1
|
Guo W, Duan Z, Wu J, Zhou BP. Epithelial-mesenchymal transition promotes metabolic reprogramming to suppress ferroptosis. Semin Cancer Biol 2025; 112:20-35. [PMID: 40058616 DOI: 10.1016/j.semcancer.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 02/05/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular de-differentiation process that provides cells with the increased plasticity and stem cell-like traits required during embryonic development, tissue remodeling, wound healing and metastasis. Morphologically, EMT confers tumor cells with fibroblast-like properties that lead to the rearrangement of cytoskeleton (loss of stiffness) and decrease of membrane rigidity by incorporating high level of poly-unsaturated fatty acids (PUFA) in their phospholipid membrane. Although large amounts of PUFA in membrane reduces rigidity and offers capabilities for tumor cells with the unbridled ability to stretch, bend and twist in metastasis, these PUFA are highly susceptible to lipid peroxidation, which leads to the breakdown of membrane integrity and, ultimately results in ferroptosis. To escape the ferroptotic risk, EMT also triggers the rewiring of metabolic program, particularly in lipid metabolism, to enforce the epigenetic regulation of EMT and mitigate the potential damages from ferroptosis. Thus, the interplay among EMT, lipid metabolism, and ferroptosis highlights a new layer of intricated regulation in cancer biology and metastasis. Here we summarize the latest findings and discuss these mutual interactions. Finally, we provide perspectives of how these interplays contribute to cellular plasticity and ferroptosis resistance in metastatic tumor cells that can be explored for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Wenzheng Guo
- Departments of Molecular and Cellular Biochemistry, and the Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40506, United States
| | - Zhibing Duan
- Departments of Molecular and Cellular Biochemistry, and the Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40506, United States
| | - Jingjing Wu
- Departments of Molecular and Cellular Biochemistry, and the Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40506, United States
| | - Binhua P Zhou
- Departments of Molecular and Cellular Biochemistry, and the Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40506, United States.
| |
Collapse
|
2
|
Li J, Song Z, Dong X, Li L, Gu X, Zhang K, Zhang Z, Li Y, Fan Z, Dong H, Liu Y, Liu M, Zhang H, Liu W, Zhang T. VRK1 promotes epithelial-mesenchymal transition in hepatocellular carcinoma mediated by SNAI1 via phosphorylating CHD1L. Cell Death Dis 2025; 16:302. [PMID: 40234378 PMCID: PMC12000354 DOI: 10.1038/s41419-025-07641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
Vaccinia-related kinase 1 (VRK1) is involved in numerous cellular processes, including DNA repair, cell cycle and cell proliferation. However, its roles and molecular mechanism underlying the progression of hepatocellular carcinoma (HCC) are yet largely unexplored. Here, we demonstrated that VRK1 expression is elevated in HCC tumor tissues, which is associated with high tumor stage and poor prognosis in HCC patients. In vitro and in vivo experiments manifested that VRK1 overexpression significantly promotes cell proliferation, colony formation, migration and tumor growth of HCC by inducing epithelial-mesenchymal transition (EMT) program. Mechanistically, immunoprecipitation combined with mass spectrometry analysis determined that VRK1 interacts with CHD1L, which mediates the phosphorylation of CHD1L at serine 122 site. RNA-seq revealed that one of the key downstream target genes of VRK1 is SNAI1, by which VRK1 promotes EMT process and HCC progression. Furthermore, VRK1 upregulates SNAI1 expression through phosphorylating CHD1L. In conclusion, these findings suggested that VRK1/CHD1L/SNAI1 axis acts as a cancer-driving pathway to promote the proliferation and EMT of HCC, indicating that targeting VRK1 may be an attractive therapeutic strategy of HCC.
Collapse
Affiliation(s)
- Jing Li
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zan Song
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xue Dong
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Leilei Li
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xinyu Gu
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Kailing Zhang
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhicheng Zhang
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Li
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhili Fan
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hao Dong
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Liu
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mengfei Liu
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huiqing Zhang
- The Department of Gastrointestinal Medical Oncology, JXHC Key Laboratory of Tumor Microenvironment and Immunoregulation, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China.
| | - Wu Liu
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Tao Zhang
- Institute of Immunopharmaceutical Sciences, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi, China.
| |
Collapse
|
3
|
Fan C, Wang Q, Krijger PHL, Cats D, Selle M, Khorosjutina O, Dhanjal S, Schmierer B, Mei H, de Laat W, Ten Dijke P. Identification of a SNAI1 enhancer RNA that drives cancer cell plasticity. Nat Commun 2025; 16:2890. [PMID: 40133308 PMCID: PMC11937597 DOI: 10.1038/s41467-025-58032-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Enhancer RNAs (eRNAs) are a pivotal class of enhancer-derived non-coding RNAs that drive gene expression. Here we identify the SNAI1 enhancer RNA (SNAI1e; SCREEM2) as a key activator of SNAI1 expression and a potent enforcer of transforming growth factor-β (TGF-β)/SMAD signaling in cancer cells. SNAI1e depletion impairs TGF-β-induced epithelial-mesenchymal transition (EMT), migration, in vivo extravasation, stemness, and chemotherapy resistance in breast cancer cells. SNAI1e functions as an eRNA to cis-regulate SNAI1 enhancer activity by binding to and strengthening the enrichment of the transcriptional co-activator bromodomain containing protein 4 (BRD4) at the local enhancer. SNAI1e selectively promotes the expression of SNAI1, which encodes the EMT transcription factor SNAI1. Furthermore, we reveal that SNAI1 interacts with and anchors the inhibitory SMAD7 in the nucleus, and thereby prevents TGF-β type I receptor (TβRI) polyubiquitination and proteasomal degradation. Our findings establish SNAI1e as a critical driver of SNAI1 expression and TGF-β-induced cell plasticity.
