1
|
Khowdiary MM, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Elhenawy AA, Babalghith AO, Shokr MM, Alexiou A, Papadakis M, El-Saber Batiha G. Dysregulation of serotonergic neurotransmission in Parkinson disease: A key duet. Eur J Pharmacol 2025; 995:177419. [PMID: 39988096 DOI: 10.1016/j.ejphar.2025.177419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Parkinson's disease (PD) is the most common movement disorder, affecting approximately 1% of the general population over 65 years of age. PD is commonly associated with the development of motor and non-motor symptoms. Non-motor symptoms arise decades earlier than motor symptoms due to the degeneration of GABAergic, serotonergic, and other neurons involved in autonomic regulation. However, motor symptoms in PD are developed due to degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNpc) of midbrain. The PD neuropathology is related to the progressive loss of the dopaminergic neurons in the SNpc of midbrain. Particularly, dysfunction of serotonergic system is implicated in the development of non-motor symptoms such as sleep disorders, cognitive dysfunction, depression and anxiety. In addition, dysfunction of serotonergic neurons which affects the dopaminergic neurons in the SNpc leads to the development of motor symptoms. Moreover, dysfunction of serotonergic neurons is associated with the development of L-dopamine (L-DOPA)-induced dyskinesia. Consistently, administration of serotonin (5-HT) receptor agonist attenuates the development of L-DOPA-induced dyskinesia. These findings emphasized the possible role of serotonergic system in PD. However, the underlying mechanisms that mediate the latent effect of 5-HT in PD are not completely elucidated. Therefore, this mini-review aims to discuss the exact role of 5-HT in PD, and how the 5-HT modulators affect PD neuropathology.
Collapse
Affiliation(s)
- Manal M Khowdiary
- Department of Chemistry, Faculty of Applied Science, Lieth Collage, Umm Al-Qura University, Makkah, 24382, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine Jabir ibn Hayyan Medical University, Al-Ameer Qu., Najaf, Iraq.
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq.
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt; Chemistry Department, Faculty of Science, AlBaha University, Al Bahah, 65731, Saudi Arabia.
| | - Ahmad O Babalghith
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Saudi Arabia.
| | - Mustafa M Shokr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish, 45511, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, India; Department of Research & Development, Funogen, Athens, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal, 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
2
|
Yang L, Hou H, Lu L, Sun Y, Chen R, Deng Q, Chen H. Effects of natural source polysaccharides on neurological diseases: A review. Int J Biol Macromol 2025; 296:139697. [PMID: 39805435 DOI: 10.1016/j.ijbiomac.2025.139697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
With the aging of society and changes in lifestyle, the incidence of neurological diseases (NDs) has been increasing year by year, bringing a heavy burden to patients and society. Although the efficacy of chemical drugs in the treatment of NDs is remarkable, there are problems such as high side effects and high costs. Therefore, finding mild and efficient drugs for NDs treatment has become an urgent clinical need. Natural source polysaccharides (NSPs) are macromolecules with unique bioactivity and low toxicity characteristics, which have great potential to become novel therapeutic agents for NDs. In the present study, the pharmacological activities and potential molecular mechanisms of NSPs to alleviate NDs are systematically reviewed from the perspectives of inflammation, oxidative stress, apoptosis, neuronal cell autophagy, neurotoxicity, and sedation-hypnosis. In addition, the limitations of the existing studies were analyzed and discussed, and the future research direction was suggested. This study may provide scientific basis for the research and development of therapeutic agents for NDs based on NSPs.
Collapse
Affiliation(s)
- Luyuan Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Hailu Hou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Liping Lu
- Guizhou Dalong Pharmaceutical Co., Ltd., Guiyang 550001, China
| | - Yu Sun
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Ruhai Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Qingfang Deng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China.
| |
Collapse
|
3
|
Tiwari S, Paramanik V. Role of Probiotics in Depression: Connecting Dots of Gut-Brain-Axis Through Hypothalamic-Pituitary Adrenal Axis and Tryptophan/Kynurenic Pathway involving Indoleamine-2,3-dioxygenase. Mol Neurobiol 2025:10.1007/s12035-025-04708-9. [PMID: 39875781 DOI: 10.1007/s12035-025-04708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025]
Abstract
Depression is one of the most disabling mental disorders worldwide and characterized by symptoms including worthlessness, anhedonia, sleep, and appetite disturbances. Recently, studies have suggested that tryptophan (Trp) metabolism plays a key role in depressed mood through serotonin and kynurenine pathway involving enzyme tryptophan 5-monooxygenase (TPH) and indoleamine-2,3-dioxygenase (IDO) respectively. Moreover, during neuroinflammation, IDO is activated by proinflammatory cytokines and affects neurogenesis, cognition, disturbed hypothalamic-pituitary-adrenal (HPA) axis, and gut homeostasis by altering the gut bacteria and its metabolites like Trp derivatives. Furthermore, over the decades, researchers have focused on understanding communication between the human microbiome, especially gut microbiota, and mental health, called gut-brain-axis (GBA), particularly through Trp metabolism. Supplementation of probiotics in depression has gained attention from researchers and clinicians. However, there is limited information about probiotics supplementation on depression involving enzyme IDO and kynurenine pathway metabolites. This review discussed the potential role of probiotics in depression through the tryptophan/kynurenine pathway.
