1
|
Tuttolomondo A, Chimenti C, Cianci V, Gallieni M, Lanzillo C, La Russa A, Limongelli G, Mignani R, Olivotto I, Pieruzzi F, Pisani A. Females with Fabry disease: an expert opinion on diagnosis, clinical management, current challenges and unmet needs. Front Cardiovasc Med 2025; 12:1536114. [PMID: 40144933 PMCID: PMC11937019 DOI: 10.3389/fcvm.2025.1536114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/03/2025] [Indexed: 03/28/2025] Open
Abstract
Females with Fabry disease (FD) often have a milder phenotype, later symptom onset, and slower disease progression than males, causing delayed diagnosis and undertreatment. A survey was conducted at nine Italian FD centers to evaluate routine management of females with FD; results were discussed at a meeting of eleven Italian specialists and recommendations developed. Of the 227 females managed by the physicians surveyed, 85% were diagnosed through family screening and 38.5% were symptomatic at presentation. Female patients usually underwent cardiac, renal, and neurologic monitoring, and measurement of plasma lyso-globotriaosylsphingosine (Gb3) levels at 6- or 12-month intervals. Treatment was initiated in 54%, mostly enzyme replacement therapy. Experts recommended screening all female relatives of index cases and evaluating all potentially affected organ systems. Diagnosis should be based on genetic analysis. Individualized monitoring of asymptomatic females must balance the need to detect organ damage while maintaining adherence. Treatment decisions should be based primarily on signs/symptoms of FD, but age, family screening results, GLA mutations, Gb3/lyso-Gb3 accumulation, and organ damage should be considered in asymptomatic females. More research on FD in females is needed and physicians should be aware of differences in the diagnosis, monitoring, and management of females vs. males with FD.
Collapse
Affiliation(s)
- Antonino Tuttolomondo
- Department of Internal Medicine and Stroke Care, University Policlinico Hospital of Palermo, and ProMISE Department, University of Palermo, Palermo, Italy
| | - Cristina Chimenti
- Department of Clinical, Internal, Anesthetic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Vittoria Cianci
- Neurology and Stroke Care Unit, Great Metropolitan Hospital, Bianchi-Melacrino Morelli, Reggio Calabria, Italy
| | - Maurizio Gallieni
- Dipartimento di Scienze Biomediche e Cliniche, University of Milano, Milano, Italy
| | | | - Antonella La Russa
- Department of Health Sciences, University of Magna Graecia, Catanzaro, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, AORN dei Colli—University of Campania Luigi Vanvitelli, Naples, Italy
| | - Renzo Mignani
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
- Nephrology Department, IRCCS S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Iacopo Olivotto
- Pediatric Cardiology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Federico Pieruzzi
- Nephrology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Antonio Pisani
- Department of Public Health, Federico II University of Naples, Naples, Italy
| |
Collapse
|
2
|
Shirvani P, Shirvani A, Holick MF. Mitochondrial Dysfunction and Its Potential Molecular Interplay in Hypermobile Ehlers-Danlos Syndrome: A Scoping Review Bridging Cellular Energetics and Genetic Pathways. Curr Issues Mol Biol 2025; 47:134. [PMID: 39996855 PMCID: PMC11854588 DOI: 10.3390/cimb47020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Hypermobile Ehlers-Danlos Syndrome (hEDS) is a hereditary connective tissue disorder characterized by joint hypermobility, skin hyperextensibility, and systemic manifestations such as chronic fatigue, gastrointestinal dysfunction, and neurological symptoms. Unlike other EDS subtypes with known genetic mutations, hEDS lacks definitive markers, suggesting a multifactorial etiology involving both mitochondrial dysfunction and non-mitochondrial pathways. This scoping review, conducted in accordance with the PRISMA-ScR guidelines, highlights mitochondrial dysfunction as a potential unifying mechanism in hEDS pathophysiology. Impaired oxidative phosphorylation (OXPHOS), elevated reactive oxygen species (ROS) levels, and calcium dysregulation disrupt cellular energetics and extracellular matrix (ECM) homeostasis, contributing to the hallmark features of hEDS. We reviewed candidate genes associated with ECM remodeling, signaling pathways, and immune regulation. Protein-protein interaction (PPI) network analyses revealed interconnected pathways linking mitochondrial dysfunction with these candidate genes. Comparative insights from Fabry disease and fragile X premutation carriers underscore shared mechanisms such as RNA toxicity, matrix metalloproteinases (MMP) activation, and ECM degradation. These findings may suggest that mitochondrial dysfunction amplifies systemic manifestations through its interplay with non-mitochondrial molecular pathways. By integrating these perspectives, this review provides a potential framework for understanding hEDS pathogenesis while highlighting latent avenues for future research into its molecular basis. Understanding the potential role of mitochondrial dysfunction in hEDS not only sheds light on its complex molecular etiology but also opens new paths for targeted interventions.
Collapse
Affiliation(s)
| | - Arash Shirvani
- Ehlers-Danlos Syndrome Clinical Research Program, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Michael F. Holick
- Ehlers-Danlos Syndrome Clinical Research Program, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| |
Collapse
|
3
|
Biddeci G, Spinelli G, Colomba P, Duro G, Anania M, Francofonte D, Di Blasi F. Fabry Disease and Inflammation: Potential Role of p65 iso5, an Isoform of the NF-κB Complex. Cells 2025; 14:230. [PMID: 39937021 PMCID: PMC11817417 DOI: 10.3390/cells14030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Fabry disease (FD) is an X-linked lysosomal storage disease, caused by mutations in the GLA gene on the X chromosome, resulting in a deficiency of the lysosomal enzyme α-GAL. This leads to the progressive accumulation of Gb3 in cells, causing multi-systemic effects. FD has been classified as a subgroup of autoinflammatory diseases. NF-κB is a family of ubiquitous and inducible transcription factors that play critical roles in inflammation, in which the p65/p50 heterodimer is the most abundant. The glucocorticoid receptor (GR) represents the physiological antagonists in the inflammation process. A novel spliced variant of p65, named p65 iso5, which can bind the dexamethasone, enhancing GR activity, has been found. This study investigates the potential role of p65 iso5 in the inflammation of subjects with FD. We evaluated in peripheral blood mononuclear cells (PBMCs), from over 100 FD patients, the p65 iso5 mRNA level, and the protein expression. The results showed significantly lower p65 iso5 mRNA and protein expression levels compared to controls. These findings, along with the ability of p65 iso5 to bind dexamethasone and the regulation of the glucocorticoid response in the opposite way of p65, strongly suggest the involvement of p65 iso5 in the inflammatory response in FD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Di Blasi
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.B.); (G.S.); (P.C.); (G.D.); (M.A.); (D.F.)
| |
Collapse
|
4
|
Mignani R, Biagini E, Cianci V, Pieruzzi F, Pisani A, Tuttolomondo A, Pieroni M. Effects of Current Therapies on Disease Progression in Fabry Disease: A Narrative Review for Better Patient Management in Clinical Practice. Adv Ther 2025; 42:597-635. [PMID: 39636569 PMCID: PMC11787255 DOI: 10.1007/s12325-024-03041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024]
Abstract
Fabry disease (FD) is a rare lysosomal storage disorder that is characterized by renal, neurological, and cardiovascular dysfunction. Four treatments are currently available for patients with FD; three enzyme replacement therapies (ERTs; agalsidase alfa, agalsidase beta, and pegunigalsidase alfa) and one pharmacological chaperone (migalastat). This review focuses on the evidence for the benefits of ERTs and migalastat, and provides an overview of their impact on disease manifestations and quality of life (QoL). Agalsidase beta is associated with renal, neurological, and cardiovascular benefits, and may prevent renal disease progression. Agalsidase alfa provides stabilizing effects across all main organ systems, although minor sex-specific differences exist in patients with more advanced baseline disease. The benefits of agalsidase alfa and agalsidase beta are similar but depend on the extent of baseline disease. Some data indicate that agalsidase beta may be preferable over the longer term. Both agalsidase alfa and agalsidase beta are associated with improved gastrointestinal and pain symptoms, as well as improved QoL. Patients with advanced end-organ damage tend not to respond as optimally to ERTs as those who initiate ERTs before irreversible organ fibrosis develops, highlighting the need for early treatment initiation. Migalastat, which is only approved for patients with amenable missense gene variants, generally stabilizes renal parameters and provides cardiovascular benefits. Migalastat also improves diarrhea and pain, and stabilizes QoL (although ERT may be more effective for pain management), but the neurological effects of migalastat have not been studied. Real-world data raise concerns about effective in vivo amenability of some genetic variants. Future studies with direct treatment comparisons in patients with FD are needed.
Collapse
Affiliation(s)
- Renzo Mignani
- Nephrology, Dialysis and Transplantation, IRCCS S. Orsola Hospital Bologna, University of Bologna, Bologna, Italy.
| | - Elena Biagini
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart), Bologna, Italy
| | - Vittoria Cianci
- Neurology, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Federico Pieruzzi
- Clinical Nephrology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Antonio Pisani
- Nephrology, University Federico II of Naples, Naples, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties Department, University of Palermo, Palermo, Italy
| | - Maurizio Pieroni
- Cardiovascular Department, ASL8 Arezzo San Donato Hospital, Via Pietro Nenni 20, 52100, Arezzo, Italy
| |
Collapse
|
5
|
Kummer K, Choconta JL, Edenhofer ML, Bajpai A, Dharmalingam G, Kalpachidou T, Collier DA, Kress M. Anxiety-like behavior and altered hippocampal activity in a transgenic mouse model of Fabry disease. Neurobiol Dis 2025; 205:106797. [PMID: 39788162 DOI: 10.1016/j.nbd.2025.106797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/02/2025] [Accepted: 01/05/2025] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Fabry disease (FD) patients are known to be at high risk of developing neuropsychiatric symptoms such as anxiety, depression and cognitive deficits. Despite this, they are underdiagnosed and inadequately treated. It is unknown whether these symptoms arise from pathological glycosphingolipid deposits or from cerebrovascular abnormalities affecting neuronal functions in the central nervous system. We therefore aimed to fill this knowledge gap by exploring a transgenic FD mouse model with a combination of behavior, transcriptomic, functional and morphological assessments, with a particular focus on the hippocampus. RESULTS Male FD mice exhibited increased anxiety-like behavior in the open field test, accompanied by a reduced exploratory drive in the Barnes maze, which could be related to the increased deposition of globotriaosylceramide (Gb3) identified in the dentate gyrus (DG). Hippocampus single-cell sequencing further revealed that Gb3 accumulation was associated with differential gene expression in neuronal and non-neuronal cell populations with granule, excitatory and interneurons, as well as microglia and endothelial cells as the main clusters with the most dysregulated genes. Particularly FD hippocampal neurons showed decreased electrical baseline activity in the DG and increased activity in the CA3 region of acutely dissected hippocampal slices. CONCLUSIONS Our study highlights transcriptional and functional alterations in non-neuronal and neuronal cell clusters in the hippocampus of FD mice, which are suggested to be causally related to anxiety-like behavior developing as a consequence of FD pathology in mouse models of the disease and in patients.
