1
|
Fu Y, Hua Y, Alam N, Liu E. Progress in the Study of Animal Models of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:3120. [PMID: 39339720 PMCID: PMC11435380 DOI: 10.3390/nu16183120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has recently been proposed as an alternative term to NAFLD. MASLD is a globally recognized chronic liver disease that poses significant health concerns and is frequently associated with obesity, insulin resistance, and hyperlipidemia. To better understand its pathogenesis and to develop effective treatments, it is essential to establish suitable animal models. Therefore, attempts have been made to establish modelling approaches that are highly similar to human diet, physiology, and pathology to better replicate disease progression. Here, we reviewed the pathogenesis of MASLD disease and summarised the used animal models of MASLD in the last 7 years through the PubMed database. In addition, we have summarised the commonly used animal models of MASLD and describe the advantages and disadvantages of various models of MASLD induction, including genetic models, diet, and chemically induced models, to provide directions for research on the pathogenesis and treatment of MASLD.
Collapse
Affiliation(s)
- Yu Fu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Y.F.); (Y.H.)
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China;
| | - Yuxin Hua
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Y.F.); (Y.H.)
| | - Naqash Alam
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China;
| | - Enqi Liu
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China;
| |
Collapse
|
2
|
Kiepura A, Suski M, Stachyra K, Kuś K, Czepiel K, Wiśniewska A, Ulatowska-Białas M, Olszanecki R. The Influence of the FFAR4 Agonist TUG-891 on Liver Steatosis in ApoE-Knockout Mice. Cardiovasc Drugs Ther 2024; 38:667-678. [PMID: 36705799 PMCID: PMC11266261 DOI: 10.1007/s10557-023-07430-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/28/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) constitutes an independent risk factor for the development of coronary heart disease. Low-grade inflammation has been shown to play an important role in the development of atherosclerosis and NAFLD. Free fatty acid receptor 4 (FFAR4/GPR120), which is involved in damping inflammatory reactions, may represent a promising target for the treatment of inflammatory diseases. Our objective was to evaluate the effect of TUG-891, the synthetic agonist of FFAR4/GPR120, on fatty liver in vivo. METHODS The effect of TUG-891 on fatty liver was investigated in apoE-/- mice fed a high-fat diet (HFD), using microscopic, biochemical, molecular, and proteomic methods. RESULTS Treatment with TUG-891 inhibited the progression of liver steatosis in apoE-/- mice, as evidenced by histological analysis, and reduced the accumulation of TG in the liver. This action was associated with a decrease in plasma AST levels. TUG-891 decreased the expression of liver genes and proteins involved in de novo lipogenesis (Srebp-1c, Fasn and Scd1) and decreased the expression of genes related to oxidation and uptake (Acox1, Ehhadh, Cd36, Fabp1). Furthermore, TUG-891 modified the levels of selected factors related to glucose metabolism (decreased Glut2, Pdk4 and Pklr, and increased G6pdx). CONCLUSION Pharmacological stimulation of FFAR4 may represent a promising lead in the search for drugs that inhibit NAFLD.
Collapse
Affiliation(s)
- Anna Kiepura
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Kamila Stachyra
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Katarzyna Kuś
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Klaudia Czepiel
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Anna Wiśniewska
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Magdalena Ulatowska-Białas
- Department of Pathomorphology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Rafał Olszanecki
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland.