Collapse
Affiliation(s)
- Sneha Tiwari
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak-484 887, MP, India
| | - Vijay Paramanik
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak-484 887, MP, India.
| |
Collapse
|
4
|
Jászberényi M, Thurzó B, Jayakumar AR, Schally AV. The Aggravating Role of Failing Neuropeptide Networks in the Development of Sporadic Alzheimer's Disease. Int J Mol Sci 2024; 25:13086. [PMID: 39684795 DOI: 10.3390/ijms252313086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease imposes an increasing burden on aging Western societies. The disorder most frequently appears in its sporadic form, which can be caused by environmental and polygenic factors or monogenic conditions of incomplete penetrance. According to the authors, in the majority of cases, Alzheimer's disease represents an aggravated form of the natural aging of the central nervous system. It can be characterized by the decreased elimination of amyloid β1-42 and the concomitant accumulation of degradation-resistant amyloid plaques. In the present paper, the dysfunction of neuropeptide regulators, which contributes to the pathophysiologic acceleration of senile dementia, is reviewed. However, in the present review, exclusively those neuropeptides or neuropeptide families are scrutinized, and the authors' investigations into their physiologic and pathophysiologic activities have made significant contributions to the literature. Therefore, the pathophysiologic role of orexins, neuromedins, RFamides, corticotrope-releasing hormone family, growth hormone-releasing hormone, gonadotropin-releasing hormone, ghrelin, apelin, and natriuretic peptides are discussed in detail. Finally, the therapeutic potential of neuropeptide antagonists and agonists in the inhibition of disease progression is discussed here.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew V Schally
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Brazdis RM, von Zimmermann C, Lenz B, Kornhuber J, Mühle C. Peripheral Upregulation of Parkinson's Disease-Associated Genes Encoding α-Synuclein, β-Glucocerebrosidase, and Ceramide Glucosyltransferase in Major Depression. Int J Mol Sci 2024; 25:3219. [PMID: 38542193 PMCID: PMC10970259 DOI: 10.3390/ijms25063219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Due to the high comorbidity of Parkinson's disease (PD) with major depressive disorder (MDD) and the involvement of sphingolipids in both conditions, we investigated the peripheral expression levels of three primarily PD-associated genes: α-synuclein (SNCA), lysosomal enzyme β-glucocerebrosidase (GBA1), and UDP-glucose ceramide glucosyltransferase (UGCG) in a sex-balanced MDD cohort. Normalized gene expression was determined by quantitative PCR in patients suffering from MDD (unmedicated n = 63, medicated n = 66) and controls (remitted MDD n = 39, healthy subjects n = 61). We observed that expression levels of SNCA (p = 0.036), GBA1 (p = 0.014), and UGCG (p = 0.0002) were higher in currently depressed patients compared to controls and remitted patients, and expression of GBA1 and UGCG decreased in medicated patients during three weeks of therapy. Additionally, in subgroups, expression was positively correlated with the severity of depression and anxiety. Furthermore, we identified correlations between the gene expression levels and PD-related laboratory parameters. Our findings suggest that SNCA, GBA1, and UGCG analysis could be instrumental in the search for biomarkers of MDD and in understanding the overlapping pathological mechanisms underlying neuro-psychiatric diseases.
Collapse
Affiliation(s)
- Razvan-Marius Brazdis
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (B.L.); (J.K.)
| | - Claudia von Zimmermann
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (B.L.); (J.K.)
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (B.L.); (J.K.)
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (B.L.); (J.K.)
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (B.L.); (J.K.)
| |
Collapse
|
6
|
Chen S, Wang K, Wang H, Gao Y, Nie K, Jiang X, Su H, Tang Y, Lu F, Dong H, Wang Z. The therapeutic effects of saikosaponins on depression through the modulation of neuroplasticity: From molecular mechanisms to potential clinical applications. Pharmacol Res 2024; 201:107090. [PMID: 38309381 DOI: 10.1016/j.phrs.2024.107090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Depression is a major global health issue that urgently requires innovative and precise treatment options. In this context, saikosaponin has emerged as a promising candidate, offering a variety of therapeutic benefits that may be effective in combating depression. This review delves into the multifaceted potential of saikosaponins in alleviating depressive symptoms. We summarized the effects of saikosaponins on structural and functional neuroplasticity, elaborated the regulatory mechanism of saikosaponins in modulating key factors that affect neuroplasticity, such as inflammation, the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, and the brain-gut axis. Moreover, this paper highlights existing gaps in current researches and outlines directions for future studies. A detailed plan is provided for the future clinical application of saikosaponins, advocating for more targeted researches to speed up its transition from preclinical trials to clinical practice.