Collapse
Affiliation(s)
- Kai Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Jeiny Luna Choconta
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
6
|
Kimball TN, Tack RW, Chen A, Prapiadou S, Senff JR, Tan BY, Singh SD, van Veluw SJ, Greenberg SM, Rosand J, Anderson CD. Genetics of intracerebral hemorrhage. J Cereb Blood Flow Metab 2025:271678X241310401. [PMID: 39763366 DOI: 10.1177/0271678x241310401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Spontaneous intracerebral hemorrhage(ICH) represents a life-threatening form of stroke, marked by its impact on survival and quality of life. ICH can be categorized from monogenic disorders linked to causal germline variants in ICH-related genes to complex sporadic cases, highlighting the interaction among lifestyle factors, environmental influences, and genetic components in determining risk. Among sporadic ICH, the influence of these factors varies across ICH subtypes, evidenced by heritability rates of up to 73% for lobar ICH versus 34% for non-lobar ICH. This review presents an outline of the genetic landscape of ICH, covering both monogenic and sporadic forms. It highlights associations between ICH risk and genetic variants, including rare and common variants in genes such as COL4A1, COL4A2, APOE, ACE, MTHFR, and PMF1. However, replication has been constrained, and most findings originate from single-candidate gene studies, largely due to ancestry heterogeneity, small sample sizes, and scarce subtype-specific data. To bridge this gap, collaborative efforts like the International Stroke Genetic Consortium have been established. Additionally, the review discusses the emerging role of polygenic risk scores, Mendelian randomization, and the potential of genetic and omics research to elucidate causal pathobiology. Such insights could lead to preventive measures and personalized ICH treatment strategies.
Collapse
Affiliation(s)
- Tamara N Kimball
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Reinier Wp Tack
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anna Chen
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Savvina Prapiadou
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jasper R Senff
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin Yq Tan
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sanjula D Singh
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan Rosand
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher D Anderson
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Yang Z, Li H, Luo M, Yi H, Han X, Liu E, Yao S, Hu Z. Identification of c.146G > A mutation in a Fabry patient and its correction by customized Cas9 base editors in vitro. Int J Biol Macromol 2024; 282:136922. [PMID: 39490876 DOI: 10.1016/j.ijbiomac.2024.136922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by mutations in the GLA gene, leading to reduced α-galactosidase (α-Gal A) activity. Current treatments, like enzyme replacement, have limitations affecting efficacy and patient outcomes. CRISPR/Cas9 genome editing tools may offer the potential to develop therapeutic strategy via correcting GLA mutations. In this study, we diagnosed a female FD patient with a missense mutation in exon 1 of the GLA gene (c.146G > A, p.R49H). Bioinformatic predictions and biochemical analyses in GLA-knockout cells revealed that this mutation significantly reduced α-Gal A stability and activity, confirming its pathogenicity. To correct this, we used adenine base editing. The mutation, along with a nearby bystander A, was efficiently edited by the traditional N-terminal adenine base editor. To avoid unwanted bystander editing, we developed a series of domain-inlaid base editors with the aim of narrowing editing window. The most effective variant, with deaminase inserted between the 947th and 948th residues of the RUVC3 domain, was further optimized by modifying linker rigidity. These adjustments shifted the editing window, eliminating bystander editing. Our findings clarify the pathogenic nature of a novel GLA mutation and demonstrate the potential of a customized base editor for therapeutic application in FD.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hao Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mei Luo
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu 610041, Sichuan, China
| | - Haonan Yi
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu 610041, Sichuan, China
| | - Xinyu Han
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu 610041, Sichuan, China
| | - Enze Liu
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu 610041, Sichuan, China
| | - Shaohua Yao
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu 610041, Sichuan, China.
| | - Zhangxue Hu
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
8
|
Scaravilli A, Capasso S, Ugga L, Capuano I, Di Risi T, Pontillo G, Riccio E, Tranfa M, Pisani A, Brunetti A, Cocozza S. Clinical and Pathophysiologic Correlates of Basilar Artery Measurements in Fabry Disease. AJNR Am J Neuroradiol 2024; 45:1670-1677. [PMID: 38997124 PMCID: PMC11543084 DOI: 10.3174/ajnr.a8403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND AND PURPOSE Alterations of the basilar artery (BA) anatomy have been suggested as a possible MRA feature of Fabry disease (FD). Nonetheless, no information about their clinical or pathophysiologic correlates is available, limiting our comprehension of the real impact of vessel remodeling in FD. MATERIALS AND METHODS Brain MRIs of 53 subjects with FD (mean age, 40.7 [SD, 12.4] years; male/female ratio = 23:30) were collected in this single-center study. Mean BA diameter and its tortuosity index were calculated on MRA. Possible correlations between these metrics and clinical, laboratory, and advanced imaging variables of the posterior circulation were tested. In a subgroup of 20 subjects, a 2-year clinical and imaging follow-up was available, and possible longitudinal changes of these metrics and their ability to predict clinical scores were also probed. RESULTS No significant association was found between MRA metrics and any clinical, laboratory, or advanced imaging variable (P values ranging from -0.006 to 0.32). At the follow-up examination, no changes were observed with time for the mean BA diameter (P = .84) and the tortuosity index (P = .70). Finally, baseline MRA variables failed to predict the clinical status of patients with FD at follow-up (P = .42 and 0.66, respectively). CONCLUSIONS Alterations of the BA in FD lack of any meaningful association with clinical, laboratory, or advanced imaging findings collected in this study. Furthermore, this lack of correlation seems constant across time, suggesting stability over time. Taken together, these results suggest that the role of BA dolichoectasia in FD should be reconsidered.
Collapse
Affiliation(s)
- Alessandra Scaravilli
- From the Department of Advanced Biomedical Sciences (A.S., S.C., L.U., G.P., M.T., A.B., S.C.), University of Naples "Federico II", Naples, Italy
| | - Serena Capasso
- From the Department of Advanced Biomedical Sciences (A.S., S.C., L.U., G.P., M.T., A.B., S.C.), University of Naples "Federico II", Naples, Italy
| | - Lorenzo Ugga
- From the Department of Advanced Biomedical Sciences (A.S., S.C., L.U., G.P., M.T., A.B., S.C.), University of Naples "Federico II", Naples, Italy
| | - Ivana Capuano
- Department of Public Health (I.C., E.R., A.P.), University of Naples "Federico II", Naples, Italy
| | | | - Giuseppe Pontillo
- From the Department of Advanced Biomedical Sciences (A.S., S.C., L.U., G.P., M.T., A.B., S.C.), University of Naples "Federico II", Naples, Italy
| | - Eleonora Riccio
- Department of Public Health (I.C., E.R., A.P.), University of Naples "Federico II", Naples, Italy
| | - Mario Tranfa
- From the Department of Advanced Biomedical Sciences (A.S., S.C., L.U., G.P., M.T., A.B., S.C.), University of Naples "Federico II", Naples, Italy
| | - Antonio Pisani
- Department of Public Health (I.C., E.R., A.P.), University of Naples "Federico II", Naples, Italy
| | - Arturo Brunetti
- From the Department of Advanced Biomedical Sciences (A.S., S.C., L.U., G.P., M.T., A.B., S.C.), University of Naples "Federico II", Naples, Italy
| | - Sirio Cocozza
- From the Department of Advanced Biomedical Sciences (A.S., S.C., L.U., G.P., M.T., A.B., S.C.), University of Naples "Federico II", Naples, Italy
| |
Collapse
|
9
|
Erdman ME, Ch S, Mohiuddin A, Al-Kirwi K, Rasper MR, Sokupa S, Low SWY, Skumatz CMB, De Stefano V, Kassem IS, Chaurasia SS. Fabry Disease Rat Model Develops Age- and Sex-Dependent Anterior Segment Ocular Abnormalities. Invest Ophthalmol Vis Sci 2024; 65:14. [PMID: 39110587 PMCID: PMC11314710 DOI: 10.1167/iovs.65.10.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/23/2024] [Indexed: 08/11/2024] Open
Abstract
Purpose Fabry disease is an X-linked lysosomal storage disorder that results in multi-systemic renal, cardiovascular, and neuropathological damage, including in the eyes. We evaluated anterior segment ocular abnormalities based on age, sex (male and female), and genotype (wild-type, knockout [KO] male, heterozygous [HET] female, and KO female) in a rat model of Fabry disease. Methods The α-Gal A KO and WT rats were divided into young (6-24 weeks), adult (25-60 weeks), and aged (61+ weeks) groups. Intraocular pressure (IOP) was measured. Eyes were clinically scored for corneal and lens opacity as well as evaluated for corneal epithelial integrity and tear break-up time (TBUT). Anterior chamber depth (ACD) and central corneal thickness (CCT) using anterior segment-optical coherence tomography (AS-OCT). Results The Fabry rats showed an age-dependent increase in IOP, predominantly in the male genotype. TBUT was decreased in both male and female groups with aging. Epithelial integrity was defective in KO males and HET females with age. However, it was highly compromised in KO females irrespective of age. Corneal and lens opacities were severely affected irrespective of sex or genotype in the aging Fabry rats. AS-OCT quantification of CCT and ACD also demonstrated age-dependent increases but were more pronounced in Fabry versus WT genotypes. Conclusions Epithelial integrity, corneal, and lens opacities worsened in Fabry rats, whereas IOP and TBUT changes were age-dependent. Similarly, CCT and ACD were age-related but more pronounced in Fabry rats, providing newer insights into the anterior segment ocular abnormalities with age, sex, and genotype in a rat model of Fabry disease.
