1
|
Chen Y, Pan Y, Xie Y, Shi Y, Lu Y, Xia Y, Su W, Chen X, Li Z, Wang M, Miao S, Yang Y, Jin C, Luo G, Long S, Xiao H, Huang C, Zhang J, Liang D. Efficacy and safety of minocycline in retinitis pigmentosa: a prospective, open-label, single-arm trial. Signal Transduct Target Ther 2024; 9:339. [PMID: 39627217 PMCID: PMC11615376 DOI: 10.1038/s41392-024-02037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
Retinitis pigmentosa (RP) is characterized by progressive photoreceptor cells death accelerated by the proliferation and activation of microglia pathologically. No consensus exists on the treatment. Minocycline is recognized as a microglia inhibitor with great anti-inflammatory and neuro-protective functions. However, efficacy of minocycline in RP patients is lacking. We conducted a prospective, open-label, and single-arm trial, in which daily oral minocycline of 100 mg was administered for 12 months in RP patients with light-adapted 30 Hz flicker electroretinography (ERG) amplitude >0 µV in at least one eye (NCT04068207). The primary outcome was the proportion of participants with improvement in the ERG amplitude at month 12. The secondary outcomes included improvements of the following items: other ERGs amplitudes, visual field, best-corrected visual acuity, contrast sensitivity, color vision, and NEI-VFQ-25. 35 of 288 patients met inclusive criteria were enrolled (median [IQR] age, 36 [31-45] years; 17 female [48.6%]). 32 participants completed all examinations, while 3 participants completed the 12-month online visit via conducting NEI-VFQ-25. The primary outcome showed improvement was 34.3% (12 of 35 [95% CI 19.1-52.2]). Similarly, all secondary outcomes showed improvements. Adverse events were reported in 22 participants (62.9%) and were all resolved without extra medication during the study period. No severe adverse events were recorded. Our findings identified daily oral minocycline of 100 mg for 12 months was beneficial in improving the visual function of RP patients with good safety. This study indicates minocycline may be a promising therapy for RP, but a randomized controlled trial is still needed of further exploration.
Collapse
Affiliation(s)
- Yuxi Chen
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yuan Pan
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yanyan Xie
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yuxun Shi
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yao Lu
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yiwen Xia
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Wenru Su
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Xiaoqing Chen
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Zuoyi Li
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Minzhen Wang
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Siyu Miao
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yating Yang
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Chenjin Jin
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Guangwei Luo
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Shixian Long
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Hui Xiao
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Chuangxin Huang
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Jian Zhang
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.
| | - Dan Liang
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.
| |
Collapse
|
2
|
Liao C, Chen S, Chen X, Yi W, Fan Y, Chen Y, Ye T, Chen Y. Inhibition of JNK ameliorates rod photoreceptor degeneration in a mouse model of retinitis pigmentosa. FEBS Lett 2024; 598:2683-2701. [PMID: 39010325 DOI: 10.1002/1873-3468.14978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 07/17/2024]
Abstract
Retinitis pigmentosa (RP) is an inherited eye disease that causes progressive vision loss. Microglial activation and inflammation play essential roles in photoreceptor degeneration in RP, although the underlying mechanisms remain unclear. Here, we examined the progressive degeneration of photoreceptors in rd1 mice, a mouse model of RP. We investigated the molecular changes in various retinal cells in rd1 mice using single-cell RNA sequencing and found that potentiation of JNK signaling is associated with photoreceptor degeneration in RP. Moreover, inflammation-related molecules, which function downstream of JNK, are elevated in RP. Furthermore, inhibiting JNK alleviates microglial activation and rescues photoreceptor degeneration in rd1 mice. Thus, our findings suggest that targeting JNK is a promising approach for slowing RP progression.
Collapse
Affiliation(s)
- Chunyan Liao
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Shuai Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuxu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Wanying Yi
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, China
| | - Yingying Fan
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, China
| | - Tao Ye
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, China
| |
Collapse
|
3
|
Flores A, Fernández-Sánchez L, Kutsyr O, Lax P, Yáñez A, Gil ML, Gozalbo D, Maneu V. Non-haematopoietic Sca-1 + Cells in the Retina of Adult Mice Express Functional TLR2. Stem Cell Rev Rep 2024; 20:845-851. [PMID: 38183535 DOI: 10.1007/s12015-023-10674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
The mammal retina does not have the capacity to regenerate throughout life, although some stem and progenitor cells persist in the adult retina and might retain multipotentiality, as previously described in many tissues. In this work we demonstrate the presence of a small lineage- Sca-1+ cell population in the adult mouse retina which expresses functional TLR2 receptors as in vitro challenge with the pure TLR2 agonist Pam3CSK4 increases cell number and upregulates TLR2. Therefore, this population could be of interest in neuroregeneration studies to elucidate its role in these processes.