Collapse
Affiliation(s)
- Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ke Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinyue Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
7
|
Lapmanee S, Supkamonseni N, Bhubhanil S, Treesaksrisakul N, Sirithanakorn C, Khongkow M, Namdee K, Surinlert P, Tipbunjong C, Wongchitrat P. Stress-induced changes in cognitive function and intestinal barrier integrity can be ameliorated by venlafaxine and synbiotic supplementations. PeerJ 2024; 12:e17033. [PMID: 38435986 PMCID: PMC10908264 DOI: 10.7717/peerj.17033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024] Open
Abstract
Stress profoundly impacts various aspects of both physical and psychological well-being. Our previous study demonstrated that venlafaxine (Vlx) and synbiotic (Syn) treatment attenuated learned fear-like behavior and recognition memory impairment in immobilized-stressed rats. In this study, we further investigated the physical, behavior, and cellular mechanisms underlying the effects of Syn and/or Vlx treatment on brain and intestinal functions in stressed rats. Adult male Wistar rats, aged 8 weeks old were subjected to 14 days of immobilization stress showed a decrease in body weight gain and food intake as well as an increase in water consumption, urinary corticosterone levels, and adrenal gland weight. Supplementation of Syn and/or Vlx in stressed rats resulted in mitigation of weight loss, restoration of normal food and fluid intake, and normalization of corticosterone levels. Behavioral analysis showed that treatment with Syn and/or Vlx enhanced depressive-like behaviors and improved spatial learning-memory impairment in stressed rats. Hippocampal dentate gyrus showed stress-induced neuronal cell death, which was attenuated by Syn and/or Vlx treatment. Stress-induced ileum inflammation and increased intestinal permeability were both effectively reduced by the supplementation of Syn. In addition, Syn and Vlx partly contributed to affecting the expression of the glial cell-derived neurotrophic factor in the hippocampus and intestines of stressed rats, suggesting particularly protective effects on both the gut barrier and the brain. This study highlights the intricate interplay between stress physiological responses in the brain and gut. Syn intervention alleviate stress-induced neuronal cell death and modulate depression- and memory impairment-like behaviors, and improve stress-induced gut barrier dysfunction which were similar to those of Vlx. These findings enhance our understanding of stress-related health conditions and suggest the synbiotic intervention may be a promising approach to ameliorate deleterious effects of stress on the gut-brain axis.
Collapse
Affiliation(s)
- Sarawut Lapmanee
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, Thailand
| | - Nattapon Supkamonseni
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, Thailand
| | - Sakkarin Bhubhanil
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, Thailand
| | | | - Chaiyos Sirithanakorn
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Centre, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Katawut Namdee
- National Nanotechnology Centre, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Piyaporn Surinlert
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
- Thammasat University Research Unit in Synthesis and Applications of Graphene, Thammasat University, Pathumthani, Thailand
| | - Chittipong Tipbunjong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
8
|
Gusev E, Sarapultsev A. Interplay of G-proteins and Serotonin in the Neuroimmunoinflammatory Model of Chronic Stress and Depression: A Narrative Review. Curr Pharm Des 2024; 30:180-214. [PMID: 38151838 DOI: 10.2174/0113816128285578231218102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION This narrative review addresses the clinical challenges in stress-related disorders such as depression, focusing on the interplay between neuron-specific and pro-inflammatory mechanisms at the cellular, cerebral, and systemic levels. OBJECTIVE We aim to elucidate the molecular mechanisms linking chronic psychological stress with low-grade neuroinflammation in key brain regions, particularly focusing on the roles of G proteins and serotonin (5-HT) receptors. METHODS This comprehensive review of the literature employs systematic, narrative, and scoping review methodologies, combined with systemic approaches to general pathology. It synthesizes current research on shared signaling pathways involved in stress responses and neuroinflammation, including calcium-dependent mechanisms, mitogen-activated protein kinases, and key transcription factors like NF-κB and p53. The review also focuses on the role of G protein-coupled neurotransmitter receptors (GPCRs) in immune and pro-inflammatory responses, with a detailed analysis of how 13 of 14 types of human 5-HT receptors contribute to depression and neuroinflammation. RESULTS The review reveals a complex interaction between neurotransmitter signals and immunoinflammatory responses in stress-related pathologies. It highlights the role of GPCRs and canonical inflammatory mediators in influencing both pathological and physiological processes in nervous tissue. CONCLUSION The proposed Neuroimmunoinflammatory Stress Model (NIIS Model) suggests that proinflammatory signaling pathways, mediated by metabotropic and ionotropic neurotransmitter receptors, are crucial for maintaining neuronal homeostasis. Chronic mental stress can disrupt this balance, leading to increased pro-inflammatory states in the brain and contributing to neuropsychiatric and psychosomatic disorders, including depression. This model integrates traditional theories on depression pathogenesis, offering a comprehensive understanding of the multifaceted nature of the condition.
