1
|
Marciniak A, Skrzypczak-Zielińska M, Zakerska-Banaszak O, Nowakowska E, Kozaczka A, Zemła B, Szpak A, Godlewski D, Charzewska J, Pathak DR. Urinary and oral microbiota in Polish women: a pilot case-control study of breast cancer. Front Microbiol 2025; 16:1538224. [PMID: 40330727 PMCID: PMC12054997 DOI: 10.3389/fmicb.2025.1538224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Introduction The human microbiota can be a critical component in the development and progression of various diseases, including cancer. This study aims to investigate the composition of the urinary and oral microbiota in Polish breast cancer (BC) patients relative to healthy controls (HCs) and to predict relevant metabolic pathways of microbiota in studied groups. Methods Urine and oral samples from 48 participants, 24 BC cases and 24 HCs, randomly selected from 417 BC cases and 514 HCs, were analyzed using next-generation sequencing of bacterial 16S rRNA gene (V1-V9) and fungal ITS regions, along with bioinformatics tools to identify and compare microbial communities and predict relevant pathways of microbiota in the studied groups. Results BC case urine microbiota contained an increased abundance of Corynebacterium (5.2-fold, but not significant) and Gammaproteobacteria including unknown genus and Pseudomonas (1.7- and 1.8-fold) and decreased abundance of Family XI (0.3-fold) and Bifidobacteriaceae (0.4-fold) compared to HCs. Oral BC microbiota contains higher levels of the bacterial families P5D1-392, Leptotrichiaceae, and Pasteurellaceae (3.3-, 3.3-, and 1.9-fold, respectively), whereas the genera Cellulosimicrobium, Pseudomonas, and Pantoea were significantly less abundant (0.4-, 0.3-, and 0.3-fold, respectively). At the species level, the most differentiating species between BC and HC was uncultured Pseudomonas sp. (1.8-fold) in urine and Pantoea agglomerans (0.2-fold) in oral microbiota. Fungal composition did not show any significant differences between the groups. Functional analysis based on Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) predicted, e.g. enhanced hydrogen production and benzoyl-CoA degradation in BC cases, as well as reduced CMP-diacetamido-8-epilegionaminic acid biosynthesis. Discussion The study underscores the potential significance of the microbiota in BC pathogenesis. Further research is needed to elucidate the mechanisms underlying microbiota-tumor interactions and to explore the clinical applications.
Collapse
Affiliation(s)
- Anna Marciniak
- Center of Cancer Prevention and Epidemiology OPEN, Poznan, Poland
| | | | | | | | - Anna Kozaczka
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Brunon Zemła
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Gliwice, Poland
| | - Andrzej Szpak
- Witold Chodźko Institute of Rural Medicine, Lublin, Poland
| | | | - Jadwiga Charzewska
- Department of Nutrition and Nutritional Value of Food, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Dorothy R. Pathak
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
2
|
Dandeu LNR, Lachovsky J, Sidlik S, Marenco P, Orschanski D, Aguilera P, Vázquez M, Carballo MDP, Fernández E, Penas-Steinhardt A, Chasseing NA, Labovsky V. Relevance of oncobiome in breast cancer evolution in an Argentine cohort. mSphere 2025; 10:e0059724. [PMID: 39927763 PMCID: PMC11934308 DOI: 10.1128/msphere.00597-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/12/2025] [Indexed: 02/11/2025] Open
Abstract
Breast cancer is the leading cause of cancer deaths in women worldwide, with about 20,000 cases annually in Argentina. While age, diet, and genetics are known risk factors, most breast cancer cases have unknown causes, necessitating the discovery of new risk factors. The aim of this study was the analysis of the prognostic relevance of the oncobiome in Argentinean breast cancer patients. Sequencing of the V4 region 16S rRNA gene was performed on 34 primary breast tumor samples, using bioinformatic and statistical analyses to identify bacteria and hypothetical pathways. Each sample presented a unique microbial profile, with Proteobacteria being the most abundant phylum. Tumors >2 cm showed greater alpha diversity with increased nucleotide biosynthesis. Moreover, progesterone-receptor tumors showed differences in beta diversity, being progesterone receptor-positive tumors that had the highest expression of Acinetobacter and Moraxella. In disease progression, the phylum Chloroflexi was prevalent in tumors of surviving patients. Acinetobacter and Cloacibacterium genera were significantly higher in patients without events and those without metastasis. We found that nucleotide and cell-structure biosynthesis, and lipid metabolism pathways were enriched in tumors with poor progression, whereas amino-acid degradation was increased in tumors of surviving patients. This finding is an indication that tumor cells are taking advantage of this effect of the microbiome during tumor progression. We conclude that oncobiome is dysbiotic in these patients, with distinct patterns in those with poor progression. Suggesting a link between the oncobiome and cancer progression, paving the way for new therapies to improve patient quality of life and survival. IMPORTANCE This is the first study to investigate the relevance of the oncobiome in the evolution of breast cancer in a cohort of Argentine patients. It also highlights the need for further research in this area to improve our understanding of the role of the microbiome in this disease and potentially identify new therapeutic targets or prognostic indicators. Understanding the complex interaction between the microbiome, the tumor microenvironment, and the pathogenesis of breast cancer holds the promise of more personalized and effective treatment approaches in the future.