Collapse
Affiliation(s)
- Ana Flores
- Departamento de Microbiología y Ecología, Universitat de València, Valencia, Spain
| | | | - Oksana Kutsyr
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain
| | - Pedro Lax
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Alberto Yáñez
- Departamento de Microbiología y Ecología, Universitat de València, Valencia, Spain
| | - María Luisa Gil
- Departamento de Microbiología y Ecología, Universitat de València, Valencia, Spain
| | - Daniel Gozalbo
- Departamento de Microbiología y Ecología, Universitat de València, Valencia, Spain
| | - Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
4
|
Brandli A, Vessey KA, Fletcher EL. The contribution of pattern recognition receptor signalling in the development of age related macular degeneration: the role of toll-like-receptors and the NLRP3-inflammasome. J Neuroinflammation 2024; 21:64. [PMID: 38443987 PMCID: PMC10913318 DOI: 10.1186/s12974-024-03055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss, characterised by the dysfunction and death of the photoreceptors and retinal pigment epithelium (RPE). Innate immune cell activation and accompanying para-inflammation have been suggested to contribute to the pathogenesis of AMD, although the exact mechanism(s) and signalling pathways remain elusive. Pattern recognition receptors (PRRs) are essential activators of the innate immune system and drivers of para-inflammation. Of these PRRs, the two most prominent are (1) Toll-like receptors (TLR) and (2) NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3)-inflammasome have been found to modulate the progression of AMD. Mutations in TLR2 have been found to be associated with an increased risk of developing AMD. In animal models of AMD, inhibition of TLR and NLRP3 has been shown to reduce RPE cell death, inflammation and angiogenesis signalling, offering potential novel treatments for advanced AMD. Here, we examine the evidence for PRRs, TLRs2/3/4, and NLRP3-inflammasome pathways in macular degeneration pathogenesis.
Collapse
Affiliation(s)
- Alice Brandli
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Kirstan A Vessey
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
5
|
Bighinati A, Adani E, Stanzani A, D’Alessandro S, Marigo V. Molecular mechanisms underlying inherited photoreceptor degeneration as targets for therapeutic intervention. Front Cell Neurosci 2024; 18:1343544. [PMID: 38370034 PMCID: PMC10869517 DOI: 10.3389/fncel.2024.1343544] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Retinitis pigmentosa (RP) is a form of retinal degeneration characterized by primary degeneration of rod photoreceptors followed by a secondary cone loss that leads to vision impairment and finally blindness. This is a rare disease with mutations in several genes and high genetic heterogeneity. A challenging effort has been the characterization of the molecular mechanisms underlying photoreceptor cell death during the progression of the disease. Some of the cell death pathways have been identified and comprise stress events found in several neurodegenerative diseases such as oxidative stress, inflammation, calcium imbalance and endoplasmic reticulum stress. Other cell death mechanisms appear more relevant to photoreceptor cells, such as high levels of cGMP and metabolic changes. Here we review some of the cell death pathways characterized in the RP mutant retina and discuss preclinical studies of therapeutic approaches targeting the molecular outcomes that lead to photoreceptor cell demise.
Collapse
Affiliation(s)
- Andrea Bighinati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Adani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Agnese Stanzani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara D’Alessandro
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Neuroscience and Neurotechnology, Modena, Italy
| |
Collapse
|
6
|
Sánchez-Cruz A, de la Rosa EJ, Hernández-Sánchez C. TLR2 Is Highly Overexpressed in Retinal Myeloid Cells in the rd10 Mouse Model of Retinitis Pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:409-413. [PMID: 37440065 DOI: 10.1007/978-3-031-27681-1_60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Retinitis pigmentosa (RP) is a genetically heterogeneous disease and the predominant cause of hereditary blindness. Irrespective of the causative mutation, traits common to all forms of RP include photoreceptor dysfunction and death, activation of the retinal glial component, and retinal inflammation. Activation of Toll-like receptors (TLRs) in response to tissue damage is associated with inflammatory processes that contribute to neurodegeneration. We show that retinal expression of the genes Tlr1 to Tlr9 is increased in the rd10 mouse model of RP, with Tlr2 showing the greatest increase (36-fold). Flow cytometry analysis of the retinal myeloid population revealed significant increases in numbers of microglia and infiltrating monocytes and macrophages in rd10 retinas. Furthermore, TLR2 expression, which was restricted to myeloid cells, was increased in rd10 retinal microglia. These observations, together with our previous finding of delayed RP progression following Tlr2 deletion, point to TLR2 as a potential therapeutic target for RP.