Collapse
Affiliation(s)
- Evgenii Gusev
- Laboratory of Inflammation Immunology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
| | - Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
- Laboratory of Immunopathophysiology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
| |
Collapse
|
9
|
Reyna NC, Clark BJ, Hamilton DA, Pentkowski NS. Anxiety and Alzheimer's disease pathogenesis: focus on 5-HT and CRF systems in 3xTg-AD and TgF344-AD animal models. Front Aging Neurosci 2023; 15:1251075. [PMID: 38076543 PMCID: PMC10699143 DOI: 10.3389/fnagi.2023.1251075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/25/2023] [Indexed: 02/12/2024] Open
Abstract
Dementia remains one of the leading causes of morbidity and mortality in older adults. Alzheimer's disease (AD) is the most common type of dementia, affecting over 55 million people worldwide. AD is characterized by distinct neurobiological changes, including amyloid-beta protein deposits and tau neurofibrillary tangles, which cause cognitive decline and subsequent behavioral changes, such as distress, insomnia, depression, and anxiety. Recent literature suggests a strong connection between stress systems and AD progression. This presents a promising direction for future AD research. In this review, two systems involved in regulating stress and AD pathogenesis will be highlighted: serotonin (5-HT) and corticotropin releasing factor (CRF). Throughout the review, we summarize critical findings in the field while discussing common limitations with two animal models (3xTg-AD and TgF344-AD), novel pharmacotherapies, and potential early-intervention treatment options. We conclude by highlighting promising future pharmacotherapies and translational animal models of AD and anxiety.
Collapse
Affiliation(s)
- Nicole C. Reyna
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | | | | | | |
Collapse
|
10
|
Gupta R, Advani D, Yadav D, Ambasta RK, Kumar P. Dissecting the Relationship Between Neuropsychiatric and Neurodegenerative Disorders. Mol Neurobiol 2023; 60:6476-6529. [PMID: 37458987 DOI: 10.1007/s12035-023-03502-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2023] [Indexed: 09/28/2023]
Abstract
Neurodegenerative diseases (NDDs) and neuropsychiatric disorders (NPDs) are two common causes of death in elderly people, which includes progressive neuronal cell death and behavioral changes. NDDs include Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and motor neuron disease, characterized by cognitive defects and memory impairment, whereas NPDs include depression, seizures, migraine headaches, eating disorders, addictions, palsies, major depressive disorders, anxiety, and schizophrenia, characterized by behavioral changes. Mounting evidence demonstrated that NDDs and NPDs share an overlapping mechanism, which includes post-translational modifications, the microbiota-gut-brain axis, and signaling events. Mounting evidence demonstrated that various drug molecules, namely, natural compounds, repurposed drugs, multitarget directed ligands, and RNAs, have been potentially implemented as therapeutic agents against NDDs and NPDs. Herein, we highlighted the overlapping mechanism, the role of anxiety/stress-releasing factors, cytosol-to-nucleus signaling, and the microbiota-gut-brain axis in the pathophysiology of NDDs and NPDs. We summarize the therapeutic application of natural compounds, repurposed drugs, and multitarget-directed ligands as therapeutic agents. Lastly, we briefly described the application of RNA interferences as therapeutic agents in the pathogenesis of NDDs and NPDs. Neurodegenerative diseases and neuropsychiatric diseases both share a common signaling molecule and molecular phenomenon, namely, pro-inflammatory cytokines, γCaMKII and MAPK/ERK, chemokine receptors, BBB permeability, and the gut-microbiota-brain axis. Studies have demonstrated that any alterations in the signaling mentioned above molecules and molecular phenomena lead to the pathophysiology of neurodegenerative diseases, namely, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, and neuropsychiatric disorders, such as bipolar disorder, schizophrenia, depression, anxiety, autism spectrum disorder, and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Divya Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
11
|
Song J, Ma Z, Zhang H, Liang T, Zhang J. Identification of novel biomarkers linking depressive disorder and Alzheimer's disease based on an integrative bioinformatics analysis. BMC Genom Data 2023; 24:22. [PMID: 37061663 PMCID: PMC10105463 DOI: 10.1186/s12863-023-01120-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 03/16/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Previous reports revealed that a history of major depressive disorder (MDD) increased the risk of Alzheimer's disease (AD). The immune disorder is associated with MDD and AD pathophysiology. We aimed to identify differentially expressed immune-related genes (DEIRGs) that are involved in the pathogenesis of MDD and AD. METHODS We downloaded mRNA expression profiles (GSE76826 and GSE5281) from the Gene Expression Omnibus (GEO) database. The R software was used to identify DEIRGs for the two diseases separately. Functional enrichment analysis and PPI network of DEIRGs were performed. Finally, the relationship between shared DEIRGs and immune infiltrates of AD and MDD were analyzed, respectively. RESULTS A total of 121 DEIRGs linking AD and MDD were identified. These genes were significantly enriched in immune-related pathways, such as the JAK-STAT signaling pathway, regulation of chemotaxis, chemotaxis, cytokine-cytokine receptor interaction, and primary immunodeficiency. Furthermore, three shared DEIRGs (IL1R1, CHGB, and NRG1) were identified. Correlation analysis between DEIRGs and immune cells revealed that IL1R1 and NRG1 had a negative or positive correlation with some immune cells both in AD and MDD. CONCLUSION Both DEIRGs and immune cell infiltrations play a vital role in the pathogenesis of AD and MDD. Our findings indicated that there are common genes and biological processes between MDD and AD, which provides a theoretical basis for the study of the comorbidity of MDD and AD.