Collapse
Affiliation(s)
- Madelyn E. Erdman
- Ocular Immunology & Angiogenesis Lab, Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sanjay Ch
- Ocular Immunology & Angiogenesis Lab, Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Amer Mohiuddin
- Ocular Immunology & Angiogenesis Lab, Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Khalid Al-Kirwi
- Ocular Immunology & Angiogenesis Lab, Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Molly R. Rasper
- Ocular Immunology & Angiogenesis Lab, Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sibabalo Sokupa
- Ocular Immunology & Angiogenesis Lab, Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Shermaine W. Y. Low
- Ocular Immunology & Angiogenesis Lab, Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Christine M. B. Skumatz
- Ocular Immunology & Angiogenesis Lab, Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Vinicius De Stefano
- Ocular Immunology & Angiogenesis Lab, Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cornea and Refractive Surgery, Froedtert and Medical College of Wisconsin Eye Institute, Milwaukee, Wisconsin, United States
| | - Iris S. Kassem
- Ocular Immunology & Angiogenesis Lab, Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Shyam S. Chaurasia
- Ocular Immunology & Angiogenesis Lab, Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
10
|
Snanoudj S, Derambure C, Zhang C, Hai Yen NT, Lesueur C, Coutant S, Abily-Donval L, Marret S, Yang H, Mardinoglu A, Bekri S, Tebani A. Genome-wide expression analysis in a Fabry disease human podocyte cell line. Heliyon 2024; 10:e34357. [PMID: 39100494 PMCID: PMC11295972 DOI: 10.1016/j.heliyon.2024.e34357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Fabry disease (FD) is an X-linked lysosomal disease caused by an enzyme deficiency of alpha-galactosidase A (α-gal A). This deficiency leads to the accumulation of glycosphingolipids in lysosomes, resulting in a range of clinical symptoms. The complex pathogenesis of FD involves lysosomal dysfunction, altered autophagy, and mitochondrial abnormalities. Omics sciences, particularly transcriptomic analysis, comprehensively understand molecular mechanisms underlying diseases. This study focuses on genome-wide expression analysis in an FD human podocyte model to gain insights into the underlying mechanisms of podocyte dysfunction. Human control and GLA-edited podocytes were used. Gene expression data was generated using RNA-seq analysis, and differentially expressed genes were identified using DESeq2. Principal component analysis and Spearman correlation have explored gene expression trends. Functional enrichment and Reporter metabolite analyses were conducted to identify significantly affected metabolites and metabolic pathways. Differential expression analysis revealed 247 genes with altered expression levels in GLA-edited podocytes compared to control podocytes. Among these genes, 136 were underexpressed, and 111 were overexpressed in GLA-edited cells. Functional analysis of differentially expressed genes showed their involvement in various pathways related to oxidative stress, inflammation, fatty acid metabolism, collagen and extracellular matrix homeostasis, kidney injury, apoptosis, autophagy, and cellular stress response. The study provides insights into molecular mechanisms underlying Fabry podocyte dysfunction. Integrating transcriptomics data with genome-scale metabolic modeling further unveiled metabolic alterations in GLA-edited podocytes. This comprehensive approach contributes to a better understanding of Fabry disease and may lead to identifying new biomarkers and therapeutic targets for this rare lysosomal disorder.
Collapse
Affiliation(s)
- Sarah Snanoudj
- Normandie Univ, UNIROUEN, INSERM, U1245, CHU Rouen, Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Filière G2M, 76000, Rouen, France
| | - Céline Derambure
- Normandie Univ, UNIROUEN, INSERM U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Nguyen Thi Hai Yen
- Normandie Univ, UNIROUEN, INSERM, U1245, CHU Rouen, Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Filière G2M, 76000, Rouen, France
| | - Céline Lesueur
- Normandie Univ, UNIROUEN, INSERM, U1245, CHU Rouen, Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Filière G2M, 76000, Rouen, France
| | - Sophie Coutant
- Normandie Univ, UNIROUEN, INSERM U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Lénaïg Abily-Donval
- Normandie Univ, UNIROUEN, INSERM, U1245, CHU Rouen, Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, 76000, Rouen, France
| | - Stéphane Marret
- Normandie Univ, UNIROUEN, INSERM, U1245, CHU Rouen, Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, 76000, Rouen, France
| | - Hong Yang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Soumeya Bekri
- Normandie Univ, UNIROUEN, INSERM, U1245, CHU Rouen, Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Filière G2M, 76000, Rouen, France
| | - Abdellah Tebani
- Normandie Univ, UNIROUEN, INSERM, U1245, CHU Rouen, Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Filière G2M, 76000, Rouen, France
| |
Collapse
|
11
|
Faro DC, Di Pino FL, Monte IP. Inflammation, Oxidative Stress, and Endothelial Dysfunction in the Pathogenesis of Vascular Damage: Unraveling Novel Cardiovascular Risk Factors in Fabry Disease. Int J Mol Sci 2024; 25:8273. [PMID: 39125842 PMCID: PMC11312754 DOI: 10.3390/ijms25158273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Anderson-Fabry disease (AFD), a genetic disorder caused by mutations in the α-galactosidase-A (GLA) gene, disrupts lysosomal function, leading to vascular complications. The accumulation of globotriaosylceramide (Gb3) in arterial walls triggers upregulation of adhesion molecules, decreases endothelial nitric oxide synthesis, and induces reactive oxygen species production. This cascade results in fibrotic thickening, endothelial dysfunction, hypercontractility, vasospasm, and a pro-thrombotic phenotype. AFD patients display increased intima-media thickness (IMT) and reduced flow-mediated dilation (FMD), indicating heightened cardiovascular risk. Nailfold capillaroscopy (NFC) shows promise in diagnosing and monitoring microcirculatory disorders in AFD, though it remains underexplored. Morphological evidence of AFD as a storage disorder can be demonstrated through electron microscopy and immunodetection of Gb3. Secondary pathophysiological disturbances at cellular, tissue, and organ levels contribute to the clinical manifestations, with prominent lysosomal inclusions observed in vascular, cardiac, renal, and neuronal cells. Chronic accumulation of Gb3 represents a state of ongoing toxicity, leading to increased cell turnover, particularly in vascular endothelial cells. AFD-related vascular pathology includes increased renin-angiotensin system activation, endothelial dysfunction, and smooth muscle cell proliferation, resulting in IMT increase. Furthermore, microvascular alterations, such as atypical capillaries observed through NFC, suggest early microvascular involvement. This review aims to unravel the complex interplay between inflammation, oxidative stress, and endothelial dysfunction in AFD, highlighting the potential connections between metabolic disturbances, oxidative stress, inflammation, and fibrosis in vascular and cardiac complications. By exploring novel cardiovascular risk factors and potential diagnostic tools, we can advance our understanding of these mechanisms, which extend beyond sphingolipid accumulation to include other significant contributors to disease pathogenesis. This comprehensive approach can pave the way for innovative therapeutic strategies and improved patient outcomes.
Collapse
Affiliation(s)
| | | | - Ines Paola Monte
- Department of General Surgery and Medical-Surgical Specialties (CHIRMED), University of Catania, Via S. Sofia 78, 95100 Catania, Italy; (D.C.F.); (F.L.D.P.)
| |
Collapse
|
12
|
Bossio S, Perrotta ID, Lofaro D, La Russa D, Rago V, Bonofiglio R, Greco R, Andreucci M, Aversa A, La Russa A, Perri A. The Missense Variant in the Signal Peptide of α-GLA Gene, c.13 A/G, Promotes Endoplasmic Reticular Stress and the Related Pathway's Activation. Genes (Basel) 2024; 15:947. [PMID: 39062726 PMCID: PMC11276125 DOI: 10.3390/genes15070947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Anderson-Fabry disease (AFD) is an X-linked multisystemic disorder with a heterogeneous phenotype, resulting from deficiency of the lysosomal enzyme α-galactosidase A (α-Gal A) and leading to globotriaosylceramide systemic accumulation. Lysosomal storage is not the unique player in organ failure and different mechanisms could drive tissue damage, including endoplasmic reticulum (ER) stress and its related signaling pathway's activation. We identified a new missense variant in the signal peptide of α-GLA gene, c.13 A/G, in a 55-year-old woman affected by chronic kidney disease, acroparesthesia, hypohidrosis, and deafness and exhibiting normal values of lysoGb3 and αGLA activity. The functional study of the new variant performed by its overexpression in HEK293T cells showed an increased protein expression of a key ER stress marker, GRP78, the pro-apoptotic BAX, the negative regulator of cell cycle p21, the pro-inflammatory cytokine, IL1β, together with pNFkB, and the pro-fibrotic marker, N-cadherin. Transmission electron microscopy showed signs of ER injury and intra-lysosomal inclusions. The proband's PBMC exhibited higher expression of TGFβ 1 and pNFkB compared to control. Our findings suggest that the new variant, although it did not affect enzymatic activity, could cause cellular damage by affecting ER homeostasis and promoting apoptosis, inflammation, and fibrosis. Further studies are needed to demonstrate the variant's contribution to cellular and tissue damage.
Collapse
Affiliation(s)
- Sabrina Bossio
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy; (S.B.); (A.A.)
| | - Ida Daniela Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis (CM2), University of Calabria, 87036 Rende, Italy;
| | - Danilo Lofaro
- e-Health Lab, Department of Mechanical, Energy, Management Engineering, University of Calabria, 87036 Rende, Italy;
| | - Daniele La Russa
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (D.L.R.); (V.R.)
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (D.L.R.); (V.R.)
| | - Renzo Bonofiglio
- Kidney and Transplantation Research Center, Annunziata Hospital, 87100 Cosenza, Italy;
| | - Rosita Greco
- Nephrology, Dialysis, and Kidney Transplant Unit, Annunziata Hospital, 87100 Cosenza, Italy;
| | - Michele Andreucci
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (M.A.); (A.L.R.)
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy; (S.B.); (A.A.)
| | - Antonella La Russa
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (M.A.); (A.L.R.)
| | - Anna Perri
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy; (S.B.); (A.A.)
| |
Collapse
|
13
|
Monte Neto JTD, Kirsztajn GM. The role of podocyte injury in the pathogenesis of Fabry disease nephropathy. J Bras Nefrol 2024; 46:e20240035. [PMID: 39058283 PMCID: PMC11287863 DOI: 10.1590/2175-8239-jbn-2024-0035en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/02/2024] [Indexed: 07/28/2024] Open
Abstract
Renal involvement is one of the most severe morbidities of Fabry disease (FD), a multisystemic lysosomal storage disease with an X-linked inheritance pattern. It results from pathogenic variants in the GLA gene (Xq22.2), which encodes the production of alpha-galactosidase A (α-Gal), responsible for glycosphingolipid metabolism. Insufficient activity of this lysosomal enzyme generates deposits of unprocessed intermediate substrates, especially globotriaosylceramide (Gb3) and derivatives, triggering cellular injury and subsequently, multiple organ dysfunction, including chronic nephropathy. Kidney injury in FD is classically attributed to Gb3 deposits in renal cells, with podocytes being the main target of the pathological process, in which structural and functional alterations are established early and severely. This configures a typical hereditary metabolic podocytopathy, whose clinical manifestations are proteinuria and progressive renal failure. Although late clinical outcomes and morphological changes are well established in this nephropathy, the molecular mechanisms that trigger and accelerate podocyte injury have not yet been fully elucidated. Podocytes are highly specialized and differentiated cells that cover the outer surface of glomerular capillaries, playing a crucial role in preserving the structure and function of the glomerular filtration barrier. They are frequent targets of injury in many nephropathies. Furthermore, dysfunction and depletion of glomerular podocytes are essential events implicated in the pathogenesis of chronic kidney disease progression. We will review the biology of podocytes and their crucial role in regulating the glomerular filtration barrier, analyzing the main pathogenic pathways involved in podocyte injury, especially related to FD nephropathy.