| |
Collapse
|
3
|
Parafati M, La Russa D, Lascala A, Crupi F, Riillo C, Fotschki B, Mollace V, Janda E. Dramatic Suppression of Lipogenesis and No Increase in Beta-Oxidation Gene Expression Are among the Key Effects of Bergamot Flavonoids in Fatty Liver Disease. Antioxidants (Basel) 2024; 13:766. [PMID: 39061835 PMCID: PMC11273501 DOI: 10.3390/antiox13070766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/28/2024] Open
Abstract
Bergamot flavonoids have been shown to prevent metabolic syndrome, non-alcoholic fatty liver disease (NAFLD) and stimulate autophagy in animal models and patients. To investigate further the mechanism of polyphenol-dependent effects, we performed a RT2-PCR array analysis on 168 metabolism, transport and autophagy-related genes expressed in rat livers exposed for 14 weeks to different diets: standard, cafeteria (CAF) and CAF diet supplemented with 50 mg/kg of bergamot polyphenol fraction (BPF). CAF diet caused a strong upregulation of gluconeogenesis pathway (Gck, Pck2) and a moderate (>1.7 fold) induction of genes regulating lipogenesis (Srebf1, Pparg, Xbp1), lipid and cholesterol transport or lipolysis (Fabp3, Apoa1, Lpl) and inflammation (Il6, Il10, Tnf). However, only one β-oxidation gene (Cpt1a) and a few autophagy genes were differentially expressed in CAF rats compared to controls. While most of these transcripts were significantly modulated by BPF, we observed a particularly potent effect on lipogenesis genes, like Acly, Acaca and Fasn, which were suppressed far below the mRNA levels of control livers as confirmed by alternative primers-based RT2-PCR analysis and western blotting. These effects were accompanied by downregulation of pro-inflammatory cytokines (Il6, Tnfa, and Il10) and diabetes-related genes. Few autophagy (Map1Lc3a, Dapk) and no β-oxidation gene expression changes were observed compared to CAF group. In conclusion, chronic BPF supplementation efficiently prevents NAFLD by modulating hepatic energy metabolism and inflammation gene expression programs, with no effect on β-oxidation, but profound suppression of de novo lipogenesis.
Collapse
Affiliation(s)
- Maddalena Parafati
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| | - Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Antonella Lascala
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| | - Francesco Crupi
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| | - Concetta Riillo
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| | - Bartosz Fotschki
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Vincenzo Mollace
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| | - Elzbieta Janda
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| |
Collapse
|
4
|
Rafi H, Rafiq H, Farhan M. Pharmacological profile of agmatine: An in-depth overview. Neuropeptides 2024; 105:102429. [PMID: 38608401 DOI: 10.1016/j.npep.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Agmatine, a naturally occurring polyamine derived from arginine via arginine decarboxylase, has been shown to play multifaceted roles in the mammalian body, impacting a wide range of physiological and pathological processes. This comprehensive review delineates the significant insights into agmatine's pharmacological profile, emphasizing its structure and metabolism, neurotransmission and regulation, and pharmacokinetics and function. Agmatine's biosynthesis is highly conserved across species, highlighting its fundamental role in cellular functions. In the brain, comparable to established neurotransmitters, agmatine acts as a neuromodulator, influencing the regulation, metabolism, and reabsorption of neurotransmitters that are key to mood disorders, learning, cognition, and the management of anxiety and depression. Beyond its neuromodulatory functions, agmatine exhibits protective effects across various cellular and systemic contexts, including neuroprotection, nephroprotection, cardioprotection, and cytoprotection, suggesting a broad therapeutic potential. The review explores agmatine's interaction with multiple receptor systems, including NMDA, α2-adrenoceptors, and imidazoline receptors, elucidating its role in enhancing cell viability, neuronal protection, and synaptic plasticity. Such interactions underpin agmatine's potential in treating neurological diseases and mood disorders, among other conditions. Furthermore, agmatine's pharmacokinetics, including its absorption, distribution, metabolism, and excretion, are discussed, underlining the complexity of its action and the potential for therapeutic application. The safety and efficacy of agmatine supplementation, demonstrated through various animal and human studies, affirm its potential as a beneficial therapeutic agent. Conclusively, the diverse physiological and therapeutic effects of agmatine, spanning neurotransmission, protection against cellular damage, and modulation of various receptor pathways, position it as a promising candidate for further research and clinical application. This review underscores the imperative for continued exploration into agmatine's mechanisms of action and its potential in pharmacology and medicine, promising advances in the treatment of numerous conditions.