Collapse
Affiliation(s)
- Leonardo Néstor Rubén Dandeu
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Joel Lachovsky
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Sofía Sidlik
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Marenco
- Instituto de Oncología Ángel H Roffo, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | | | - Pablo Aguilera
- Departamento de Ciencias Aplicadas y Tecnología, Universidad Nacional de Moreno, Moreno, Argentina
| | | | | | - Elmer Fernández
- Fundación para el Progreso de la Medicina, Córdoba, Argentina
| | - Alberto Penas-Steinhardt
- Departamento de Ciencias Básicas, Laboratorio de Genómica Computacional (GEC-UNLu), Universidad Nacional de Luján, Luján, Argentina
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Vivian Labovsky
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Rad SK, Yeo KKL, Wu F, Li R, Nourmohammadi S, Tomita Y, Price TJ, Ingman WV, Townsend AR, Smith E. A Systematic Review and Meta-Analysis of 16S rRNA and Cancer Microbiome Atlas Datasets to Characterize Microbiota Signatures in Normal Breast, Mastitis, and Breast Cancer. Microorganisms 2025; 13:467. [PMID: 40005832 PMCID: PMC11858161 DOI: 10.3390/microorganisms13020467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The breast tissue microbiome has been increasingly recognized as a potential contributor to breast cancer development and progression. However, inconsistencies in microbial composition across studies have hindered the identification of definitive microbial signatures. We conducted a systematic review and meta-analysis of 11 studies using 16S rRNA sequencing to characterize the bacterial microbiome in 1260 fresh breast tissue samples, including normal, mastitis-affected, benign, cancer-adjacent, and cancerous tissues. Studies published until 31 December 2023 were included if they analyzed human breast tissue using Illumina short-read 16S rRNA sequencing with sufficient metadata, while non-human samples, non-breast tissues, non-English articles, and those lacking metadata or using alternative sequencing methods were excluded. We also incorporated microbiome data from The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort to enhance our analyses. Our meta-analysis identified Proteobacteria, Firmicutes, Actinobacteriota, and Bacteroidota as the dominant phyla in breast tissue, with Staphylococcus and Corynebacterium frequently detected across studies. While microbial diversity was similar between cancer and cancer-adjacent tissues, they both exhibited a lower diversity compared to normal and mastitis-affected tissues. Variability in bacterial genera was observed across primer sets and studies, emphasizing the need for standardized methodologies in microbiome research. An analysis of TCGA-BRCA data confirmed the dominance of Staphylococcus and Corynebacterium, which was associated with breast cancer proliferation-related gene expression programs. Notably, high Staphylococcus abundance was associated with a 4.1-fold increased mortality risk. These findings underscore the potential clinical relevance of the breast microbiome in tumor progression and emphasize the importance of methodological consistency. Future studies to establish causal relationships, elucidate underlying mechanisms, and assess microbiome-targeted interventions are warranted.
Collapse
Affiliation(s)
- Sima Kianpour Rad
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Kenny K. L. Yeo
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Fangmeinuo Wu
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Runhao Li
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Saeed Nourmohammadi
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Yoko Tomita
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
- Medical Oncology, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia
| | - Timothy J. Price
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
- Medical Oncology, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia
| | - Wendy V. Ingman
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Amanda R. Townsend
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
- Medical Oncology, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia
| | - Eric Smith
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia; (S.K.R.); (K.K.L.Y.); (F.W.); (R.L.); (S.N.); (Y.T.); (T.J.P.); (A.R.T.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia;
- Discipline of Surgery, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
4
|
Mir R, Albarqi SA, Albalawi W, Alatwi HE, Alatawy M, Bedaiwi RI, Almotairi R, Husain E, Zubair M, Alanazi G, Alsubaie SS, Alghabban RI, Alfifi KA, Bashir S. Emerging Role of Gut Microbiota in Breast Cancer Development and Its Implications in Treatment. Metabolites 2024; 14:683. [PMID: 39728464 DOI: 10.3390/metabo14120683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background: The human digestive system contains approximately 100 trillion bacteria. The gut microbiota is an emerging field of research that is associated with specific biological processes in many diseases, including cardiovascular disease, obesity, diabetes, brain disease, rheumatoid arthritis, and cancer. Emerging evidence indicates that the gut microbiota affects the response to anticancer therapies by modulating the host immune system. Recent studies have explained a high correlation between the gut microbiota and breast cancer: dysbiosis in breast cancer may regulate the systemic inflammatory response, hormone metabolism, immune response, and the tumor microenvironment. Some of the gut bacteria are related to estrogen metabolism, which may increase or decrease the risk of breast cancer by changing the number of hormones. Further, the gut microbiota has been seen to modulate the immune system in respect of its ability to protect against and treat cancers, with a specific focus on hormone receptor-positive breast cancer. Probiotics and other therapies claiming to control the gut microbiome by bacterial means might be useful in the prevention, or even in the treatment, of breast cancer. Conclusions: The present review underlines the various aspects of gut microbiota in breast cancer risk and its clinical application, warranting research on individualized microbiome-modulated therapeutic approaches to breast cancer treatment.