Collapse
Affiliation(s)
- Jin Song
- Out-Patient Department, Wuhan Mental Health Center, Wuhan, 430012, Hubei Province, China
- Out-Patient Department, Wuhan Hospital for Psychotherapy, Wuhan, 430012, Hubei Province, China
| | - Zilong Ma
- Ward of Sleep Disorders, Wuhan Mental Health Center, Wuhan, 430012, Hubei Province, China
- Ward of Sleep Disorders, Wuhan Hospital for Psychotherapy, Wuhan, 430012, Hubei Province, China
| | - Huishi Zhang
- Out-Patient Department, Wuhan Mental Health Center, Wuhan, 430012, Hubei Province, China.
- Out-Patient Department, Wuhan Hospital for Psychotherapy, Wuhan, 430012, Hubei Province, China.
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei Province, 430012, China.
| | - Ting Liang
- National Medical Institution Conducting Clinical Trials Office, Wuhan Mental Health Center, Wuhan, 430012, Hubei Province, China
- National Medical Institution Conducting Clinical Trials Office, Wuhan Hospital for Psychotherapy, Wuhan, 430012, Hubei Province, China
| | - Jun Zhang
- Ward of Traditional Chinese Medicine, Wuhan Mental Health Center, Wuhan, 430012, Hubei Province, China
- Ward of Traditional Chinese Medicine, Wuhan Hospital for Psychotherapy, Wuhan, 430012, Hubei Province, China
| |
Collapse
|
12
|
Correia AS, Cardoso A, Vale N. Oxidative Stress in Depression: The Link with the Stress Response, Neuroinflammation, Serotonin, Neurogenesis and Synaptic Plasticity. Antioxidants (Basel) 2023; 12:470. [PMID: 36830028 PMCID: PMC9951986 DOI: 10.3390/antiox12020470] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Depression is a prevalent, complex, and highly debilitating disease. The full comprehension of this disease is still a global challenge. Indeed, relapse, recurrency, and therapeutic resistance are serious challenges in the fight against depression. Nevertheless, abnormal functioning of the stress response, inflammatory processes, neurotransmission, neurogenesis, and synaptic plasticity are known to underlie the pathophysiology of this mental disorder. The role of oxidative stress in disease and, particularly, in depression is widely recognized, being important for both its onset and development. Indeed, excessive generation of reactive oxygen species and lack of efficient antioxidant response trigger processes such as inflammation, neurodegeneration, and neuronal death. Keeping in mind the importance of a detailed study about cellular and molecular mechanisms that are present in depression, this review focuses on the link between oxidative stress and the stress response, neuroinflammation, serotonergic pathways, neurogenesis, and synaptic plasticity's imbalances present in depression. The study of these mechanisms is important to lead to a new era of treatment and knowledge about this highly complex disease.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Armando Cardoso
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
13
|
Song Z, Cheng L, Liu Y, Zhan S, Wu Z, Zhang X. Plant-derived bioactive components regulate gut microbiota to prevent depression and depressive-related neurodegenerative diseases: Focus on neurotransmitters. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Beydoun HA, Chen JC, Saquib N, Naughton MJ, Beydoun MA, Shadyab AH, Hale L, Zonderman AB. Sleep and affective disorders in relation to Parkinson's disease risk among older women from the Women's Health Initiative. J Affect Disord 2022; 312:177-187. [PMID: 35752216 PMCID: PMC9302785 DOI: 10.1016/j.jad.2022.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVES To evaluate sleep and affective (mood/anxiety) disorders as clinical predictors of incident Parkinson's disease (PD) among women ≥65 years of age. METHODS We performed secondary analyses with available data from the Women's Health Initiative Clinical Trials and Observational Study linked to Medicare claims. Sleep, mood and anxiety disorders at baseline were defined using diagnostic codes. Incident PD was defined using self-reported PD, first PD diagnosis, use of PD medications, and/or deaths attributed to PD. Cox regression was applied to estimate hazard ratios (HR) with 95 % confidence intervals (CI), controlling for socio-demographic/lifestyle/health characteristics. Time-to-event was calculated from baseline (1993-1998) to year of PD event, loss to follow-up, death, or December 31, 2018, whichever came first. RESULTS A total of 53,996 study-eligible WHI participants yielded 1756 (3.25 %) PD cases over ~14.39 (±6.18) years of follow-up. The relative risk for PD doubled among women with affective disorders (HR = 2.05, 95 % CI: 1.84, 2.27), mood disorders (HR = 2.18, 95 % CI: 1.97, 2.42) and anxiety disorders (HR = 1.97, 95 % CI: 1.75, 2.22). Sleep disorders alone (without affective) were not significantly associated with PD risk (HR = 0.85, 95 % CI: 0.69, 1.04), whereas affective disorders alone (without sleep) (HR = 1.93, 95 % CI: 1.72, 2.17) or in combination with sleep disorders (HR = 2.18, 95 % CI: 1.85, 2.56) were associated with twice the PD risk relative to no sleep/affective disorders. LIMITATIONS Observational design; Selection bias; Information bias; Generalizability. CONCLUSIONS Among older women, joint sleep/affective disorders and affective disorders alone are strong clinical predictors of incident PD over 14 years.