Collapse
Affiliation(s)
- Alonso Sánchez-Cruz
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Enrique J de la Rosa
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Catalina Hernández-Sánchez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain.
| |
Collapse
|
7
|
Zhao L, Hou C, Yan N. Neuroinflammation in retinitis pigmentosa: Therapies targeting the innate immune system. Front Immunol 2022; 13:1059947. [PMID: 36389729 PMCID: PMC9647059 DOI: 10.3389/fimmu.2022.1059947] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is an important cause of irreversible blindness worldwide and lacks effective treatment strategies. Although mutations are the primary cause of RP, research over the past decades has shown that neuroinflammation is an important cause of RP progression. Due to the abnormal activation of immunity, continuous sterile inflammation results in neuron loss and structural destruction. Therapies targeting inflammation have shown their potential to attenuate photoreceptor degeneration in preclinical models. Regardless of variations in genetic background, inflammatory modulation is emerging as an important role in the treatment of RP. We summarize the evidence for the role of inflammation in RP and mention therapeutic strategies where available, focusing on the modulation of innate immune signals, including TNFα signaling, TLR signaling, NLRP3 inflammasome activation, chemokine signaling and JAK/STAT signaling. In addition, we describe epigenetic regulation, the gut microbiome and herbal agents as prospective treatment strategies for RP in recent advances.
Collapse
Affiliation(s)
- Ling Zhao
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Hou
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Naihong Yan
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Naihong Yan,
| |
Collapse
|
8
|
Roles of CSF2 as a modulator of inflammation during retinal degeneration. Cytokine 2022; 158:155996. [PMID: 35988458 DOI: 10.1016/j.cyto.2022.155996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
Abstract
Colony-stimulating factor 2 (CSF2) is a potent cytokine that stimulates myeloid cells, such as dendritic cells and macrophages. We have been analyzing the roles of microglia in retinal degeneration through the modulation of inflammation in the eye, and examined the roles of CSF2 in this process. Both subunits of the CSF2 receptor are expressed in microglia, but no evidence suggesting the involvement of CSF2 in inflammation in the degenerating eye has been reported. We found that Csf2 transcripts were induced in the early phase of in vitro mouse adult retina culture, used as degeneration models, suggesting that CSF2 induction is one of the earliest events occurring in the pathology of retinal degeneration. The administration of CSF2 into the retina after systemic NaIO3 treatment increased the number of microglia. To examine the roles of CSF2 in retinal inflammation, we overexpressed CSF2 in retinal explants. Induction of CSF2 activated microglia and Müller glia, and the layer structure of the retina was severely perturbed. CC motif chemokine ligand 2 (Ccl2) and C-X-C motif chemokine ligand 10 (Cxcl10), both of which are expressed in activated microglia, were strongly induced by the expression of CSF2 in the retina. The addition of CSF2 to primary retinal microglia and the microglial cell lines MG5 and BV2 showed statistically significant increase in Ccl2 and Il1b transcripts. Furthermore, CSF2 induced proliferation, migration, and phagocytosis in MG5 and/or BV2. The effects of CSF2 on microglia were mild, suggesting that CSF2 induced strong inflammation in the context of the retinal environment.