Collapse
Affiliation(s)
- Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Shrooq A Albarqi
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Wed Albalawi
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Hanan E Alatwi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Marfat Alatawy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Ruqaiah I Bedaiwi
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Reema Almotairi
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Eram Husain
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Ghaida Alanazi
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Shouq S Alsubaie
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Razan I Alghabban
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Khalid A Alfifi
- Department of Laboratory and Blood Bank, King Fahd Special Hospital, Tabuk 47717, Saudi Arabia
| | - Shabnam Bashir
- Mubarak Hospital, Srinagar 190002, Jammu and Kashmir, India
| |
Collapse
|
5
|
Mikó E, Sipos A, Tóth E, Lehoczki A, Fekete M, Sebő É, Kardos G, Bai P. Guideline for designing microbiome studies in neoplastic diseases. GeroScience 2024; 46:4037-4057. [PMID: 38922379 PMCID: PMC11336004 DOI: 10.1007/s11357-024-01255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Oncobiosis has emerged as a key contributor to the development, and modulator of the treatment efficacy of cancer. Hereby, we review the modalities through which the oncobiome can support the progression of tumors, and the emerging therapeutic opportunities they present. The review highlights the inherent challenges and limitations faced in sampling and accurately characterizing oncobiome. Additionally, the review underscores the critical need for the standardization of microbial analysis techniques and the consistent reporting of microbiome data. We provide a suggested metadata set that should accompany microbiome datasets from oncological settings so that studies remain comparable and decipherable.
Collapse
Affiliation(s)
- Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032, Debrecen, Hungary
| | - Andrea Lehoczki
- Department of Hematology and Stem Cell Transplantation, South Pest Central Hospital-National Institute for Hematology and Infectious Diseases, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Éva Sebő
- Breast Center, Kenézy Gyula Hospital, University of Debrecen, 4032, Debrecen, Hungary
| | - Gábor Kardos
- Department of Metagenomics, University of Debrecen, 4032, Debrecen, Hungary
- Faculty of Health Sciences, One Health Institute, University of Debrecen, 4032, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary.
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032, Debrecen, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032, Debrecen, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
- Center of Excellence, The Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
6
|
Furuta S. Microbiome-Stealth Regulator of Breast Homeostasis and Cancer Metastasis. Cancers (Basel) 2024; 16:3040. [PMID: 39272898 PMCID: PMC11394247 DOI: 10.3390/cancers16173040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cumulative evidence attests to the essential roles of commensal microbes in the physiology of hosts. Although the microbiome has been a major research subject since the time of Luis Pasteur and William Russell over 140 years ago, recent findings that certain intracellular bacteria contribute to the pathophysiology of healthy vs. diseased tissues have brought the field of the microbiome to a new era of investigation. Particularly, in the field of breast cancer research, breast-tumor-resident bacteria are now deemed to be essential players in tumor initiation and progression. This is a resurrection of Russel's bacterial cause of cancer theory, which was in fact abandoned over 100 years ago. This review will introduce some of the recent findings that exemplify the roles of breast-tumor-resident microbes in breast carcinogenesis and metastasis and provide mechanistic explanations for these phenomena. Such information would be able to justify the utility of breast-tumor-resident microbes as biomarkers for disease progression and therapeutic targets.