Collapse
|
14
|
Shiga T, Tsukimura T, Kubota T, Togawa T, Sakuraba H. Profiles of Globotriaosylsphingosine Analogs and Globotriaosylceramide Isoforms Accumulated in Body Fluids from Various Phenotypic Fabry Patients. Intern Med 2024; 63:1531-1537. [PMID: 37866916 PMCID: PMC11189715 DOI: 10.2169/internalmedicine.2493-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/01/2023] [Indexed: 10/24/2023] Open
Abstract
Objectives Fabry disease is characterized by the systemic accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (Lyso-Gb3), which are widely used as biomarkers of the disease. However, few reports have described the relationship of Lyso-Gb3 analogs and Gb3 isoforms with the disease. The present study determined the profiles of Lyso-Gb3 analogs and Gb3 isoforms accumulated in body fluids from various phenotypic Fabry patients to elucidate the basis of the disease. Methods Plasma Lyso-Gb3 and related analogs were measured in 15 classic Fabry men, 6 later-onset Fabry men, 11 Fabry women, and 36 controls, while urinary Gb3 isoforms were measured in 5 classic Fabry men, 5 later-onset Fabry men, 17 Fabry women, and 11 controls, using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Furthermore, these values were monitored for a classic Fabry man, in whom neutralizing anti-drug antibodies had developed following enzyme replacement therapy (ERT). Results The levels of plasma Lyso-Gb3 analogs/urinary Gb3 isoforms were higher in Fabry patients than in controls, especially in classic Fabry men. However, minor differences in the ratio of each Lyso-Gb3 analog and Gb3 isoform with respect to the total Lyso-Gb3 analogs and Gb3 isoforms, respectively, were observed among individual classic Fabry men. Their time courses were well associated with the development and attenuation of anti-drug antibodies in a patient with classic Fabry disease during ERT. Conclusion Quantification of Lyso-Gb3 analogs and Gb3 isoforms provides us with more detailed information about the substrates that accumulated in the body fluids of Fabry patients than does quantification of Lyso-Gb3 and Gb3 alone, so this approach may be useful for elucidating the basis of Fabry disease.
Collapse
Affiliation(s)
- Tomoko Shiga
- Department of Clinical Genetics, Meiji Pharmaceutical University, Japan
| | - Takahiro Tsukimura
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, Japan
| | - Takao Kubota
- Department of Nephrology, Tohto Sangenjaya Clinic, Japan
- Department of Nephrology, Self-Defense Forces Central Hospital, Japan
| | - Tadayasu Togawa
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, Japan
| | - Hitoshi Sakuraba
- Department of Clinical Genetics, Meiji Pharmaceutical University, Japan
| |
Collapse
|
15
|
Schindehütte M, Weiner S, Klug K, Hölzli L, Nauroth-Kreß C, Hessenauer F, Kampf T, Homola GA, Nordbeck P, Wanner C, Sommer C, Üçeyler N, Pham M. Dorsal root ganglion magnetic resonance imaging biomarker correlations with pain in Fabry disease. Brain Commun 2024; 6:fcae155. [PMID: 38751382 PMCID: PMC11095551 DOI: 10.1093/braincomms/fcae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/20/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Fabry disease is a rare monogenetic, X-linked lysosomal storage disorder with neuropathic pain as one characteristic symptom. Impairment of the enzyme alpha-galactosidase A leads to an accumulation of globotriaosylceramide in the dorsal root ganglia. Here, we investigate novel dorsal root ganglia MR imaging biomarkers and their association with Fabry genotype and pain phenotype. In this prospective study, 89 Fabry patients were examined using a standardized 3 T MRI protocol of the dorsal root ganglia. Fabry pain was assessed through a validated Fabry pain questionnaire. The genotype was determined by diagnostic sequencing of the alpha-galactosidase A gene. MR imaging end-points were dorsal root ganglia volume by voxel-wise morphometric analysis and dorsal root ganglia T2 signal. Reference groups included 55 healthy subjects and Fabry patients of different genotype categories without Fabry pain. In patients with Fabry pain, T2 signal of the dorsal root ganglia was increased by +39.2% compared to healthy controls (P = 0.001) and by +29.4% compared to painless Fabry disease (P = 0.017). This effect was pronounced in hemizygous males (+40.7% compared to healthy; P = 0.008 and +29.1% compared to painless; P = 0.032) and was consistently observed across the genotype spectrum of nonsense (+38.1% compared to healthy, P < 0.001) and missense mutations (+39.2% compared to healthy; P = 0.009). T2 signal of dorsal root ganglia and globotriaosylsphingosine levels were the only independent predictors of Fabry pain (P = 0.047; P = 0.002). Volume of dorsal root ganglia was enlarged by +46.0% in Fabry males in the nonsense compared to missense genotype category (P = 0.005) and by +34.5% compared to healthy controls (P = 0.034). In painful Fabry disease, MRI T2 signal of dorsal root ganglia is increased across different genotypes. Dorsal root ganglion MRI T2 signal as a novel in vivo imaging biomarker may help to better understand whether Fabry pain is modulated or even caused by dorsal root ganglion pathology.
Collapse
Affiliation(s)
- Magnus Schindehütte
- Department of Neuroradiology, University Hospital Würzburg, Würzburg 97080, Germany
| | - Simon Weiner
- Department of Neuroradiology, University Hospital Würzburg, Würzburg 97080, Germany
| | - Katharina Klug
- Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
| | - Lea Hölzli
- Department of Neuroradiology, University Hospital Würzburg, Würzburg 97080, Germany
| | | | - Florian Hessenauer
- Department of Neuroradiology, University Hospital Würzburg, Würzburg 97080, Germany
| | - Thomas Kampf
- Department of Neuroradiology, University Hospital Würzburg, Würzburg 97080, Germany
| | - György A Homola
- Department of Neuroradiology, University Hospital Würzburg, Würzburg 97080, Germany
| | - Peter Nordbeck
- Department of Internal Medicine, University Hospital Würzburg, Würzburg 97080, Germany
| | - Christoph Wanner
- Department of Internal Medicine, University Hospital Würzburg, Würzburg 97080, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
| | - Mirko Pham
- Department of Neuroradiology, University Hospital Würzburg, Würzburg 97080, Germany
| |
Collapse
|
16
|
Weissman D, Dudek J, Sequeira V, Maack C. Fabry Disease: Cardiac Implications and Molecular Mechanisms. Curr Heart Fail Rep 2024; 21:81-100. [PMID: 38289538 PMCID: PMC10923975 DOI: 10.1007/s11897-024-00645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW This review explores the interplay among metabolic dysfunction, oxidative stress, inflammation, and fibrosis in Fabry disease, focusing on their potential implications for cardiac involvement. We aim to discuss the biochemical processes that operate in parallel to sphingolipid accumulation and contribute to disease pathogenesis, emphasizing the importance of a comprehensive understanding of these processes. RECENT FINDINGS Beyond sphingolipid accumulation, emerging studies have revealed that mitochondrial dysfunction, oxidative stress, and chronic inflammation could be significant contributors to Fabry disease and cardiac involvement. These factors promote cardiac remodeling and fibrosis and may predispose Fabry patients to conduction disturbances, ventricular arrhythmias, and heart failure. While current treatments, such as enzyme replacement therapy and pharmacological chaperones, address disease progression and symptoms, their effectiveness is limited. Our review uncovers the potential relationships among metabolic disturbances, oxidative stress, inflammation, and fibrosis in Fabry disease-related cardiac complications. Current findings suggest that beyond sphingolipid accumulation, other mechanisms may significantly contribute to disease pathogenesis. This prompts the exploration of innovative therapeutic strategies and underscores the importance of a holistic approach to understanding and managing Fabry disease.
Collapse
Affiliation(s)
- David Weissman
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Vasco Sequeira
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany.
| |
Collapse
|
17
|
Chen Z, Yin B, Jiao J, Ye T. Case report: enzyme replacement therapy for Fabry disease presenting with proteinuria and ventricular septal thickening. BMC Nephrol 2024; 25:61. [PMID: 38383316 PMCID: PMC10882756 DOI: 10.1186/s12882-024-03499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
Fabry disease (FD) is an uncommon, X-linked, lysosomal storage disease that causes defects in the glycosphingolipid metabolic pathway due to deficient or absent lysosomal α-galactosidase (α-Gal A) activity. This leads to the accumulation of globotriaosylceramide (GL-3) within lysosomes in a wide range of cells, including endothelial, cardiac, renal, and corneal cells, and consequently, the progressive appearance of clinical symptoms in target organs. Enzyme replacement therapy (ERT), which involves the exogenous supplementation of α-Gal A enzyme and has been successfully administered for treating FD.Here, we report a case of a 37-year-old male with complaints of recurrent proteinuria and ventricular septal thickening. A renal biopsy revealed vacuolization and foamy changes in podocytes, and the presence of myelin-like bodies and zebra bodies. The white blood cell α-Gal A activity was very low, while the Lyso-GL-3 level was high. Additionally, genetic analysis revealed a gene variant c.902G > A p. Arg301Gln. The patient was diagnosed with FD, and subsequently received intravenous ERT with a dose of Agalsidase α (0.2 mg/kg, 17.5 mg every 2 weeks). Currently, the values of proteinuria and ventricular septum thickness remain stable during the 6-month follow-up. Initiating ERT at an early age can effectively decrease the deposition of GL-3, attenuate the progressive clinical manifestations of FD, and provide greater long-term benefits.
Collapse
Affiliation(s)
- Zewei Chen
- Department of Nephrology, The First Navy Hospital of Southern Theater Command, Zhanjiang, Guangdong, China
| | - Bo Yin
- Department of Internal Medicine, The First Navy Hospital of Southern Theater Command, Zhanjiang, Guangdong, China
| | - Juan Jiao
- Department of Internal Medicine, The First Navy Hospital of Southern Theater Command, Zhanjiang, Guangdong, China
| | - Tianyang Ye
- Department of Internal Medicine, The First Navy Hospital of Southern Theater Command, Zhanjiang, Guangdong, China.
| |
Collapse
|
18
|
Izhar R, Borriello M, La Russa A, Di Paola R, De A, Capasso G, Ingrosso D, Perna AF, Simeoni M. Fabry Disease in Women: Genetic Basis, Available Biomarkers, and Clinical Manifestations. Genes (Basel) 2023; 15:37. [PMID: 38254927 PMCID: PMC10815601 DOI: 10.3390/genes15010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Fabry Disease (FD) is a rare lysosomal storage disorder caused by mutations in the GLA gene on the X chromosome, leading to a deficiency in α-galactosidase A (AGAL) enzyme activity. This leads to the accumulation of glycosphingolipids, primarily globotriaosylceramide (Gb3), in vital organs such as the kidneys, heart, and nervous system. While FD was initially considered predominantly affecting males, recent studies have uncovered that heterozygous Fabry women, carrying a single mutated GLA gene, can manifest a wide array of clinical symptoms, challenging the notion of asymptomatic carriers. The mechanisms underlying the diverse clinical manifestations in females remain not fully understood due to X-chromosome inactivation (XCI). XCI also known as "lyonization", involves the random inactivation of one of the two X chromosomes. This process is considered a potential factor influencing phenotypic variation. This review delves into the complex landscape of FD in women, discussing its genetic basis, the available biomarkers, clinical manifestations, and the potential impact of XCI on disease severity. Additionally, it highlights the challenges faced by heterozygous Fabry women, both in terms of their disease burden and interactions with healthcare professionals. Current treatment options, including enzyme replacement therapy, are discussed, along with the need for healthcare providers to be well-informed about FD in women, ultimately contributing to improved patient care and quality of life.
Collapse
Affiliation(s)
- Raafiah Izhar
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.D.P.); (A.D.)