Collapse
Affiliation(s)
- Hira Rafi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biochemistry, University of Karachi, Pakistan.
| | - Hamna Rafiq
- Department of Biochemistry, University of Karachi, Pakistan
| | | |
Collapse
|
5
|
Zhao Y, Shao C, Zhou H, Yu L, Bao Y, Mao Q, Yang J, Wan H. Salvianolic acid B inhibits atherosclerosis and TNF-α-induced inflammation by regulating NF-κB/NLRP3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155002. [PMID: 37572566 DOI: 10.1016/j.phymed.2023.155002] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Inflammation is critical in the pathophysiology of atherosclerosis (AS). The aim of this study was to investigate the protective effect of salvianolic acid B (Sal B) on AS and to explore the molecular mechanism of tumor necrosis factor-α (TNF-α)-induced damage in human umbilical vein endothelial cells (HUVECs). METHODS In vivo studies, LDLR-/- mice were fed a high-fat diet (HFD) for 14 weeks to establish an AS model to evaluate the protective effect of Sal B on the development of AS. Total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) levels were determined in the blood serum. En face and cross section lipid deposits were measured and quantified with Oil Red O staining. Hematoxylin and eosin (H&E) and Masson's trichrome staining were used to quantify atherosclerotic plaque size and collagen fiber content in aortic root sections. Reactive oxygen species (ROS) were detected in aortic root using dihydroethylenediamine (DHE) staining. Apoptosis rate was determined by TdT-mediated dUTP nick end labeling (TUNEL) staining. Immunofluorescence (IF) staining was used to detect the expression of the nuclear factor kappa-B (NF-κB) p65 and NOD-like receptor family pyrin domain containing 3 (NLRP3). To further investigate the protective effect of Sal B, we used TNF-α induced HUVECs inflammation model. We examined cell viability, lactate dehydrogenase (LDH) content, and ROS production. The transcription of NF-κB was evaluated by immunofluorescence. The mRNA levels of NLRP3, caspase-1, and IL-1β were detected by RT-PCR. Pyroptosis related proteins were detected by Western blot. RESULTS The change in the weight of the mice over time was an indication that Sal B had an effect on weight gain. IN VIVO STUDIES we were able to show that the serum lipids TC, TG and LDL-C were increased in the model group and that the treatment with Sal B reduced the levels of serum lipids. Histological staining showed that the LDLR-/- mice had a large amount of foam cell deposition accompanied by inflammatory cell infiltration and the formation of atherosclerotic plaques in theMOD group. The pathological abnormalities were significantly improved by Sal B treatment. ROS release and apoptosis were significantly increased after HFD in aortic root, which was attenuated by Sal B. IF results showed that the expression of NF-κB p65 and NLRP3 was significantly increased in the MOD group and significantly decreased in the Sal B group, suggesting that Sal B may act through the NF-κB/NLRP3 pathway. And in vitro studies: inflammatory damage of HUEVCs was induced by TNF-α, and Sal B treatmented significantly increased cell viability and reduced LDH release. It was also found that Sal B inhibited ROS level increase after TNF-α-induced HUEVCs. Activation of NF-κB p65 by TNF-α stimulation, NF-κB p65 is transferred to the nucleus. Sal B treatment could reverse this effect. RT-PCR and Western blot showed that Sal B affected NF-κB transcription and NLRP3 inflammasome activation and could significantly inhibit TNF-α-induced NLRP3 inflammasome activation. These results suggest that Sal B may participate in antiatherosclerotic and inflammatory responses through the NF-κB/NLRP3 pathway. CONCLUSIONS This study shows that Sal B ameliorates the development of AS lesions in HFD-induced LDLR-/- mice. Furthermore, under TNF-α conditions, Sal B reduced ROS release and reversed nuclear translocation of NF-κB, and inhibited atherosclerosis and inflammation by modulating the NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Yali Zhao
- College of Life Science Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chongyu Shao
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou 310053, China
| | - Huifen Zhou
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou 310053, China
| | - Li Yu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou 310053, China
| | - Yida Bao
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou 310053, China
| | - Qianping Mao
- College of Life Science Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiehong Yang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou 310053, China.
| | - Haitong Wan
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou 310053, China.