Collapse
Affiliation(s)
- Saori Furuta
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Fan Z, Han D, Fan X, Zeng Y, Zhao L. Analysis of the correlation between cervical HPV infection, cervical lesions and vaginal microecology. Front Cell Infect Microbiol 2024; 14:1405789. [PMID: 39220285 PMCID: PMC11362039 DOI: 10.3389/fcimb.2024.1405789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/26/2024] [Indexed: 09/04/2024] Open
Abstract
Background Vaginal microbiota is involved in human papillomavirus (HPV) infection and cervical cancer (CC) progression, and the specific changes in vaginal microbial composition during this process remains uncertain. Objective This study aimed to observe the changes in the specific composition of vaginal microorganisms in different cervical lesions and identify biomarkers at different stages of lesions. Methods In this study we used the illumina high-throughput gene sequencing technology to determine the V4 region of 16SrRNA and observed the vaginal microbial composition in different cervical lesions. Results The vaginal microbiota of patients with high-risk HPV infection and cervical lesions is significantly different from that of the normal population, but there is no significant difference in the richness of vaginal microbes. The diversity of vaginal species in CC patients is higher than that in high-risk HPV infection or CIN patients. The main manifestation is an increase in the diversity of vaginal microbes, a decrease in the relative abundance of cyanobacteria and Lactobacillus, and an increase in the relative abundance of dialister, peptonephila and other miscellaneous bacteria. There are characteristic vaginal biomarker in normal women, high risk HPV patients and CC patients. In detail, the biomarker in the normal group was varibaculum, the biomarker in the high-risk HPV group was saccharopolyspora, the biomarker of the CC group was the Proteobacteria, Corynebacterium, Coprococcus, Peptococcus and Ruminococcus. Conclusions The study indicated that the compositions of vaginal microbes in different cervical lesions is different. The vaginal microbial composition has a certain diagnostic effect on healthy women, patients with high-risk HPV infection and cervical lesions. These microbes may serve as potential biomarkers for CC. It also provided an effective way for the treatment of HPV infections and cervical lesions.
Collapse
Affiliation(s)
- Zhongru Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Dongyu Han
- Department of Obstetrics and Gynecology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
- Department of Obstetrics and Gynecology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xin Fan
- Department of Obstetrics and Gynecology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yu Zeng
- Department of Obstetrics and Gynecology, The Second Hospital of Dalian Medical University, Dalian, China
- Department of Obstetrics and Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Zhao
- Department of Obstetrics and Gynecology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| |
Collapse
|
8
|
Sayed ZS, Khattap MG, Madkour MA, Yasen NS, Elbary HA, Elsayed RA, Abdelkawy DA, Wadan AHS, Omar I, Nafady MH. Circulating tumor cells clusters and their role in Breast cancer metastasis; a review of literature. Discov Oncol 2024; 15:94. [PMID: 38557916 PMCID: PMC10984915 DOI: 10.1007/s12672-024-00949-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Breast cancer is a significant and deadly threat to women globally. Moreover, Breast cancer metastasis is a complicated process involving multiple biological stages, which is considered a substantial cause of death, where cancer cells spread from the original tumor to other organs in the body-representing the primary mortality factor. Circulating tumor cells (CTCs) are cancer cells detached from the primary or metastatic tumor and enter the bloodstream, allowing them to establish new metastatic sites. CTCs can travel alone or in groups called CTC clusters. Studies have shown that CTC clusters have more potential for metastasis and a poorer prognosis than individual CTCs in breast cancer patients. However, our understanding of CTC clusters' formation, structure, function, and detection is still limited. This review summarizes the current knowledge of CTC clusters' biological properties, isolation, and prognostic significance in breast cancer. It also highlights the challenges and future directions for research and clinical application of CTC clusters.
Collapse
Affiliation(s)
- Zeinab S Sayed
- Faculty of Applied Medical Science, Misr University for Science and Technology, 26Th of July Corridor, 6Th of October, Giza Governorate, Postal Code: 77, Egypt
| | - Mohamed G Khattap
- Technology of Radiology and Medical Imaging Program, Faculty of Applied Health Sciences Technology, Galala University, Suez, 435611, Egypt
| | | | - Noha S Yasen
- Radiology and Imaging Technology Department, Faculty of Applied Health Science Technology, Delta University for Science and Technology, Gamasa, Al Mansurah, Egypt
| | - Hanan A Elbary
- Faculty of Applied Medical Science, Misr University for Science and Technology, 26Th of July Corridor, 6Th of October, Giza Governorate, Postal Code: 77, Egypt
| | - Reem A Elsayed
- Faculty of Applied Medical Science, Misr University for Science and Technology, 26Th of July Corridor, 6Th of October, Giza Governorate, Postal Code: 77, Egypt
| | - Dalia A Abdelkawy
- Faculty of Applied Medical Science, Misr University for Science and Technology, 26Th of July Corridor, 6Th of October, Giza Governorate, Postal Code: 77, Egypt
| | | | - Islam Omar
- Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Mohamed H Nafady
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, 6th of october, Egypt.