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (D.I.)
| | - Antonella La Russa
- Department of Sperimental Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Rossella Di Paola
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.D.P.); (A.D.)
| | - Ananya De
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.D.P.); (A.D.)
| | | | - Diego Ingrosso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (D.I.)
| | - Alessandra F. Perna
- Nephrology and Dialysis Unit, Department of Translation Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Mariadelina Simeoni
- Nephrology and Dialysis Unit, Department of Translation Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| |
Collapse
|
19
|
Al-Obaide MA, Islam S, Al-Obaidi I, Vasylyeva TL. Novel enhancer mediates the RPL36A-HNRNPH2 readthrough loci and GLA gene expressions associated with fabry disease. Front Genet 2023; 14:1229088. [PMID: 38155709 PMCID: PMC10753776 DOI: 10.3389/fgene.2023.1229088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/10/2023] [Indexed: 12/30/2023] Open
Abstract
Fabry disease (FD) is a rare genetic condition caused by mutations in the GLA gene, located on the X chromosome in the RPL36-HNRNPH2 readthrough genomic region. This gene produces an enzyme called alpha-galactosidase A (α-Gal A). When the enzyme does not function properly due to the mutations, it causes harmful substances called globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) to build up in the body's lysosomes. This accumulation can damage the kidneys, heart, eyes, and nervous system. Recent studies have shown that the RPL36A-HNRNPH2 readthrough loci, which include RPL36A and HNRNPH2 genes, as well as the regulatory sequence known as the GLA-HNRNPH2 bidirectional promoter, may also play a role in FD. However, the involvement of enhancer RNAs (eRNAs) in FD is still poorly understood despite their known role in various diseases. To investigate this further, we studied an RPL36A enhancer called GH0XJ101390 and showed its genomic setting in the RPL36-HNRNPH2 readthrough region; the eRNA is rich in Homotypic Clusters of TFBSs (HCTs) type and hosts a CpG Island (CGI). To test the functional correlation further with GLA, RPL36A, and HNRNPH2, we used siRNAs to knock down GH0XJ101390 in human kidney embryonic cells 293T. The results showed a significant decrease in RPL36A and GLA expression and a non-significant decrease in HNRNPH2 expression. These findings could have important implications for understanding the regulatory mechanisms of GH0XJ101390 and its potential role in FD. A better understanding of these mechanisms may improve diagnostic and therapeutic methods for FD, which could ultimately benefit patients with this rare condition.
Collapse
Affiliation(s)
| | | | | | - Tetyana L. Vasylyeva
- Department of Pediatrics, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| |
Collapse
|
20
|
Auray-Blais C, Lavoie P, Martineau T, Ntumba GK, Gamrani M, Khan A, Altarescu G, Lehman A, Goker-Alpan O, Nowak A, West ML, Bichet DG. Fabry disease biomarkers in patients switched from enzyme-replacement therapy to migalastat oral chaperone therapy. Bioanalysis 2023; 15:1421-1437. [PMID: 37847061 DOI: 10.4155/bio-2023-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Background: A biomarker profile was evaluated longitudinally in patients with Fabry disease switched from enzyme-replacement therapy (ERT) to migalastat. Methods: 16 Gb3 isoforms and eight lyso-Gb3 analogues were analyzed in plasma and urine by LC-MS/MS at baseline and at three different time points in naive participants and participants switching from either agalsidase α or β to migalastat. Results: 29 adult participants were recruited internationally (seven centers). The Mainz Severity Score Index and mean biomarker levels remained stable (p ≥ 0.05) over a minimum of 12 months compared with baseline following the treatment switch. Conclusion: In this cohort of patients with Fabry disease with amenable mutations, in the short term, a switch from ERT to migalastat did not have a marked effect on the average biomarker profile.
Collapse
Affiliation(s)
- Christiane Auray-Blais
- Division of Medical Genetics, Department of Pediatrics, Centre de Recherche-CIUSSS de l'Estrie-CHUS, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Pamela Lavoie
- Division of Medical Genetics, Department of Pediatrics, Centre de Recherche-CIUSSS de l'Estrie-CHUS, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Tristan Martineau
- Division of Medical Genetics, Department of Pediatrics, Centre de Recherche-CIUSSS de l'Estrie-CHUS, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Georges Kabala Ntumba
- Division of Medical Genetics, Department of Pediatrics, Centre de Recherche-CIUSSS de l'Estrie-CHUS, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Mohamed Gamrani
- Division of Medical Genetics, Department of Pediatrics, Centre de Recherche-CIUSSS de l'Estrie-CHUS, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Aneal Khan
- M.A.G.I.C. (Metabolics and Genetics in Canada) Clinic Ltd, Calgary, Alberta, Canada
| | - Gheona Altarescu
- Shaare Zedek Medical Center, Shmuel (Hans) Beyth St 12, Jerusalem, 9103102, Israel
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver General Hospital, 899 W 12th Ave., Vancouver, BC V5Z 1M9, Canada
| | - Ozlem Goker-Alpan
- Lysosomal & Rare Disorders Research & Treatment Center-LDRTC, 3702 Pender Dr. STE 170, Fairfax, VA 22030, USA
| | - Albina Nowak
- Department of Endocrinology & Clinical Nutrition, University Hospital Zurich & University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Michael L West
- Division of Nephrology, Department of Medicine, Dalhousie University, QE II Health Sciences Centre, 1276 South Park Street, Halifax, NS B3H 2Y9, Canada
| | - Daniel G Bichet
- University of Montreal & Nephrology Service, Research Center, Hôpital du Sacré-Coeur de Montreal, 5400 Boul. Gouin O, Montreal, QC, H4J 1C5, Canada
| |
Collapse
|
21
|
Sudhan M, Janakiraman V, Patil R, Oyouni AAA, Hasan Mufti A, Ahmed SSSJ. Asn215Ser, Ala143Thr, and Arg112Cys variants in α-galactosidase A protein confer stability loss in Fabry's disease. J Biomol Struct Dyn 2023; 41:9840-9849. [PMID: 36420638 DOI: 10.1080/07391102.2022.2148001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
Alpha galactosidase A (α-GalA) gene contains nine exons localized at the q-arm of the X chromosome. Generally, an α-GalA enzyme is involved in the removal of galactosyl moieties from the glycoproteins and glycolipids. Dysregulation results in the accumulation of glycoproteins as well as glycolipids in various organs leading to Fabry disease (FD). In this study, we examine the impact of Asn215Ser, Ala143Thr and Arg112Cys variants on the α-GalA protein structure contributing to functional dynamic changes in FD. The seven computational pathogenicity prediction methods were used to predict the effects of these variants on the α-GalA protein. The three-dimensional structure of α-GalA variants was modeled with the Swiss Model and Robetta server and validated using a variety of tools. Then, molecular dynamics (MD) simulation was performed to understand the stability and dynamic behavior of the wild-type and variants structures. Most of our analyzed pathogenicity prediction tools showed that Asn215Ser, Ala143Thr and Arg112Cys variants cause a deleterious effect on the α-GalA protein. Further, MD trajectory analysis showed the destabilizing effect of variants on α-GalA structure based on the root mean square deviation, root mean square fluctuation, solvent accessible surface area, the radius of gyration, hydrogen bond, cluster analysis and PCA analysis. This concludes that the presence of these variants could potentially affect the protein functional process of galactosyl moieties removal which might lead to Fabry disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- M Sudhan
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - V Janakiraman
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Rajesh Patil
- Department of Pharmaceutical Chemistry, Sinhgad College of Pharmacy, Pune, India
| | | | - Ahmad Hasan Mufti
- Medical Genetics Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shiek S S J Ahmed
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
22
|
Lohith TG, Kaittanis C, Belanger AP, Ahn SH, Sandoval P, Cohen L, Rajarshi G, Ruangsiriluk W, Islam R, Winkelmann CT, McQuade P. Radiosynthesis and Early Evaluation of a Positron Emission Tomography Imaging Probe [ 18F]AGAL Targeting Alpha-Galactosidase A Enzyme for Fabry Disease. Molecules 2023; 28:7144. [PMID: 37894622 PMCID: PMC10609273 DOI: 10.3390/molecules28207144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Success of gene therapy relies on the durable expression and activity of transgene in target tissues. In vivo molecular imaging approaches using positron emission tomography (PET) can non-invasively measure magnitude, location, and durability of transgene expression via direct transgene or indirect reporter gene imaging in target tissues, providing the most proximal PK/PD biomarker for gene therapy trials. Herein, we report the radiosynthesis of a novel PET tracer [18F]AGAL, targeting alpha galactosidase A (α-GAL), a lysosomal enzyme deficient in Fabry disease, and evaluation of its selectivity, specificity, and pharmacokinetic properties in vitro. [18F]AGAL was synthesized via a Cu-catalyzed click reaction between fluorinated pentyne and an aziridine-based galactopyranose precursor with a high yield of 110 mCi, high radiochemical purity of >97% and molar activity of 6 Ci/µmol. The fluorinated AGAL probe showed high α-GAL affinity with IC50 of 30 nM, high pharmacological selectivity (≥50% inhibition on >160 proteins), and suitable pharmacokinetic properties (moderate to low clearance and stability in plasma across species). In vivo [18F]AGAL PET imaging in mice showed high uptake in peripheral organs with rapid renal clearance. These promising results encourage further development of this PET tracer for in vivo imaging of α-GAL expression in target tissues affected by Fabry disease.
Collapse
Affiliation(s)
- Talakad G. Lohith
- Takeda Pharmaceutical Co., Ltd., Cambridge, MA 02142, USA; (C.K.); (P.S.); (L.C.); (G.R.); (W.R.); (R.I.); (C.T.W.); (P.M.)
| | - Charalambos Kaittanis
- Takeda Pharmaceutical Co., Ltd., Cambridge, MA 02142, USA; (C.K.); (P.S.); (L.C.); (G.R.); (W.R.); (R.I.); (C.T.W.); (P.M.)
| | - Anthony P. Belanger
- Molecular Cancer Imaging Facility, Dana Farber Cancer Institute, Boston, MA 02210, USA; (A.P.B.); (S.H.A.)
| | - Shin Hye Ahn
- Molecular Cancer Imaging Facility, Dana Farber Cancer Institute, Boston, MA 02210, USA; (A.P.B.); (S.H.A.)
| | - Phil Sandoval
- Takeda Pharmaceutical Co., Ltd., Cambridge, MA 02142, USA; (C.K.); (P.S.); (L.C.); (G.R.); (W.R.); (R.I.); (C.T.W.); (P.M.)
| | - Lawrence Cohen
- Takeda Pharmaceutical Co., Ltd., Cambridge, MA 02142, USA; (C.K.); (P.S.); (L.C.); (G.R.); (W.R.); (R.I.); (C.T.W.); (P.M.)
| | - Girija Rajarshi
- Takeda Pharmaceutical Co., Ltd., Cambridge, MA 02142, USA; (C.K.); (P.S.); (L.C.); (G.R.); (W.R.); (R.I.); (C.T.W.); (P.M.)
| | - Wanida Ruangsiriluk
- Takeda Pharmaceutical Co., Ltd., Cambridge, MA 02142, USA; (C.K.); (P.S.); (L.C.); (G.R.); (W.R.); (R.I.); (C.T.W.); (P.M.)