Collapse
Affiliation(s)
- Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA 22060.
| | - Jiu-Chiuan Chen
- Departments of Population & Public Health Sciences and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Nazmus Saquib
- Department of Research, College of Medicine, Sulaiman AlRajhi University, Al Bukayriah, Saudi Arabia
| | - Michelle J Naughton
- Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, OH 43201, USA
| | - May A Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21225, USA
| | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lauren Hale
- Program in Public Health, Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21225, USA
| |
Collapse
|
15
|
Woldańska-Okońska M, Koszela K. Chronic-Exposure Low-Frequency Magnetic Fields (Magnetotherapy and Magnetic Stimulation) Influence Serum Serotonin Concentrations in Patients with Low Back Pain-Clinical Observation Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9743. [PMID: 35955097 PMCID: PMC9368470 DOI: 10.3390/ijerph19159743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
(1) Background: The influence of serotonin on many regulatory mechanisms has not been sufficiently studied. The use of a physical method, assuming the possibility of its action on increasing the concentration of serotonin, may be the direction of therapy limiting the number of antidepressants used. The aim of the research was to study the effects of low-frequency magnetic fields of different characteristics on the circadian profile of serotonin in men with low back pain. (2) Methods: 16 men with back pain syndrome participated in the study. The patients were divided into two groups. In group 1, magnetotherapy (2.9 mT, 40 Hz, square wave, bipolar) was applied at 10.00 a.m. In group 2, the M2P2 magnetic stimulation program of the Viofor JPS device was used. Treatments in each group lasted 3 weeks, 5 days each, with breaks for Saturday and Sunday. The daily serotonin profile was determined the day before the exposure and the day after the last treatment. Blood samples (at night with red light) were collected at 8:00, 12:00, 16:00, 24:00, and 4:00. The patients did not suffer from any chronic or acute disease and were not taking any medications. (3) Results: In group 1, a significant increase in serotonin concentration was observed after 15 treatments at 4:00. In group 2, a significant increase in serotonin concentration was observed at 8:00 after the end of the treatments. In comparison between magnetotherapy and magnetic stimulation, the time points at which differences appeared after the application of serotonin occurred due to the increase in its concentrations after the application of magnetic stimulation. (4) Conclusions: Magnetotherapy and magnetic stimulation, acting in a similar way, increase the concentration of serotonin. Weak magnetic fields work similarly to the stronger ones used in TMS. It is possible to use them in the treatment of mental disorders or other diseases with low serotonin concentrations.
Collapse
Affiliation(s)
| | - Kamil Koszela
- Neuroorthopedics and Neurology Clinic and Polyclinic, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| |
Collapse
|
16
|
Beydoun HA, Saquib N, Wallace RB, Chen J, Coday M, Naughton MJ, Beydoun MA, Shadyab AH, Zonderman AB, Brunner RL. Psychotropic medication use and Parkinson's disease risk amongst older women. Ann Clin Transl Neurol 2022; 9:1163-1176. [PMID: 35748105 PMCID: PMC9380147 DOI: 10.1002/acn3.51614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE To examine associations of antidepressant, anxiolytic and hypnotic use amongst older women (≥65 years) with incident Parkinson's Disease (PD), using data from Women's Health Initiative linked to Medicare claims. METHODS PD was defined using self-report, first diagnosis, medications and/or death certificates and psychotropic medications were ascertained at baseline and 3-year follow-up. Cox regression models were constructed to calculate adjusted hazard ratios (aHR) with 95% confidence intervals (CI), controlling for socio-demographic, lifestyle and health characteristics, overall and amongst women diagnosed with depression, anxiety and/or sleep disorders (DASD). RESULTS A total of 53,996 WHI participants (1,756 PD cases)-including 27,631 women diagnosed with DASD (1,137 PD cases)-were followed up for ~14 years. Use of hypnotics was not significantly associated with PD risk (aHR = 0.98, 95% CI: 0.82, 1.16), whereas PD risk was increased amongst users of antidepressants (aHR = 1.75, 95% CI: 1.56, 1.96) and anxiolytics (aHR = 1.48, 95% CI: 1.25, 1.73). Compared to non-users of psychotropic medications, those who used 1 type had ~50% higher PD risk, whereas those who used ≥2 types had ~150% higher PD risk. Women who experienced transitions in psychotropic medication use ('use to non-use' or 'non-use to use') between baseline and 3-year follow-up had higher PD risk than those who did not. We obtained similar results with propensity scoring and amongst DASD-diagnosed women. INTERPRETATION The use of antidepressants, anxiolytics or multiple psychotropic medication types and transitions in psychotropic medication use was associated with increased PD risk, whereas the use of hypnotics was not associated with PD risk amongst older women.