| |
Collapse
|
9
|
Actis S, Cazzaniga M, Bounous VE, D'Alonzo M, Rosso R, Accomasso F, Minella C, Biglia N. Emerging evidence on the role of breast microbiota on the development of breast cancer in high-risk patients. Carcinogenesis 2023; 44:718-725. [PMID: 37793149 DOI: 10.1093/carcin/bgad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023] Open
Abstract
Cancer is a multi-factorial disease, and the etiology of breast cancer (BC) is due to a combination of both genetic and environmental factors. Breast tissue shows a unique microbiota, Proteobacteria and Firmicutes are the most abundant bacteria in breast tissue, and several studies have shown that the microbiota of healthy breast differs from that of BC. Breast microbiota appears to be correlated with different characteristics of the tumor, and prognostic clinicopathologic features. It also appears that there are subtle differences between the microbial profiles of the healthy control and high-risk patients. Genetic predisposition is an extremely important risk factor for BC. BRCA1/2 germline mutations and Li-Fraumeni syndrome are DNA repair deficiency syndromes inherited as autosomal dominant characters that substantially increase the risk of BC. These syndromes exhibit incomplete penetrance of BC expression in carrier subjects. The action of breast microbiota on carcinogenesis might explain why women with a mutation develop cancer and others do not. Among the potential biological pathways through which the breast microbiota may affect tumorigenesis, the most relevant appear to be DNA damage caused by colibactin and other bacterial-derived genotoxins, β-glucuronidase-mediated estrogen deconjugation and reactivation, and HPV-mediated cancer susceptibility. In conclusion, in patients with a genetic predisposition, an unfavorable breast microbiota may be co-responsible for the onset of BC. Prospectively, the ability to modulate the microbiota may have an impact on disease onset and progression in patients at high risk for BC.
Collapse
Affiliation(s)
- Silvia Actis
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | | | - Valentina Elisabetta Bounous
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Marta D'Alonzo
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Roberta Rosso
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Francesca Accomasso
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Carola Minella
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Nicoletta Biglia
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| |
Collapse
|
10
|
Sevcikova A, Mladosievicova B, Mego M, Ciernikova S. Exploring the Role of the Gut and Intratumoral Microbiomes in Tumor Progression and Metastasis. Int J Mol Sci 2023; 24:17199. [PMID: 38139030 PMCID: PMC10742837 DOI: 10.3390/ijms242417199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer cell dissemination involves invasion, migration, resistance to stressors in the circulation, extravasation, colonization, and other functions responsible for macroscopic metastases. By enhancing invasiveness, motility, and intravasation, the epithelial-to-mesenchymal transition (EMT) process promotes the generation of circulating tumor cells and their collective migration. Preclinical and clinical studies have documented intensive crosstalk between the gut microbiome, host organism, and immune system. According to the findings, polymorphic microbes might play diverse roles in tumorigenesis, cancer progression, and therapy response. Microbial imbalances and changes in the levels of bacterial metabolites and toxins promote cancer progression via EMT and angiogenesis. In contrast, a favorable microbial composition, together with microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), can attenuate the processes of tumor initiation, disease progression, and the formation of distant metastases. In this review, we highlight the role of the intratumoral and gut microbiomes in cancer cell invasion, migration, and metastatic ability and outline the potential options for microbiota modulation. As shown in murine models, probiotics inhibited tumor development, reduced tumor volume, and suppressed angiogenesis and metastasis. Moreover, modulation of an unfavorable microbiome might improve efficacy and reduce treatment-related toxicities, bringing clinical benefit to patients with metastatic cancer.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Beata Mladosievicova
- Institute of Pathological Physiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia;
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| |
Collapse
|
11
|
Jotshi A, Sukla KK, Haque MM, Bose C, Varma B, Koppiker CB, Joshi S, Mishra R. Exploring the human microbiome - A step forward for precision medicine in breast cancer. Cancer Rep (Hoboken) 2023; 6:e1877. [PMID: 37539732 PMCID: PMC10644338 DOI: 10.1002/cnr2.1877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/24/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The second most frequent cancer in the world and the most common malignancy in women is breast cancer. Breast cancer is a significant health concern in India with a high mortality-to-incidence ratio and presentation at a younger age. RECENT FINDINGS Recent studies have identified gut microbiota as a significant factor that can have an influence on the development, treatment, and prognosis of breast cancer. This review article aims to describe the influence of microbial dysbiosis on breast cancer occurrence and the possible interactions between oncobiome and specific breast cancer molecular subtypes. The review further also discusses the role of epigenetics and diet/nutrition in the regulation of the gut and breast microbiome and its association with breast cancer prevention, therapy, and recurrence. Additionally, the recent technological advances in microbiome research, including next-generation sequencing (NGS) technologies, genome sequencing, single-cell sequencing, and microbial metabolomics along with recent advances in artificial intelligence (AI) have also been reviewed. This is an attempt to present a comprehensive status of the microbiome as a key cancer biomarker. CONCLUSION We believe that correlating microbiome and carcinogenesis is important as it can provide insights into the mechanisms by which microbial dysbiosis can influence cancer development and progression, leading to the potential use of the microbiome as a tool for prognostication and personalized therapy.