| | - Rizwana Islam
- Takeda Pharmaceutical Co., Ltd., Cambridge, MA 02142, USA; (C.K.); (P.S.); (L.C.); (G.R.); (W.R.); (R.I.); (C.T.W.); (P.M.)
| | - Christopher T. Winkelmann
- Takeda Pharmaceutical Co., Ltd., Cambridge, MA 02142, USA; (C.K.); (P.S.); (L.C.); (G.R.); (W.R.); (R.I.); (C.T.W.); (P.M.)
| | - Paul McQuade
- Takeda Pharmaceutical Co., Ltd., Cambridge, MA 02142, USA; (C.K.); (P.S.); (L.C.); (G.R.); (W.R.); (R.I.); (C.T.W.); (P.M.)
| |
Collapse
|
23
|
Ortiz-Soto ME, Baier M, Brenner D, Timm M, Seibel J. Single-mutations at the galactose-binding site of enzymes GalK, GalU, and LgtC enable the efficient synthesis of UDP-6-azido-6-deoxy-d-galactose and azido-functionalized Gb3 analogs. Glycobiology 2023; 33:651-660. [PMID: 37283491 DOI: 10.1093/glycob/cwad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023] Open
Abstract
Lysosomal accumulation of the glycosphingolipid globotriaosylceramide Gb3 is linked to the deficient activity of the α-galactosidase A in the Anderson-Fabry disease and an elevated level of deacylated Gb3 is a hallmark of this condition. Localization of Gb3 in the plasma membrane is critical for studying how the membrane organization and its dynamics are affected in this genetic disorder. Gb3 analogs containing a terminal 6-azido-functionalized galactose in its head group globotriose (αGal1, 4βGal1, and 4Glc) are attractive chemical reporters for bioimaging, as the azido-group may act as a chemical tag for bio-orthogonal click chemistry. We report here the production of azido-Gb3 analogs employing mutants of galactokinase, UTP-glucose-1-phosphate uridylyltransferase, and α-1,4-galactosyltransferase LgtC, which participate in the synthesis of the sugar motif globotriose. Variants of enzymes galactokinase/UTP-glucose-1-phosphate uridylyltransferase generate UDP-6-azido-6-deoxy-d-galactose, which is the galactosyl-donor used by LgtC for transferring the terminal galactose moiety to lactosyl-acceptors. Residues at the galactose-binding site of the 3 enzymes were modified to facilitate the accommodation of azido-functionalized substrates and variants outperforming the wild-type enzymes were characterized. Synthesis of 6-azido-6-deoxy-d-galactose-1-phosphate, UDP-6-azido-6-deoxy-d-galactose, and azido-Gb3 analogs by variants GalK-E37S, GalU-D133V, and LgtC-Q187S, respectively, is 3-6-fold that of their wild-type counterparts. Coupled reactions with these variants permit the production of the pricy, unnatural galactosyl-donor UDP-6-azido-6-deoxy-d-galactose with ~90% conversion yields, and products azido-globotriose and lyso-AzGb3 with substrate conversion of up to 70%. AzGb3 analogs could serve as precursors for the synthesis of other tagged glycosphingolipids of the globo-series.
Collapse
Affiliation(s)
- Maria E Ortiz-Soto
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| | - Makarius Baier
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| | - Daniela Brenner
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| | - Malte Timm
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| | - Jürgen Seibel
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
24
|
Wang M, Yan Z, Wang J, Yang Y, Deng Q, Han Y, Zhang L, Yang H, Pan J, Wang M. The characteristics and alteration of peripheral immune function in patients with multiple system atrophy. Front Neurol 2023; 14:1223076. [PMID: 37771450 PMCID: PMC10525398 DOI: 10.3389/fneur.2023.1223076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
Objective Multiple system atrophy (MSA) is a degenerative disease. Immune dysfunction found to play a crucial role in the pathogenesis of this disease in the literature, while the characteristics of peripheral immune function remain unclear. This study aimed to investigate the characteristics and alterations of peripheral immune function in patients with MSA. Methods A case-control study was conducted between January 2021 to December 2022 at SanBo Brain Hospital, Capital Medical University, Beijing, China. A total of 74 participants were recruited, including 47 MSA patients and 27 non-MSA participants. Peripheral blood samples were collected from each participant. A total of 29 types of immune cells were measured using the flow cytometry analysis technology. Single-factor analysis and multiple-factor analysis (multiple linear regression models) were performed to determine the differences and risk factors in immune cells between the MSA and non-MSA groups. Results Alterations of the count or percentage of CD19+ B lymphocytes and CD3-CD56+ B lymphocytes in MSA patients were found in this study. The reductions of the count and percentage of CD19+ B lymphocytes were still robust after adjusting for variables of age, gender, body mass index, albumin, and hemoglobin. Furthermore, the reductions in the count and percentage of CD19+ B lymphocytes in the MSA patients were more significant in women and individuals aged 60 years old or above than in the non-MSA participants. Conclusion Our findings suggested that MSA patients may be influenced by B lymphocytes, particularly CD19+ cells. Therefore, the reductions in immune cells should be considered in the diagnosis and treatment of MSA. Further studies are warranted to confirm and expand upon these findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mengyang Wang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Beraza-Millor M, Rodríguez-Castejón J, Miranda J, Del Pozo-Rodríguez A, Rodríguez-Gascón A, Solinís MÁ. Novel Golden Lipid Nanoparticles with Small Interference Ribonucleic Acid for Substrate Reduction Therapy in Fabry Disease. Pharmaceutics 2023; 15:1936. [PMID: 37514122 PMCID: PMC10385692 DOI: 10.3390/pharmaceutics15071936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Substrate reduction therapy (SRT) has been proposed as a new gene therapy for Fabry disease (FD) to prevent the formation of globotriaosylceramide (Gb3). Nanomedicines containing different siRNA targeted to Gb3 synthase (Gb3S) were designed. Formulation factors, such as the composition, solid lipid nanoparticles (SLNs) preparation method and the incorporation of different ligands, such as gold nanoparticles (GNs), protamine (P) and polysaccharides, were evaluated. The new siRNA-golden LNPs were efficiently internalized in an FD cell model (IMFE-1), with GNs detected in the cytoplasm and in the nucleus. Silencing efficacy (measured by RT-qPCR) depended on the final composition and method of preparation, with silencing rates up to 90% (expressed as the reduction in Gb3S-mRNA). GNs conferred a higher system efficacy and stability without compromising cell viability and hemocompatibility. Immunocytochemistry assays confirmed Gb3S silencing for at least 15 days with the most effective formulations. Overall, these results highlight the potential of the new siRNA-golden LNP system as a promising nanomedicine to address FD by specific SRT.
Collapse
Affiliation(s)
- Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Jonatan Miranda
- GLUTEN3S Research Group, Faculty of Pharmacy, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Nutrition and Food Safety, 01006 Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
26
|
Kim SH, Choi SJ. Management of Hypertension in Fabry Disease. Electrolyte Blood Press 2023; 21:8-17. [PMID: 37434805 PMCID: PMC10329903 DOI: 10.5049/ebp.2023.21.1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 07/13/2023] Open
Abstract
Fabry disease (FD), a rare X-linked lysosomal storage disorder that depletes alpha-galactosidase A (α-GalA), is caused by mutations in the GLA gene. Diminished α-GalA enzyme activity results in the accumulation of Gb3 and lyso-Gb3. The pathophysiology of hypertension in FD is complex and unclear. The storage of Gb3 in arterial endothelial cells and smooth muscle cells is known to produce vascular injury by increasing oxidative stress and inflammatory cytokines as a primary pathophysiological mechanism. In addition, Fabry nephropathy developed, resulting in a decrease in kidney function and contributing to hypertension. The prevalence of hypertension in patients with FD was between 28.4% and 56%, whereas hypertension in patients with chronic kidney disease ranged between 33% and 79%. A study using 24-hour ambulatory blood pressure monitoring (ABPM) to measure blood pressure (BP) indicated a high prevalence of uncontrolled hypertension in FD. Thus, 24-hour ABPM ought to be considered for FD hypertension assessments. Appropriate treatment of hypertension is believed to reduce mortality in patients with FD caused by kidney disease, cardiovascular disease, and cerebrovascular disease because hypertension significantly impacts organ damage. Up to 70% of FD patients have been reported to have kidney involvement, and angiotensin-converting enzyme inhibitors and angiotensin receptor blockers prescribed for proteinuria are recommended as first-line therapy with antihypertensive drugs. In conclusion, hypertension should be controlled appropriately, given the different morbidity and mortality caused by significant organ involvement in FD patients.
Collapse
Affiliation(s)
- Su Hyun Kim
- Department of Internal Medicine, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Republic of Korea
| | - Soo Jeong Choi
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| |
Collapse
|
27
|
Emecen Sanli M, Kilic A, Inci A, Okur I, Ezgu F, Tumer L. Endocrinological, immunological and metabolic features of patients with Fabry disease under therapy. J Pediatr Endocrinol Metab 2023; 0:jpem-2023-0105. [PMID: 37257483 DOI: 10.1515/jpem-2023-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/20/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVES Fabry disease is an X-linked lysosomal disorder caused by decreased or absent alpha galactosidase enzyme. The enzyme deficiency leads to progressive accumulation of globotriaosylceramide (Gb-3) and its deacetylated form lyso-Gb3 in various tissue lysosomes that results in primarily lysosomal deterioration and subsequently mitochondrial, endothelial, and immunologic dysfunctions. METHODS The endocrinological, metabolic, immunological and HLA status of 12 patients were evaluated. RESULTS A total of 11 patients (91.6 %) had immunologic and/or endocrinologic abnormalities. fT4, anti-TPO, and anti-TG levels were increased in 1, 2, and 2 patients, respectively. Three patients had elevated proinflammatory cytokines. ANA profile, p-ANCA and c-ANCA were positive in 1, 1, and 2 patients, respectively. Tissue transglutaminase antibody was negative in all patients however P5 was diagnosed with Celiac disease at the age of 12 and on gluten free diet. All patients had distinct types of HLA apart from 2 patients with anti-TG and anti-TPO positive and there was no relationship between the HLA types and the autoimmunity biomarkers. CONCLUSIONS FD may have impact on endocrinologic and immunologic abnormalities even in the patients under ERT, therefore prevalence of these abnormalities may be higher in ERT naïve patients. However, apparently, they are less likely to cause clinical symptoms. Certain HLA alleles may contribute to the direct impact of immunological pathogenesis in FD by developing abnormal autoimmune biomarkers. To the best of our knowledge, this is the first study investigating HLA status of FD patients; therefore further studies are needed to elucidate the underlying mechanism of action.