Collapse
Affiliation(s)
- Hind A. Beydoun
- Department of Research ProgramsFort Belvoir Community HospitalFort BelvoirVirginia22060USA
| | - Nazmus Saquib
- Department of Research, College of MedicineSulaiman AlRajhi UniversityAl BukayriahKingdom of Saudi Arabia
| | - Robert B. Wallace
- Department of Epidemiology and Internal MedicineUniversity of IowaIowa CityIowa52242USA
| | - Jiu‐Chiuan Chen
- Departments of Population & Public Health Sciences and Neurology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA90089
| | - Mace Coday
- Department of Preventive MedicineUniversity of Tennessee Health Science CenterMemphisTennessee38163USA
| | - Michelle J. Naughton
- Department of Internal Medicine, College of MedicineOhio State UniversityColumbusOhio43201USA
| | - May A. Beydoun
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMaryland21225USA
| | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health and Human Longevity ScienceUniversity of California, San DiegoLa JollaCalifornia92093USA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMaryland21225USA
| | - Robert L. Brunner
- Department of Family and Community Medicine (Emeritus), School of MedicineUniversity of Nevada (Reno)AuburnCalifornia95602USA
| |
Collapse
|
17
|
Correia AS, Vale N. Tryptophan Metabolism in Depression: A Narrative Review with a Focus on Serotonin and Kynurenine Pathways. Int J Mol Sci 2022; 23:ijms23158493. [PMID: 35955633 PMCID: PMC9369076 DOI: 10.3390/ijms23158493] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/07/2023] Open
Abstract
Depression is a common and serious disorder, characterized by symptoms like anhedonia, lack of energy, sad mood, low appetite, and sleep disturbances. This disease is very complex and not totally elucidated, in which diverse molecular and biological mechanisms are involved, such as neuroinflammation. There is a high need for the development of new therapies and gaining new insights into this disease is urgent. One important player in depression is the amino acid tryptophan. This amino acid can be metabolized in two important pathways in the context of depression: the serotonin and kynurenine pathways. These metabolic pathways of tryptophan are crucial in several processes that are linked with depression. Indeed, the maintenance of the balance of serotonin and kynurenine pathways is critical for the human physiological homeostasis. Thus, this narrative review aims to explore tryptophan metabolism (particularly in the serotonin and kynurenine pathways) in depression, starting with a global overview about these topics and ending with the focus on these pathways in neuroinflammation, stress, microbiota, and brain-derived neurotrophic factor regulation in this disease. Taken together, this information aims to clarify the metabolism of tryptophan in depression, particularly the serotonin and kynurenine pathways.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
18
|
Katano A, Minamitani M, Nakagawa K, Yamashita H. The Spontaneous Remission of Recurrent Lymph Node Metastatic Prostate Cancer With Lowering Serum Prostate-Specific Antigen Level. Cureus 2022; 14:e25333. [PMID: 35774690 PMCID: PMC9236640 DOI: 10.7759/cureus.25333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
The incidence rate of spontaneous remission of malignant cancer is very low. Reports on spontaneous remission in advanced prostate cancer are extremely limited. Our patient was treated with androgen deprivation therapy, local radiotherapy, and surgical castration at the initial diagnosis. Approximately nine years after treatment, he experienced a rise in serum prostate-specific antigen level and relapse of obturator lymph node adenopathy. Initially, androgen deprivation therapy was reinitiated, which resulted in castration-resistant prostate cancer. Although androgen deprivation therapy was discontinued, spontaneous remission of recurrent lymph node and spontaneous reduction in serum prostate-specific antigen level was seen. There was no sign of radiological recurrence for over eight years without prostate cancer treatment.