Collapse
Affiliation(s)
- Asmita Jotshi
- Centre for Translational Cancer Research: A Joint Initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM)PuneIndia
| | | | | | - Chandrani Bose
- Life Sciences R&D, TCS Research, Tata Consultancy Services LimitedPuneIndia
| | - Binuja Varma
- TCS Genomics Lab, Tata Consultancy Services LimitedNew DelhiIndia
| | - C. B. Koppiker
- Centre for Translational Cancer Research: A Joint Initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM)PuneIndia
- Prashanti Cancer Care Mission, Pune, India and Orchids Breast Health Centre, a PCCM initiativePuneIndia
| | - Sneha Joshi
- Centre for Translational Cancer Research: A Joint Initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM)PuneIndia
| | - Rupa Mishra
- Centre for Translational Cancer Research: A Joint Initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM)PuneIndia
| |
Collapse
|
12
|
Aitmanaitė L, Širmonaitis K, Russo G. Microbiomes, Their Function, and Cancer: How Metatranscriptomics Can Close the Knowledge Gap. Int J Mol Sci 2023; 24:13786. [PMID: 37762088 PMCID: PMC10531294 DOI: 10.3390/ijms241813786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The interaction between the microbial communities in the human body and the onset and progression of cancer has not been investigated until recently. The vast majority of the metagenomics research in this area has concentrated on the composition of microbiomes, attempting to link the overabundance or depletion of certain microorganisms to cancer proliferation, metastatic behaviour, and its resistance to therapies. However, studies elucidating the functional implications of the microbiome activity in cancer patients are still scarce; in particular, there is an overwhelming lack of studies assessing such implications directly, through analysis of the transcriptome of the bacterial community. This review summarises the contributions of metagenomics and metatranscriptomics to the knowledge of the microbial environment associated with several cancers; most importantly, it highlights all the advantages that metatranscriptomics has over metagenomics and suggests how such an approach can be leveraged to advance the knowledge of the cancer bacterial environment.
Collapse
Affiliation(s)
| | | | - Giancarlo Russo
- EMBL Partnership Institute for Gene Editing, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (L.A.); (K.Š.)
| |
Collapse
|
13
|
Hyblova M, Hadzega D, Babisova K, Krumpolec P, Gnip A, Sabaka P, Lassan S, Minarik G. Metatranscriptome Analysis of Nasopharyngeal Swabs across the Varying Severity of COVID-19 Disease Demonstrated Unprecedented Species Diversity. Microorganisms 2023; 11:1804. [PMID: 37512976 PMCID: PMC10384460 DOI: 10.3390/microorganisms11071804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The recent global emergence of the SARS-CoV-2 pandemic has accelerated research in several areas of science whose valuable outputs and findings can help to address future health challenges in the event of emerging infectious agents. We conducted a comprehensive shotgun analysis targeting multiple aspects to compare differences in bacterial spectrum and viral presence through culture-independent RNA sequencing. We conducted a comparative analysis of the microbiome between healthy individuals and those with varying degrees of COVID-19 severity, including a total of 151 participants. Our findings revealed a noteworthy increase in microbial species diversity among patients with COVID-19, irrespective of disease severity. Specifically, our analysis revealed a significant difference in the abundance of bacterial phyla between healthy individuals and those infected with COVID-19. We found that Actinobacteria, among other bacterial phyla, showed a notably higher abundance in healthy individuals compared to infected individuals. Conversely, Bacteroides showed a lower abundance in the latter group. Infected people, regardless of severity and symptoms, have the same proportional representation of Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Fusobacteriales. In addition to SARS-CoV-2 and numerous phage groups, we identified sequences of clinically significant viruses such as Human Herpes Virus 1, Human Mastadenovirus D, and Rhinovirus A in several samples. Analyses were performed retrospectively, therefore, in the case of SARS-CoV-2 various WHO variants such as Alpha (B.1.1.7), Delta (B.1.617.2), Omicron (B.1.1.529), and 20C strains are represented. Additionally, the presence of specific virus strains has a certain effect on the distribution of individual microbial taxa.