Collapse
Affiliation(s)
- Merve Emecen Sanli
- Department of Pediatrics, Division of Inborn Errors of Metabolism, Istanbul Basaksehir City Hospital, Gazi University Medical Faculty, Ankara, Türkiye
| | - Ayse Kilic
- Department of Pediatrics, Division of Inborn Errors of Metabolism, Istanbul Basaksehir City Hospital, Gazi University Medical Faculty, Ankara, Türkiye
| | - Asli Inci
- Department of Pediatrics, Division of Inborn Errors of Metabolism, Istanbul Basaksehir City Hospital, Gazi University Medical Faculty, Ankara, Türkiye
| | - Ilyas Okur
- Department of Pediatrics, Division of Inborn Errors of Metabolism, Istanbul Basaksehir City Hospital, Gazi University Medical Faculty, Ankara, Türkiye
| | - Fatih Ezgu
- Department of Pediatrics, Division of Inborn Errors of Metabolism, Istanbul Basaksehir City Hospital, Gazi University Medical Faculty, Ankara, Türkiye
| | - Leyla Tumer
- Department of Pediatrics, Division of Inborn Errors of Metabolism, Istanbul Basaksehir City Hospital, Gazi University Medical Faculty, Ankara, Türkiye
| |
Collapse
|
28
|
Valtonen J, Prajapati C, Cherian RM, Vanninen S, Ojala M, Leivo K, Heliö T, Koskenvuo J, Aalto-Setälä K. The Junctophilin-2 Mutation p.(Thr161Lys) Is Associated with Hypertrophic Cardiomyopathy Using Patient-Specific iPS Cardiomyocytes and Demonstrates Prolonged Action Potential and Increased Arrhythmogenicity. Biomedicines 2023; 11:1558. [PMID: 37371654 DOI: 10.3390/biomedicines11061558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac diseases; it is primarily caused by mutations in sarcomeric genes. However, HCM is also associated with mutations in non-sarcomeric proteins and a Finnish founder mutation for HCM in non-sarcomeric protein junctophilin-2 (JPH2) has been identified. This study aimed at assessing the issue of modelling the rare Finnish founder mutation in cardiomyocytes (CMs) differentiated from iPSCs; therefore, presenting the same cardiac abnormalities observed in the patients. To explore the abnormal functions in JPH2-HCM, skin fibroblasts from a Finnish patient with JPH2 p.(Thr161Lys) were reprogrammed into iPSCs and further differentiated into CMs. As a control line, an isogenic counterpart was generated using the CRISPR/Cas9 genome editing method. Finally, iPSC-CMs were evaluated for the morphological and functional characteristics associated with JPH2 mutation. JPH2-hiPSC-CMs displayed key HCM hallmarks (cellular hypertrophy, multi-nucleation, sarcomeric disarray). Moreover, JPH2-hiPSC-CMs exhibit a higher degree of arrhythmia and longer action potential duration associated with slower inactivation of calcium channels. Functional evaluation supported clinical observations, with differences in beating characteristics when compared with isogenic-hiPSC-CMs. Thus, the iPSC-derived, disease-specific cardiomyocytes could serve as a translationally relevant platform to study genetic cardiac diseases.
Collapse
Affiliation(s)
- Joona Valtonen
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Chandra Prajapati
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Reeja Maria Cherian
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Sari Vanninen
- Tampere University Heart Hospital, 33520 Tampere, Finland
| | - Marisa Ojala
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Krista Leivo
- Heart and Lung Center, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Tiina Heliö
- Heart and Lung Center, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland
| | | | - Katriina Aalto-Setälä
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Tampere University Heart Hospital, 33520 Tampere, Finland
| |
Collapse
|
29
|
Chen S, Wang Y, Kong L, Ji Y, Cui J, Shen W. Role of UDP-glucose ceramide glucosyltransferase in venous malformation. Front Cell Dev Biol 2023; 11:1178045. [PMID: 37274734 PMCID: PMC10235597 DOI: 10.3389/fcell.2023.1178045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Venous malformation (VM) results from the abnormal growth of the vasculature; however, the detailed molecular mechanism remains unclear. As a glycosyltransferase, UDP-glucose ceramide glucosyltransferase (UGCG) is localized to the Golgi body and is a key enzyme in the first step of glycosphingolipid synthesis. Here, we aimed to explore the relationship between UGCG and the development of VM. First, investigations using RT-qPCR and Western blotting on the diseased vasculature of VM patients and normal vascular tissues revealed that UGCG expression was markedly elevated in the diseased vessels. Subsequently, immunofluorescence assay showed that UGCG was co-localized with CD31, an endothelial cell marker, in tissues from patients with VM and healthy subjects. Then, we established TIE2-L914F-mutant human umbilical vein endothelial cells (HUVECs) by lentivirus transfection. Next, Western blotting revealed that UGCG expression was considerably higher in HUVECsTIE2-L914F. In addition, we established a UGCG-overexpressing HUVECs line by plasmid transfection. With the CCK8 cell proliferation experiment, wound healing assay, and tube formation assay, we found that UGCG could promote the proliferation, migration, and tube formation activity of HUVECs, whereas the inhibition of UGCG could inhibit the proliferation, migration, and tube formation activity of HUVECsTIE2-L914F. Finally, Western blotting revealed that UGCG regulates the AKT/mTOR pathway in HUVECs. These data demonstrated that UGCG can affect the activity of vascular endothelial cells and regulate the AKT/mTOR signaling pathway; this is a potential mechanism underlying VM pathogenesis.
Collapse
|
30
|
Choconta JL, Labi V, Dumbraveanu C, Kalpachidou T, Kummer KK, Kress M. Age-related neuroimmune signatures in dorsal root ganglia of a Fabry disease mouse model. Immun Ageing 2023; 20:22. [PMID: 37173694 PMCID: PMC10176851 DOI: 10.1186/s12979-023-00346-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Pain in Fabry disease (FD) is generally accepted to result from neuronal damage in the peripheral nervous system as a consequence of excess lipid storage caused by alpha-galactosidase A (α-Gal A) deficiency. Signatures of pain arising from nerve injuries are generally associated with changes of number, location and phenotypes of immune cells within dorsal root ganglia (DRG). However, the neuroimmune processes in the DRG linked to accumulating glycosphingolipids in Fabry disease are insufficiently understood.Therefore, using indirect immune fluorescence microscopy, transmigration assays and FACS together with transcriptomic signatures associated with immune processes, we assessed age-dependent neuroimmune alterations in DRG obtained from mice with a global depletion of α-Gal A as a valid mouse model for FD. Macrophage numbers in the DRG of FD mice were unaltered, and BV-2 cells as a model for monocytic cells did not show augmented migratory reactions to glycosphingolipids exposure suggesting that these do not act as chemoattractants in FD. However, we found pronounced alterations of lysosomal signatures in sensory neurons and of macrophage morphology and phenotypes in FD DRG. Macrophages exhibited reduced morphological complexity indicated by a smaller number of ramifications and more rounded shape, which were age dependent and indicative of premature monocytic aging together with upregulated expression of markers CD68 and CD163.In our FD mouse model, the observed phenotypic changes in myeloid cell populations of the DRG suggest enhanced phagocytic and unaltered proliferative capacity of macrophages as compared to wildtype control mice. We suggest that macrophages may participate in FD pathogenesis and targeting macrophages at an early stage of FD may offer new treatment options other than enzyme replacement therapy.
Collapse
Affiliation(s)
- Jeiny Luna Choconta
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Labi
- Institute of Developmental Immunology, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | - Kai K Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
31
|
Biochemical Mechanisms beyond Glycosphingolipid Accumulation in Fabry Disease: Might They Provide Additional Therapeutic Treatments? J Clin Med 2023; 12:jcm12052063. [PMID: 36902850 PMCID: PMC10004377 DOI: 10.3390/jcm12052063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Fabry disease is a rare X-linked disease characterized by deficient expression and activity of alpha-galactosidase A (α-GalA) with consequent lysosomal accumulation of glycosphingolipid in various organs. Currently, enzyme replacement therapy is the cornerstone of the treatment of all Fabry patients, although in the long-term it fails to completely halt the disease's progression. This suggests on one hand that the adverse outcomes cannot be justified only by the lysosomal accumulation of glycosphingolipids and on the other that additional therapies targeted at specific secondary mechanisms might contribute to halt the progression of cardiac, cerebrovascular, and renal disease that occur in Fabry patients. Several studies reported how secondary biochemical processes beyond Gb3 and lyso-Gb3 accumulation-such as oxidative stress, compromised energy metabolism, altered membrane lipid, disturbed cellular trafficking, and impaired autophagy-might exacerbate Fabry disease adverse outcomes. This review aims to summarize the current knowledge of these pathogenetic intracellular mechanisms in Fabry disease, which might suggest novel additional strategies for its treatment.
Collapse
|
32
|
Enzyme Replacement Therapy for FABRY Disease: Possible Strategies to Improve Its Efficacy. Int J Mol Sci 2023; 24:ijms24054548. [PMID: 36901983 PMCID: PMC10003632 DOI: 10.3390/ijms24054548] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Enzyme replacement therapy is the only therapeutic option for Fabry patients with completely absent AGAL activity. However, the treatment has side effects, is costly, and requires conspicuous amounts of recombinant human protein (rh-AGAL). Thus, its optimization would benefit patients and welfare/health services (i.e., society at large). In this brief report, we describe preliminary results paving the way for two possible approaches: i. the combination of enzyme replacement therapy with pharmacological chaperones; and ii. the identification of AGAL interactors as possible therapeutic targets on which to act. We first showed that galactose, a low-affinity pharmacological chaperone, can prolong AGAL half-life in patient-derived cells treated with rh-AGAL. Then, we analyzed the interactomes of intracellular AGAL on patient-derived AGAL-defective fibroblasts treated with the two rh-AGALs approved for therapeutic purposes and compared the obtained interactomes to the one associated with endogenously produced AGAL (data available as PXD039168 on ProteomeXchange). Common interactors were aggregated and screened for sensitivity to known drugs. Such an interactor-drug list represents a starting point to deeply screen approved drugs and identify those that can affect (positively or negatively) enzyme replacement therapy.
Collapse
|
33
|
Monticelli M, Hay Mele B, Allocca M, Liguori L, Lukas J, Monti MC, Morretta E, Cubellis MV, Andreotti G. Curcumin Has Beneficial Effects on Lysosomal Alpha-Galactosidase: Potential Implications for the Cure of Fabry Disease. Int J Mol Sci 2023; 24:ijms24021095. [PMID: 36674610 PMCID: PMC9863837 DOI: 10.3390/ijms24021095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Fabry disease is a lysosomal storage disease caused by mutations in the GLA gene that encodes alpha-galactosidase (AGAL). The disease causes abnormal globotriaosylceramide (Gb3) storage in the lysosomes. Variants responsible for the genotypic spectrum of Fabry disease include mutations that abolish enzymatic activity and those that cause protein instability. The latter can be successfully treated with small molecules that either bind and stabilize AGAL or indirectly improve its cellular activity. This paper describes the first attempt to reposition curcumin, a nutraceutical, to treat Fabry disease. We tested the efficacy of curcumin in a cell model and found an improvement in AGAL activity for 80% of the tested mutant genotypes (four out of five tested). The fold-increase was dependent on the mutant and ranged from 1.4 to 2.2. We produced evidence that supports a co-chaperone role for curcumin when administered with AGAL pharmacological chaperones (1-deoxygalactonojirimycin and galactose). The combined treatment with curcumin and either pharmacological chaperone was beneficial for four out of five tested mutants and showed fold-increases ranging from 1.1 to 2.3 for DGJ and from 1.1 to 2.8 for galactose. Finally, we tested a long-term treatment on one mutant (L300F) and detected an improvement in Gb3 clearance and lysosomal markers (LAMP-1 and GAA). Altogether, our findings confirmed the necessity of personalized therapies for Fabry patients and paved the way to further studies and trials of treatments for Fabry disease.
