1
|
Li F, Xi K, Li Y, Ming T, Huang Y, Zhang L. Genome-wide analysis of transmembrane 9 superfamily genes in wheat ( Triticum aestivum) and their expression in the roots under nitrogen limitation and Bacillus amyloliquefaciens PDR1 treatment conditions. FRONTIERS IN PLANT SCIENCE 2024; 14:1324974. [PMID: 38259936 PMCID: PMC10800943 DOI: 10.3389/fpls.2023.1324974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
Introduction Transmembrane 9 superfamily (TM9SF) proteins play significant roles in plant physiology. However, these proteins are poorly characterized in wheat (Triticum aestivum). The present study aimed at the genome-wide analysis of putative wheat TM9SF (TraesTM9SF) proteins and their potential involvement in response to nitrogen limitation and Bacillus amyloliquefaciens PDR1 treatments. Methods TraesTM9SF genes were retrieved from the wheat genome, and their physiochemical properties, alignment, phylogenetic, motif structure, cis-regulatory element, synteny, protein-protein interaction (PPI), and transcription factor (TF) prediction analyses were performed. Transcriptome sequencing and quantitative real-time polymerase reaction (qRT-PCR) were performed to detect gene expression in roots under single or combined treatments with nitrogen limitation and B. amyloliquefaciens PDR1. Results and discussion Forty-seven TraesTM9SF genes were identified in the wheat genome, highlighting the significance of these genes in wheat. TraesTM9SF genes were absent on some wheat chromosomes and were unevenly distributed on the other chromosomes, indicating that potential regulatory functions and evolutionary events may have shaped the TraesTM9SF gene family. Fifty-four cis-regulatory elements, including light-response, hormone response, biotic/abiotic stress, and development cis-regulatory elements, were present in the TraesTM9SF promoter regions. No duplication of TraesTM9SF genes in the wheat genome was recorded, and 177 TFs were predicted to target the 47 TraesTM9SF genes in a complex regulatory network. These findings offer valued data for predicting the putative functions of uncharacterized TM9SF genes. Moreover, transcriptome analysis and validation by qRT-PCR indicated that the TraesTM9SF genes are expressed in the root system of wheat and are potentially involved in the response of this plant to single or combined treatments with nitrogen limitation and B. amyloliquefaciens PDR1, suggesting their functional roles in plant growth, development, and stress responses. Conclusion These findings may be vital in further investigation of the function and biological applications of TM9SF genes in wheat.
Collapse
Affiliation(s)
- Fei Li
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Kuanling Xi
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yuke Li
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Tang Ming
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yufeng Huang
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Lijun Zhang
- Science and Technology Division, Guizhou Normal University, Guiyang, China
| |
Collapse
|
2
|
Tyrka M, Krajewski P, Bednarek PT, Rączka K, Drzazga T, Matysik P, Martofel R, Woźna-Pawlak U, Jasińska D, Niewińska M, Ługowska B, Ratajczak D, Sikora T, Witkowski E, Dorczyk A, Tyrka D. Genome-wide association mapping in elite winter wheat breeding for yield improvement. J Appl Genet 2023; 64:377-391. [PMID: 37120451 PMCID: PMC10457411 DOI: 10.1007/s13353-023-00758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 05/01/2023]
Abstract
Increased grain yield (GY) is the primary breeding target of wheat breeders. We performed the genome-wide association study (GWAS) on 168 elite winter wheat lines from an ongoing breeding program to identify the main determinants of grain yield. Sequencing of Diversity Array Technology fragments (DArTseq) resulted in 19,350 single-nucleotide polymorphism (SNP) and presence-absence variation (PAV) markers. We identified 15 main genomic regions located in ten wheat chromosomes (1B, 2B, 2D, 3A, 3D, 5A, 5B, 6A, 6B, and 7B) that explained from 7.9 to 20.3% of the variation in grain yield and 13.3% of the yield stability. Loci identified in the reduced genepool are important for wheat improvement using marker-assisted selection. We found marker-trait associations between three genes involved in starch biosynthesis and grain yield. Two starch synthase genes (TraesCS2B03G1238800 and TraesCS2D03G1048800) and a sucrose synthase gene (TraesCS3D03G0024300) were found in regions of QGy.rut-2B.2, QGy.rut-2D.1, and QGy.rut-3D, respectively. These loci and other significantly associated SNP markers found in this study can be used for pyramiding favorable alleles in high-yielding varieties or to improve the accuracy of prediction in genomic selection.