Collapse
Affiliation(s)
| | | | | | | | - Andrej Gnip
- Medirex Group Academy, 949 05 Nitra, Slovakia
| | - Peter Sabaka
- Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, 814 99 Bratislava, Slovakia
| | - Stefan Lassan
- Department of Pneumology and Ftizeology I, University Hospital in Bratislava, 831 01 Bratislava, Slovakia
| | | |
Collapse
|
14
|
German R, Marino N, Hemmerich C, Podicheti R, Rusch DB, Stiemsma LT, Gao H, Xuei X, Rockey P, Storniolo AM. Exploring breast tissue microbial composition and the association with breast cancer risk factors. Breast Cancer Res 2023; 25:82. [PMID: 37430354 DOI: 10.1186/s13058-023-01677-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Microbial dysbiosis has emerged as an important element in the development and progression of various cancers, including breast cancer. However, the microbial composition of the breast from healthy individuals, even relative to risk of developing breast cancer, remains unclear. Here, we performed a comprehensive analysis of the microbiota of the normal breast tissue, which was analyzed in relation to the microbial composition of the tumor and adjacent normal tissue. METHODS The study cohorts included 403 cancer-free women (who donated normal breast tissue cores) and 76 breast cancer patients (who donated tumor and/or adjacent normal tissue samples). Microbiome profiling was obtained by sequencing the nine hypervariable regions of the 16S rRNA gene (V1V2, V2V3, V3V4, V4V5, V5V7, and V7V9). Transcriptome analysis was also performed on 190 normal breast tissue samples. Breast cancer risk score was assessed using the Tyrer-Cuzick risk model. RESULTS The V1V2 amplicon sequencing resulted more suitable for the analysis of the normal breast microbiome and identified Lactobacillaceae (Firmicutes phylum), Acetobacterraceae, and Xanthomonadaceae (both Proteobacteria phylum) as the most abundant families in the normal breast. However, Ralstonia (Proteobacteria phylum) was more abundant in both breast tumors and histologically normal tissues adjacent to malignant tumors. We also conducted a correlation analysis between the microbiome and known breast cancer risk factors. Abundances of the bacterial taxa Acetotobacter aceti, Lactobacillus vini, Lactobacillus paracasei, and Xanthonomas sp. were associated with age (p < 0.0001), racial background (p < 0.0001), and parity (p < 0.0001). Finally, transcriptome analysis of normal breast tissues showed an enrichment in metabolism- and immune-related genes in the tissues with abundant Acetotobacter aceti, Lactobacillus vini, Lactobacillus paracasei, and Xanthonomas sp., whereas the presence of Ralstonia in the normal tissue was linked to dysregulation of genes involved in the carbohydrate metabolic pathway. CONCLUSIONS This study defines the microbial features of normal breast tissue, thus providing a basis to understand cancer-related dysbiosis. Moreover, the findings reveal that lifestyle factors can significantly affect the normal breast microbial composition.
Collapse
Affiliation(s)
- Rana German
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, 450 University Blvd, Indianapolis, IN, 46202, USA.
| | - Natascia Marino
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, 450 University Blvd, Indianapolis, IN, 46202, USA.
- Hematology/Oncology Division, Department of Medicine, Indiana University School of Medicine, 980 W. Walnut St, R3-C238, Indianapolis, IN, 46202, USA.
| | - Chris Hemmerich
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Leah T Stiemsma
- Natural Science Division, Pepperdine University, Malibu, CA, 90263, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaoling Xuei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Pam Rockey
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, 450 University Blvd, Indianapolis, IN, 46202, USA
| | - Anna Maria Storniolo
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, 450 University Blvd, Indianapolis, IN, 46202, USA
- Hematology/Oncology Division, Department of Medicine, Indiana University School of Medicine, 980 W. Walnut St, R3-C238, Indianapolis, IN, 46202, USA
| |
Collapse
|
15
|
Ojala T, Kankuri E, Kankainen M. Understanding human health through metatranscriptomics. Trends Mol Med 2023; 29:376-389. [PMID: 36842848 DOI: 10.1016/j.molmed.2023.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/27/2023]
Abstract
Metatranscriptomics has revolutionized our ability to explore and understand transcriptional programs in microbial communities. Moreover, it has enabled us to gain deeper and more specific insight into the microbial activities in human gut, respiratory, oral, and vaginal communities. Perhaps the most important contribution of metatranscriptomics arises, however, from the analyses of disease-associated communities. We review the advantages and disadvantages of metatranscriptomics analyses in understanding human health and disease. We focus on human tissues low in microbial biomass and conditions associated with dysbiotic microbiota. We conclude that a more widespread use of metatranscriptomics and increased knowledge on microbe activities will uncover critical interactions between microbes and host in human health and provide diagnostic basis for culturing-independent, direct functional pathogen identification.
