (CEA), and cancer antigen 153 in nipple discharge and blood from 128 patients was measured. Receiver operating characteristic curve was used to assess the diagnostic value of HSP90α. Further, its relationship with clinicopathological parameters of patients with breast cancer was analyzed. The results showed that the expression of HSP90α in nipple discharge was significantly higher in patients with breast cancer than in those with benign disease, and its diagnostic value was better than that of CEA. Combination of HSP90α and CEA showed better diagnostic efficacy than HSP90α or CEA alone. Moreover, the expression of HSP90α displayed a stepwise increase from benign lesions, followed by carcinoma in situ to invasive ductal carcinoma. HSP90α was positively correlated with Ki67 expression. However, there was no significant difference in the expression of HSP90α in blood between patients with breast cancer and benign disease. Further, the expression of HSP90α was higher in nipple discharge than in blood. In summary, HSP90α was upregulated in the nipple discharge of patients with breast cancer, and it may be related to the occurrence and progression of breast cancer. HSP90α in nipple discharge may serve as a potential diagnostic marker for breast cancer.
Collapse
Affiliation(s)
- Yan-Yan Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University; Health Management Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Can Liu
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xu Chen
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jian Ji
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Sheng-Lin Zhu
- Health Management Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qi Sun
- Health Management Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Kai Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiang Zhu
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Song Zhao
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ya-Wen Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Rong Ma
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jian-Li Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|