| |
Collapse
|
6
|
Flessa CM, Nasiri-Ansari N, Kyrou I, Leca BM, Lianou M, Chatzigeorgiou A, Kaltsas G, Kassi E, Randeva HS. Genetic and Diet-Induced Animal Models for Non-Alcoholic Fatty Liver Disease (NAFLD) Research. Int J Mol Sci 2022; 23:15791. [PMID: 36555433 PMCID: PMC9780957 DOI: 10.3390/ijms232415791] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
A rapidly increasing incidence of non-alcoholic fatty liver disease (NAFLD) is noted worldwide due to the adoption of western-type lifestyles and eating habits. This makes the understanding of the molecular mechanisms that drive the pathogenesis of this chronic disease and the development of newly approved treatments of utmost necessity. Animal models are indispensable tools for achieving these ends. Although the ideal mouse model for human NAFLD does not exist yet, several models have arisen with the combination of dietary interventions, genetic manipulations and/or administration of chemical substances. Herein, we present the most common mouse models used in the research of NAFLD, either for the whole disease spectrum or for a particular disease stage (e.g., non-alcoholic steatohepatitis). We also discuss the advantages and disadvantages of each model, along with the challenges facing the researchers who aim to develop and use animal models for translational research in NAFLD. Based on these characteristics and the specific study aims/needs, researchers should select the most appropriate model with caution when translating results from animal to human.
Collapse
Affiliation(s)
- Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Research Institute for Health and Wellbeing, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Bianca M. Leca
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Maria Lianou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
7
|
Role of Neurite Outgrowth Inhibitor B Receptor in hepatic steatosis. Acta Histochem 2022; 124:151977. [DOI: 10.1016/j.acthis.2022.151977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
|
8
|
Chronic agmatine treatment prevents olanzapine-induced obesity and metabolic dysregulation in female rats. Brain Res Bull 2022; 191:69-77. [DOI: 10.1016/j.brainresbull.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022]
|
9
|
Cardiovascular Diseases—A Focus on Atherosclerosis, Its Prophylaxis, Complications and Recent Advancements in Therapies. Int J Mol Sci 2022; 23:ijms23094695. [PMID: 35563086 PMCID: PMC9103939 DOI: 10.3390/ijms23094695] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
|
10
|
Zhang D, Li J, Li T. Agmatine mitigates palmitate (PA)-induced mitochondrial and metabolic dysfunction in microvascular endothelial cells. Hum Exp Toxicol 2022; 41:9603271221110857. [PMID: 35747990 DOI: 10.1177/09603271221110857] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Agmatine is an arginine metabolite that has neuroprotective capacity. Recently, it has been found to ameliorate atherosclerosis progression in rabbits. However, further molecular mechanisms of its anti-atherosclerotic properties remain unclear. High plasma levels of free fatty acids (FFAs) are an important risk factor for atherosclerosis due to their detrimental effects on vascular endothelial cells (ECs). Here, we used palmitate (PA), a kind of FFA, to induce endothelial dysfunction in human microvascular endothelial cells (HMECs) to determine the possible biological functions of agmatine. We found that PA caused ECs dysfunction in HMEC-1 cells, decreased cell viability, and elevated lactate dehydrogenase (LDH) release which could be reversed by agmatine treatment. Agmatine also improved the nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) activity in PA-induced HMEC-1 cells. The PA-caused mitochondrial dysfunction of HMEC-1 cells was diminished after agmatine treatment, as proven by the increased intracellular Adenosine Triphosphate (ATP) level, decreased mitochondrial reactive oxygen species (ROS) level, and increased mitochondrial oxygen consumption rate (OCR). Further, agmatine could alleviate PA-caused lipid accumulation with increased levels of Triglyceride (TG) and total cholesterol (TC) in HMEC-1 cells. Furthermore, Western blot analysis revealed that agmatine administration markedly decreased the expression levels of phosphorylated-AMP-activated protein kinase α (p-AMPKα), p-protein kinase B (p-AKT), and p-eNOS in PA-induced HMEC-1 cells. Inhibition of AMPK by compound C reversed the protective effects of agmatine on PA-induced HMEC-1 cells. Taken together, we hypothesize that agmatine mitigated PA-induced HMEC-1 cell dysfunction by alleviating mitochondrial and metabolic dysfunction via the AMPK/PI3K/Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Dan Zhang
- Catheter Room, 457651The First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, China
| | - Jinzhao Li
- Department of Cardiology, 457651The First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, China
| | - Tianzhu Li
- Department of Cardiology, 457651The First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, China
| |
Collapse
|