Collapse
Affiliation(s)
- Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959, Rzeszów, Poland.
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Piotr Tomasz Bednarek
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Kinga Rączka
- Department of Biotechnology and Bioinformatics, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959, Rzeszów, Poland
| | - Tadeusz Drzazga
- Małopolska Plant Breeding Ltd, Sportowa 21, 55-040, Kobierzyce, Poland
| | - Przemysław Matysik
- Plant Breeding Strzelce Group IHAR Ltd, Główna 20, 99-307, Strzelce, Poland
| | - Róża Martofel
- Poznań Plant Breeding Ltd, Kasztanowa 5, 63-004, Tulce, Poland
| | | | - Dorota Jasińska
- Poznań Plant Breeding Ltd, Kasztanowa 5, 63-004, Tulce, Poland
| | | | | | | | - Teresa Sikora
- DANKO Plant Breeders Ltd, Ks. Strzybnego 23, 47-411, Rudnik, Poland
| | - Edward Witkowski
- Plant Breeding Smolice Ltd, Smolice 146, 63-740, Kobylin, Poland
| | - Ada Dorczyk
- Plant Breeding Smolice Ltd, Smolice 146, 63-740, Kobylin, Poland
| | - Dorota Tyrka
- Department of Biotechnology and Bioinformatics, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959, Rzeszów, Poland
| |
Collapse
|
3
|
Krępski T, Olechowski M, Samborska-Skutnik I, Święcicka M, Grądzielewska A, Rakoczy-Trojanowska M. Identification and characteristics of wheat Lr orthologs in three rye inbred lines. PLoS One 2023; 18:e0288520. [PMID: 37440539 DOI: 10.1371/journal.pone.0288520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The genetic background of the immune response of rye to leaf rust (LR), although extensively studied, is still not well understood. The recent publication of the genome of rye line Lo7 and the development of efficient transcriptomic methods has aided the search for genes that confer resistance to this disease. In this study, we investigated the potential role of rye orthologs of wheat Lr genes (Lr1, Lr10, Lr21, Lr22a, and RGA2/T10rga2-1A) in the LR seedling-stage resistance of inbred rye lines D33, D39, and L318. Bioinformatics analysis uncovered numerous Lr orthologs in the Lo7 genome, namely, 14 ScLr1, 15 ScRga2, and 2 ScLr21 paralogs, and 1 each of ScLr10 and ScLr22a genes. The paralogs of ScLr1, ScRga2, and ScLr21 were structurally different from one another and their wheat counterparts. According to an RNA sequencing analysis, only four wheat Lr gene orthologs identified in the Lo7 genome (ScLr1_3, ScLr1_4, ScLr1_8, and ScRga2_6) were differentially expressed; all four were downregulated after infection with compatible or incompatible isolates of Puccinia recondita f. sp. secalis (Prs). Using a more precise tool, RT-qPCR, we found that two genes were upregulated at 20 h post-infection, namely, ScLr1_4 and ScLr1_8 in lines D33 and D39, respectively, both of which have been found to be resistant to LR under field conditions and after treatment with a semi-compatible Prs strain. We were unable to discern any universal pattern of gene expression after Prs infection; on the contrary, all detected relationships were plant genotype-, Prs isolate-, or time-specific. Nevertheless, at least some Lr orthologs in rye (namely, ScLr1_3 ScLr1_4, ScLr1_8, and ScRga2_6), even though mainly downregulated, may play an important role in the response of rye to LR.