Collapse
|
9
|
Insulin receptor activation by proinsulin preserves synapses and vision in retinitis pigmentosa. Cell Death Dis 2022; 13:383. [PMID: 35444190 PMCID: PMC9021205 DOI: 10.1038/s41419-022-04839-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
Abstract
Synaptic loss, neuronal death, and circuit remodeling are common features of central nervous system neurodegenerative disorders. Retinitis pigmentosa (RP), the leading cause of inherited blindness, is a group of retinal dystrophies characterized by photoreceptor dysfunction and death. The insulin receptor, a key controller of metabolism, also regulates neuronal survival and synaptic formation, maintenance, and activity. Indeed, deficient insulin receptor signaling has been implicated in several brain neurodegenerative pathologies. We present evidence linking impaired insulin receptor signaling with RP. We describe a selective decrease in the levels of the insulin receptor and its downstream effector phospho-S6 in retinal horizontal cell terminals in the rd10 mouse model of RP, as well as aberrant synapses between rod photoreceptors and the postsynaptic terminals of horizontal and bipolar cells. A gene therapy strategy to induce sustained proinsulin, the insulin precursor, production restored retinal insulin receptor signaling, by increasing S6 phosphorylation, without peripheral metabolic consequences. Moreover, proinsulin preserved photoreceptor synaptic connectivity and prolonged visual function in electroretinogram and optomotor tests. These findings point to a disease-modifying role of insulin receptor and support the therapeutic potential of proinsulin in retinitis pigmentosa.
Collapse
|
10
|
Titi-Lartey O, Mohammed I, Amoaku WM. Toll-Like Receptor Signalling Pathways and the Pathogenesis of Retinal Diseases. FRONTIERS IN OPHTHALMOLOGY 2022; 2:850394. [PMID: 38983565 PMCID: PMC11182157 DOI: 10.3389/fopht.2022.850394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 07/11/2024]
Abstract
There is growing evidence that the pathogenesis of retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD) have a significant chronic inflammatory component. A vital part of the inflammatory cascade is through the activation of pattern recognition receptors (PRR) such as toll-like receptors (TLR). Here, we reviewed the past and current literature to ascertain the cumulative knowledge regarding the effect of TLRs on the development and progression of retinal diseases. There is burgeoning research demonstrating the relationship between TLRs and risk of developing retinal diseases, utilising a range of relevant disease models and a few large clinical investigations. The literature confirms that TLRs are involved in the development and progression of retinal diseases such as DR, AMD, and ischaemic retinopathy. Genetic polymorphisms in TLRs appear to contribute to the risk of developing AMD and DR. However, there are some inconsistencies in the published reports which require further elucidation. The evidence regarding TLR associations in retinal dystrophies including retinitis pigmentosa is limited. Based on the current evidence relating to the role of TLRs, combining anti-VEGF therapies with TLR inhibition may provide a longer-lasting treatment in some retinal vascular diseases.
Collapse
Affiliation(s)
| | | | - Winfried M. Amoaku
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
11
|
Mahaling B, Low SWY, Beck M, Kumar D, Ahmed S, Connor TB, Ahmad B, Chaurasia SS. Damage-Associated Molecular Patterns (DAMPs) in Retinal Disorders. Int J Mol Sci 2022; 23:ijms23052591. [PMID: 35269741 PMCID: PMC8910759 DOI: 10.3390/ijms23052591] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules released from the extracellular and intracellular space of damaged tissue or dead cells. Recent evidence indicates that DAMPs are associated with the sterile inflammation caused by aging, increased ocular pressure, high glucose, oxidative stress, ischemia, mechanical trauma, stress, or environmental conditions, in retinal diseases. DAMPs activate the innate immune system, suggesting their role to be protective, but may promote pathological inflammation and angiogenesis in response to the chronic insult or injury. DAMPs are recognized by specialized innate immune receptors, such as receptors for advanced glycation end products (RAGE), toll-like receptors (TLRs) and the NOD-like receptor family (NLRs), and purine receptor 7 (P2X7), in systemic diseases. However, studies describing the role of DAMPs in retinal disorders are meager. Here, we extensively reviewed the role of DAMPs in retinal disorders, including endophthalmitis, uveitis, glaucoma, ocular cancer, ischemic retinopathies, diabetic retinopathy, age-related macular degeneration, rhegmatogenous retinal detachment, proliferative vitreoretinopathy, and inherited retinal disorders. Finally, we discussed DAMPs as biomarkers, therapeutic targets, and therapeutic agents for retinal disorders.
Collapse
Affiliation(s)
- Binapani Mahaling
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Shermaine W. Y. Low
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Molly Beck
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Devesh Kumar
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Simrah Ahmed
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Thomas B. Connor
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Vitreoretinal Surgery, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baseer Ahmad
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Vitreoretinal Surgery, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shyam S. Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-414-955-2050
| |
Collapse
|