Collapse
|
19
|
Hong M, Cheng L, Liu Y, Wu Z, Zhang P, Zhang X. Mechanisms Underlying the Interaction Between Chronic Neurological Disorders and Microbial Metabolites via Tea Polyphenols Therapeutics. Front Microbiol 2022; 13:823902. [PMID: 35401435 PMCID: PMC8991060 DOI: 10.3389/fmicb.2022.823902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
The number of hydroxyl groups and existence of characteristic structural groups in tea polyphenols (TP) make them have antioxidant activity, which gives TP anti-inflammatory effects, toward protecting the intestinal flora and brain neurons. Host-associated microbial metabolites are emerging as dominant modifiers of the central nervous system. As yet, the investigations on host-microbiota crosstalking remain challenging, studies focusing on metabolites such as serotonin, short-chain fatty acids, and others have pinpointed multiple actionable signaling pathways relevant to host health. However, there are still complexities and apparent limitations inherent in transforming complex human diseases to corresponding animal models. Here, we choose to discuss several intestinal metabolites with research value, as crucial areas for assessing TP-mediated chronic brain diseases interactions with microbial.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Peng Zhang
- Department of Student Affairs, Xinyang Normal University, Xinyang, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
20
|
Zhang W, Li L, Li J, Yu H, Zheng F, Yan B, Cai W, Chen Y, Yin L, Tang D, Xu Y, Dai Y. Systematic Analysis of Neurotransmitter Receptors in Human Breast Cancer Reveals a Strong Association With Outcome and Uncovers HTR6 as a Survival-Associated Gene Potentially Regulating the Immune Microenvironment. Front Immunol 2022; 13:756928. [PMID: 35359970 PMCID: PMC8960964 DOI: 10.3389/fimmu.2022.756928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Many epidemiological reports have indicated an increase in the incidence of breast cancer among psychotic patients, suggesting that the targets of antipsychotics, neurotransmitter receptors, may have a role in tumorigenesis. However, the functions of neurotransmitter receptors in cancer are barely known. Here, we analyzed 44 neurotransmitter receptors in breast cancer and revealed that the expression of 34 receptors was positively correlated with relapse-free survival rates (RFS) of patients using the public database (n = 3951). Among all these receptors, we revealed decreased expression of HTR6 in human advanced breast cancer versus tumors in situ using our original data (n = 44). After a pan-cancer analysis including 22 cancers (n = 11262), we disclosed that HTR6 was expressed in 12 tumors and uncovered its influence on survival in seven tumors. Using multi-omics datasets from Linkedomics, we revealed a potential regulatory role of HTR6 in MAPK, JUN, and leukocyte-differentiation pathways through enriching 294 co-expressed phosphorylated proteins of HTR6. Furthermore, we proclaimed a close association of HTR6 expression with the immune microenvironment. Finally, we uncovered two possible reasons for HTR6 down-regulation in breast cancer, including deep deletion in the genome and the up-regulation of FOXA1 in breast cancer, which was a potential negatively regulatory transcription factor of HTR6. Taken together, we revealed a new function of neurotransmitter receptors in breast cancer and identified HTR6 as a survival-related gene potentially regulating the immune microenvironment. The findings in our study would improve our understanding of the pathogenesis of breast cancer and provided a theoretical basis for personalized medication in psychotic patients.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China.,HaploX Biotechnology, Shenzhen, China
| | - Lintai Li
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jianxuan Li
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Haiyan Yu
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Fengping Zheng
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Bin Yan
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Wanxia Cai
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Yumei Chen
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Lianghong Yin
- Department of Nephrology, Institute of Nephrology and Blood Purifification, The First Affifiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Donge Tang
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Yong Xu
- Shenzhen Second People's Hospital, The First Affifiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yong Dai
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| |
Collapse
|
21
|
Sarrouilhe D, Defamie N, Mesnil M. Is the Exposome Involved in Brain Disorders through the Serotoninergic System? Biomedicines 2021; 9:1351. [PMID: 34680468 PMCID: PMC8533279 DOI: 10.3390/biomedicines9101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a biogenic monoamine acting as a neurotransmitter in the central nervous system (CNS), local mediator in the gut, and vasoactive agent in the blood. It has been linked to a variety of CNS functions and is implicated in many CNS and psychiatric disorders. The high comorbidity between some neuropathies can be partially understood by the fact that these diseases share a common etiology involving the serotoninergic system. In addition to its well-known functions, serotonin has been shown to be a mitogenic factor for a wide range of normal and tumor cells, including glioma cells, in vitro. The developing CNS of fetus and newborn is particularly susceptible to the deleterious effects of neurotoxic substances in our environment, and perinatal exposure could result in the later development of diseases, a hypothesis known as the developmental origin of health and disease. Some of these substances affect the serotoninergic system and could therefore be the source of a silent pandemic of neurodevelopmental toxicity. This review presents the available data that are contributing to the appreciation of the effects of the exposome on the serotoninergic system and their potential link with brain pathologies (neurodevelopmental, neurodegenerative, neurobehavioral disorders, and glioblastoma).
Collapse
Affiliation(s)
- Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 6 Rue de la Milétrie, Bât D1, TSA 51115, CEDEX 09, 86073 Poitiers, France
| | - Norah Defamie
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 Rue G. Bonnet–TSA 51106, CEDEX 09, 86073 Poitiers, France; (N.D.); (M.M.)
| | - Marc Mesnil
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 Rue G. Bonnet–TSA 51106, CEDEX 09, 86073 Poitiers, France; (N.D.); (M.M.)
| |
Collapse
|