Collapse
Affiliation(s)
- Tomasz Krępski
- Department of Plant Genetics, Institute of Biology, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Olechowski
- Department of Plant Genetics, Institute of Biology, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Izabela Samborska-Skutnik
- Department of Plant Genetics, Institute of Biology, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Święcicka
- Department of Plant Genetics, Institute of Biology, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Monika Rakoczy-Trojanowska
- Department of Plant Genetics, Institute of Biology, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Szeliga M, Bakera B, Święcicka M, Tyrka M, Rakoczy-Trojanowska M. Identification of candidate genes responsible for chasmogamy in wheat. BMC Genomics 2023; 24:170. [PMID: 37016302 PMCID: PMC10074802 DOI: 10.1186/s12864-023-09252-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/15/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND The flowering biology of wheat plants favours self-pollination which causes obstacles in wheat hybrid breeding. Wheat flowers can be divided into two groups, the first one is characterized by flowering and pollination within closed flowers (cleistogamy), while the second one possesses the ability to open flowers during processes mentioned above (chasmogamy). The swelling of lodicules is involved in the flowering of cereals and among others their morphology, calcium and potassium content differentiate between cleistogamic and non-cleistogamous flowers. A better understanding of the chasmogamy mechanism can lead to the development of tools for selection of plants with the desired outcrossing rate. To learn more, the sequencing of transcriptomes (RNA-Seq) and Representational Difference Analysis products (RDA-Seq) were performed to investigate the global transcriptomes of wheat lodicules in two highly chasmogamous (HCH, Piko and Poezja) and two low chasmogamous (LCH, Euforia and KWS Dacanto) varieties at two developmental stages-pre-flowering and early flowering. RESULTS The differentially expressed genes were enriched in five, main pathways: "metabolism", "organismal systems", "genetic information processing", "cellular processes" and "environmental information processing", respectively. Important genes with opposite patterns of regulation between the HCH and LCH lines have been associated with the lodicule development i.e. expression levels of MADS16 and MADS58 genes may be responsible for quantitative differences in chasmogamy level in wheat. CONCLUSIONS We conclude that the results provide a new insight into lodicules involvement in the wheat flowering process. This study generated important genomic information to support the exploitation of the chasmogamy in wheat hybrid breeding programs.
Collapse
Affiliation(s)
- Magdalena Szeliga
- Rzeszow University of Technology, Powstańców Warszawy 12, 35-959, Rzeszów, Poland.
| | - Beata Bakera
- Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa Street 1, 02-096, Warsaw, Poland
| | - Magdalena Święcicka
- Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Mirosław Tyrka
- Rzeszow University of Technology, Powstańców Warszawy 12, 35-959, Rzeszów, Poland
| | | |
Collapse
|
5
|
Maghuly F, Molin EM, Saxena R, Konkin DJ. Editorial: Functional Genomics in Plant Breeding 2.0. Int J Mol Sci 2022; 23:ijms23136959. [PMID: 35805968 PMCID: PMC9266731 DOI: 10.3390/ijms23136959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Fatemeh Maghuly
- Plant Functional Genomics, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
- Correspondence:
| | - Eva M. Molin
- Center for Health & Bioresources, AIT Austrian Institute of Technology (AIT), 3430 Tulln, Austria;
| | - Rachit Saxena
- The International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India;
| | - David J. Konkin
- Aquatic and Crop Resource Development (ACRD), National Research Council Canada (NRC), Saskatoon, SK S7N 0W9, Canada;
| |
Collapse
|
6
|
Effective Pollen-Fertility Restoration Is the Basis of Hybrid Rye Production and Ergot Mitigation. PLANTS 2022; 11:plants11091115. [PMID: 35567115 PMCID: PMC9104404 DOI: 10.3390/plants11091115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022]
Abstract
Hybrid rye breeding leads to considerably higher grain yield and a higher revenue to the farmer. The basis of hybrid seed production is the CMS-inducing Pampa (P) cytoplasm derived from an Argentinean landrace and restorer-to-fertility (Rf) genes. European sources show an oligogenic inheritance, with major and minor Rf genes, and mostly result in low-to-moderate pollen-fertility levels. This results in higher susceptibility to ergot (Claviceps purpurea) because rye pollen and ergot spores are in strong competition for the unfertilized stigma. Rf genes from non-adapted Iranian primitive rye and old Argentinean cultivars proved to be most effective. The major Rf gene in these sources was localized on chromosome 4RL, which is also a hotspot of restoration in other Triticeae. Marker-based introgression into elite rye materials led to a yield penalty and taller progenies. The Rfp1 gene of IRAN IX was fine-mapped, and two linked genes of equal effects were detected. Commercial hybrids with this gene showed a similar low ergot infection when compared with population cultivars. The task of the future is to co-adapt these exotic Rfp genes to European elite gene pools by genomic-assisted breeding.
Collapse
|