Collapse
Affiliation(s)
- Teija Ojala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusimaa (HUS), Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusimaa (HUS), Helsinki, Finland; Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
16
|
Ciernikova S, Sevcikova A, Stevurkova V, Mego M. Tumor microbiome - an integral part of the tumor microenvironment. Front Oncol 2022; 12:1063100. [PMID: 36505811 PMCID: PMC9730887 DOI: 10.3389/fonc.2022.1063100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
The tumor microenvironment (TME) plays a significant role in tumor progression and cancer cell survival. Besides malignant cells and non-malignant components, including immune cells, elements of the extracellular matrix, stromal cells, and endothelial cells, the tumor microbiome is considered to be an integral part of the TME. Mounting evidence from preclinical and clinical studies evaluated the presence of tumor type-specific intratumoral bacteria. Differences in microbiome composition between cancerous tissues and benign controls suggest the importance of the microbiome-based approach. Complex host-microbiota crosstalk within the TME affects tumor cell biology via the regulation of oncogenic pathways, immune response modulation, and interaction with microbiota-derived metabolites. Significantly, the involvement of tumor-associated microbiota in cancer drug metabolism highlights the therapeutic implications. This review aims to summarize current knowledge about the emerging role of tumor microbiome in various types of solid malignancies. The clinical utility of tumor microbiome in cancer progression and treatment is also discussed. Moreover, we provide an overview of clinical trials evaluating the role of tumor microbiome in cancer patients. The research focusing on the communication between the gut and tumor microbiomes may bring new opportunities for targeting the microbiome to increase the efficacy of cancer treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia,*Correspondence: Sona Ciernikova,
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
17
|
Zhang J, Xie Q, Huo X, Liu Z, Da M, Yuan M, Zhao Y, Shen G. Impact of intestinal dysbiosis on breast cancer metastasis and progression. Front Oncol 2022; 12:1037831. [PMID: 36419880 PMCID: PMC9678367 DOI: 10.3389/fonc.2022.1037831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Breast cancer has a high mortality rate among malignant tumors, with metastases identified as the main cause of the high mortality. Dysbiosis of the gut microbiota has become a key factor in the development, treatment, and prognosis of breast cancer. The many microorganisms that make up the gut flora have a symbiotic relationship with their host and, through the regulation of host immune responses and metabolic pathways, are involved in important physiologic activities in the human body, posing a significant risk to health. In this review, we build on the interactions between breast tissue (including tumor tissue, tissue adjacent to the tumor, and samples from healthy women) and the microbiota, then explore factors associated with metastatic breast cancer and dysbiosis of the gut flora from multiple perspectives, including enterotoxigenic Bacteroides fragilis, antibiotic use, changes in gut microbial metabolites, changes in the balance of the probiotic environment and diet. These factors highlight the existence of a complex relationship between host-breast cancer progression-gut flora. Suggesting that gut flora dysbiosis may be a host-intrinsic factor affecting breast cancer metastasis and progression not only informs our understanding of the role of microbiota dysbiosis in breast cancer development and metastasis, but also the importance of balancing gut flora dysbiosis and clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guoshuang Shen
- Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, China
| |
Collapse
|
18
|
Di Modica M, Arlotta V, Sfondrini L, Tagliabue E, Triulzi T. The Link Between the Microbiota and HER2+ Breast Cancer: The New Challenge of Precision Medicine. Front Oncol 2022; 12:947188. [PMID: 35912227 PMCID: PMC9326166 DOI: 10.3389/fonc.2022.947188] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
The microbiota is emerging as a key player in cancer due to its involvement in several host physiological functions, including digestion, development of the immune system, and modulation of endocrine function. Moreover, its participation in the efficacy of anticancer treatments has been well described. For instance, the involvement of the breast microbiota in breast cancer (BC) development and progression has gained ground in the past several years. In this review, we report and discuss new findings on the impact of the gut and breast microbiota on BC, focusing on the HER2+ BC subtype, and the possibility of defining microbial signatures that are associated with disease aggressiveness, treatment response, and therapy toxicity. We also discuss novel insights into the mechanisms through which microorganism-host interactions occur and the possibility of microbiota editing in the prevention and treatment optimization of BC.
Collapse
Affiliation(s)
- Martina Di Modica
- Molecular Targeting Unit, Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Valeria Arlotta
- Molecular Targeting Unit, Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Lucia Sfondrini
- Molecular Targeting Unit, Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
- *Correspondence: Elda Tagliabue,
| | - Tiziana Triulzi
- Molecular Targeting Unit, Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|