Collapse
Affiliation(s)
- Maria Monticelli
- Department of Biology, University of Napoli “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Bruno Hay Mele
- Department of Biology, University of Napoli “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy
| | - Mariateresa Allocca
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ludovica Liguori
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Jan Lukas
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, 18147 Rostock, Germany
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Vittoria Cubellis
- Department of Biology, University of Napoli “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Correspondence: ; Tel.: +39-081-679-152
| | - Giuseppina Andreotti
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
34
|
Kaneski CR, Hanover JA, Schueler Hoffman UH. Generation of GLA-knockout human embryonic stem cell lines to model peripheral neuropathy in Fabry disease. Mol Genet Metab Rep 2022; 33:100914. [PMID: 36092250 PMCID: PMC9449667 DOI: 10.1016/j.ymgmr.2022.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
Fabry disease is an X-linked glycolipid storage disorder caused by mutations in the GLA gene which result in a deficiency in the lysosomal enzyme alpha galactosidase A (AGA). As a result, the glycolipid substrate Gb3 accumulates in critical tissues and organs producing a progressive debilitating disease. In Fabry disease up to 80% of patients experience life-long neuropathic pain that is difficult to treat and greatly affects their quality of life. The molecular mechanisms by which deficiency of AGA leads to neuropathic pain are not well understood, due in part to a lack of in vitro models that can be used to study the underlying pathology at the cellular level. Using CRISPR-Cas9 gene editing, we generated two clones with mutations in the GLA gene from a human embryonic stem cell line. Our clonal cell lines maintained normal stem cell morphology and markers for pluripotency, and showed the phenotypic characteristics of Fabry disease including absent AGA activity and intracellular accumulation of Gb3. Mutations in the predicted locations in exon 1 of the GLA gene were confirmed. Using established techniques for dual-SMAD inhibition/WNT activation, we were able to show that our AGA-deficient clones, as well as wild-type controls, could be differentiated to peripheral-type sensory neurons that express pain receptors. This genetically and physiologically relevant human model system offers a new and promising tool for investigating the cellular mechanisms of peripheral neuropathy in Fabry disease and may assist in the development of new therapeutic strategies to help lessen the burden of this disease.
Collapse
Key Words
- 4-MU, 4-methylumbelliferone
- AGA, alpha-galactosidase A
- Alpha-galactosidase
- BDNF, brain-derived neurotrophic factor
- BRN3A, brain-specific homeobox/POU domain protein 3A
- CRISPR-Cas9
- DAPI, 4′,6-diamidino-2-phenylindole
- DRG, dorsal root ganglion
- EDTA, ethylene diamine tetracetic acid
- ERT, enzyme replacement therapy
- Fabry disease
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GDNF, glia-derived neurotrophic factor
- GLA, alpha-galactosidase A gene
- Gb3, globotriaosylceramide
- HEX, beta-hexosaminidase
- Human embryonic stem cells
- NGF, nerve growth factor
- Neuropathy
- PAM, protospacer adjacent motif
- PBS, phosphate buffered saline
- RNP, ribonucleoprotein
- Sensory neurons
- SgRNA, single guide RNA
- TNA-alpha, Tumor Necrosis Factor- alpha
- TRPV1, transient receptor potential vanilloid family-1
- eGFP, green fluorescent protein
- hESC, human embryonic stem cell
- iPSC, induced pluripotent stem cell
Collapse
Affiliation(s)
- Christine R. Kaneski
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A. Hanover
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ulrike H. Schueler Hoffman
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Muacevic A, Adler JR, Abdulwahab RA, Alzahrani A, Sindi G. A Case Report on the Atypical Presentation of Hypertrophic Cardiomyopathy (HOCM) in a 19-Year-Old Female. Cureus 2022; 14:e33136. [PMID: 36601155 PMCID: PMC9802538 DOI: 10.7759/cureus.33136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2022] [Indexed: 12/31/2022] Open
Abstract
Atypical hypertrophic cardiomyopathy (HOCM) is a relatively rare genetic disorder that can affect the left ventricular system. HOCM can lead to various cardiac issues such as sudden cardiac death (SCD). We report a case of a 19-year-old female who was referred to a cardiology clinic after presenting with bi-ventricular hypertrophy on an echocardiogram (ECHO). Results from screening tests for infiltrative diseases and an iron panel came negative. The patient was asymptomatic, with no functional limitations and no family history of any cardiac disease or sudden death. In conclusion, HOCM can present with an atypical pattern, such as biventricular hypertrophy, and has been linked to SCD; therefore, it is important to be aware of this condition and take the necessary precautions to prevent it.
Collapse
|
36
|
Scerra G, De Pasquale V, Scarcella M, Caporaso MG, Pavone LM, D'Agostino M. Lysosomal positioning diseases: beyond substrate storage. Open Biol 2022; 12:220155. [PMID: 36285443 PMCID: PMC9597170 DOI: 10.1098/rsob.220155] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Lysosomal storage diseases (LSDs) comprise a group of inherited monogenic disorders characterized by lysosomal dysfunctions due to undegraded substrate accumulation. They are caused by a deficiency in specific lysosomal hydrolases involved in cellular catabolism, or non-enzymatic proteins essential for normal lysosomal functions. In LSDs, the lack of degradation of the accumulated substrate and its lysosomal storage impairs lysosome functions resulting in the perturbation of cellular homeostasis and, in turn, the damage of multiple organ systems. A substantial number of studies on the pathogenesis of LSDs has highlighted how the accumulation of lysosomal substrates is only the first event of a cascade of processes including the accumulation of secondary metabolites and the impairment of cellular trafficking, cell signalling, autophagic flux, mitochondria functionality and calcium homeostasis, that significantly contribute to the onset and progression of these diseases. Emerging studies on lysosomal biology have described the fundamental roles of these organelles in a variety of physiological functions and pathological conditions beyond their canonical activity in cellular waste clearance. Here, we discuss recent advances in the knowledge of cellular and molecular mechanisms linking lysosomal positioning and trafficking to LSDs.
Collapse
Affiliation(s)
- Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Maria Gabriella Caporaso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
37
|
Ortuño-Sahagún D, Enterría-Rosales J, Izquierdo V, Griñán-Ferré C, Pallàs M, González-Castillo C. The Role of the miR-17-92 Cluster in Autophagy and Atherosclerosis Supports Its Link to Lysosomal Storage Diseases. Cells 2022; 11:cells11192991. [PMID: 36230953 PMCID: PMC9564236 DOI: 10.3390/cells11192991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
Establishing the role of non-coding RNA (ncRNA), especially microRNAs (miRNAs), in the regulation of cell function constitutes a current research challenge. Two to six miRNAs can act in clusters; particularly, the miR-17-92 family, composed of miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a is well-characterized. This cluster functions during embryonic development in cell differentiation, growth, development, and morphogenesis and is an established oncogenic cluster. However, its role in the regulation of cellular metabolism, mainly in lipid metabolism and autophagy, has received less attention. Here, we argue that the miR-17-92 cluster is highly relevant for these two processes, and thus, could be involved in the study of pathologies derived from lysosomal deficiencies. Lysosomes are related to both processes, as they control cholesterol flux and regulate autophagy. Accordingly, we compiled, analyzed, and discussed current evidence that highlights the cluster's fundamental role in regulating cellular energetic metabolism (mainly lipid and cholesterol flux) and atherosclerosis, as well as its critical participation in autophagy regulation. Because these processes are closely related to lysosomes, we also provide experimental data from the literature to support our proposal that the miR-17-92 cluster could be involved in the pathogenesis and effects of lysosomal storage diseases (LSD).
Collapse
Affiliation(s)
- Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Correspondence: (D.O.-S.); (C.G.-C.)
| | - Julia Enterría-Rosales
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| | - Vanesa Izquierdo
- Pharmacology and Toxicology Section and Institute of Neuroscience, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain
| | - Christian Griñán-Ferré
- Pharmacology and Toxicology Section and Institute of Neuroscience, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology and Toxicology Section and Institute of Neuroscience, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain
| | - Celia González-Castillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
- Correspondence: (D.O.-S.); (C.G.-C.)
| |
Collapse
|
38
|
Monticelli M, Liguori L, Allocca M, Bosso A, Andreotti G, Lukas J, Monti MC, Morretta E, Cubellis MV, Hay Mele B. Drug Repositioning for Fabry Disease: Acetylsalicylic Acid Potentiates the Stabilization of Lysosomal Alpha-Galactosidase by Pharmacological Chaperones. Int J Mol Sci 2022; 23:ijms23095105. [PMID: 35563496 PMCID: PMC9105905 DOI: 10.3390/ijms23095105] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 12/10/2022] Open
Abstract
Fabry disease is caused by a deficiency of lysosomal alpha galactosidase and has a very large genotypic and phenotypic spectrum. Some patients who carry hypomorphic mutations can benefit from oral therapy with a pharmacological chaperone. The drug requires a very precise regimen because it is a reversible inhibitor of alpha-galactosidase. We looked for molecules that can potentiate this pharmacological chaperone, among drugs that have already been approved for other diseases. We tested candidate molecules in fibroblasts derived from a patient carrying a large deletion in the gene GLA, which were stably transfected with a plasmid expressing hypomorphic mutants. In our cell model, three drugs were able to potentiate the action of the pharmacological chaperone. We focused our attention on one of them, acetylsalicylic acid. We expect that acetylsalicylic acid can be used in synergy with the Fabry disease pharmacological chaperone and prolong its stabilizing effect on alpha-galactosidase.
Collapse
Affiliation(s)
- Maria Monticelli
- Department Biology, University of Napoli « Federico II », Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy; (M.M.); (A.B.); (B.H.M.)
- Department Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (L.L.); (M.A.)
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Ludovica Liguori
- Department Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (L.L.); (M.A.)
| | - Mariateresa Allocca
- Department Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (L.L.); (M.A.)
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Andrea Bosso
- Department Biology, University of Napoli « Federico II », Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy; (M.M.); (A.B.); (B.H.M.)
- Institute of Biochemistry and Cellular Biology, National Research Council, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Giuseppina Andreotti
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Jan Lukas
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany;
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, 18147 Rostock, Germany
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (M.C.M.); (E.M.)
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (M.C.M.); (E.M.)
| | - Maria Vittoria Cubellis
- Department Biology, University of Napoli « Federico II », Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy; (M.M.); (A.B.); (B.H.M.)
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
- Correspondence: ; Tel.: +39-081-679152
| | - Bruno Hay Mele
- Department Biology, University of Napoli « Federico II », Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy; (M.M.); (A.B.); (B.H.M.)
| |
Collapse
|