Collapse
Affiliation(s)
- Chuannan Fan
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Qian Wang
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Davy Cats
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Miriam Selle
- Department of Medical Biochemistry and Biophysics, SciLifeLab and Karolinska Institute, Solna, Sweden
| | - Olga Khorosjutina
- Department of Medical Biochemistry and Biophysics, SciLifeLab and Karolinska Institute, Solna, Sweden
| | - Soniya Dhanjal
- Department of Medical Biochemistry and Biophysics, SciLifeLab and Karolinska Institute, Solna, Sweden
| | - Bernhard Schmierer
- Department of Medical Biochemistry and Biophysics, SciLifeLab and Karolinska Institute, Solna, Sweden
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
4
|
Soubeyrand S, Lau P, McPherson R. Distinct roles of Constitutive Photomorphogenesis Protein 1 homolog (COP1) in human hepatocyte models. Front Mol Biosci 2025; 12:1548582. [PMID: 39990870 PMCID: PMC11842253 DOI: 10.3389/fmolb.2025.1548582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction Constitutive Photomorphogenesis Protein 1 homolog (COP1) is a conserved E3 ligase with key roles in several biological systems. Prior work in hepatocyte-derived tumors categorized COP1 as an oncogene, but its role in untransformed hepatocytes remains largely unexplored. Here, we have investigated the role of COP1 in primary human hepatocytes and two transformed hepatocyte models, HepG2 and HuH-7 cells. Methods The role of COP1 was tested by silencing and transduction experiments in HepG2, HuH-7, and primary human hepatocytes. Transcription array data of COP1-suppressed cells were generated and analyzed using clustering analyses. Cellular impacts were examined by proliferation assays, qRT-PCR, western blotting, reporter assays, and APOB enzyme-linked immunosorbent assays. Results and Discussion COP1 suppression had no noticeable impact on HepG2 and HuH-7 proliferation and was associated with contrasting rather than congruent transcriptome changes. Transcriptomic changes were consistent with perturbed metabolism in primary hepatocytes and HepG2 cells and impaired cell cycle regulation in HuH-7 cells. In HepG2 and primary hepatocytes but not in HuH-7 cells, COP1 suppression reduced the expression of important hepatic regulators and markers. COP1 downregulation reduced hepatic nuclear factor-4 alpha (HNF4A) abundance and function, as assessed by a lower abundance of key HNF4A targets, reduced APOB secretion, and reporter assays. HNF4A function could be restored by introducing a siRNA-resistant COP1 transgene, whereas HNF4A restoration partially rescued COP1 silencing in HepG2 cells. Our results identify and detail a pivotal regulatory role of COP1 in hepatocytes, in part through HNF4A.
Collapse
Affiliation(s)
| | - Paulina Lau
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
| | - Ruth McPherson
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
- Department of Medicine, Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
5
|
Zhang B, Pang Y. Exploring the genetic profiles linked to senescence in thyroid tumors: insights on predicting disease progression and immune responses. Front Oncol 2025; 15:1545656. [PMID: 39980566 PMCID: PMC11839597 DOI: 10.3389/fonc.2025.1545656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Thyroid cancer (THCA) is the most common endocrine tumor. Research on Cell Senescence Associated Genes (CSAGs), which impact many cancers, remains limited in the THCA field. Methods In this study, we downloaded THCA sample data from several public databases and selected a set of CSAGs for subsequent analysis. Differential expression genes (DEGs) obtained through differential analysis were intersected with prognostic genes identified by Cox regression analysis to explore the correlation among these crossed genes. We constructed a prognostic model using the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and verified its efficacy. Kaplan-Meier survival curves were plotted, and Receiver Operating Characteristic (ROC) curves rigorously confirmed the accuracy of model predictions. Results To evaluate the predictive power of prognostic models across different phenotypic traits, we performed survival analysis, Gene Set Enrichment Analysis (GSEA), and immune-related differential analysis. Differences in tumor mutation burden (TMB) and treatment response between high-risk and low-risk patient groups were also analyzed. Finally, the predictive effect of our model on immunotherapy response was validated, showing promising results for THCA patients. Discussion Our study enhances the understanding of THCA cell senescence and provides new therapeutic insights. The proposed model not only accurately predicts patient survival but also reveals factors related to immunotherapy response, offering new perspectives for personalized medicine.
Collapse
Affiliation(s)
- Baoliang Zhang
- Department of Emergency, Tongji Hospital of Tongji University, Shanghai, China
| | - Yanping Pang
- Department of Ultrasound, Tongji Hospital of Tongji University, Shanghai, China
| |
Collapse
|
6
|
Li B, Li R. SNAI1: a key modulator of survival in lung squamous cell carcinoma and its association with metastasis. J Cardiothorac Surg 2024; 19:531. [PMID: 39294686 PMCID: PMC11409570 DOI: 10.1186/s13019-024-03044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Snail family zinc finger 1 (SNAI1) has been implicated in cancer progression and prognosis across various malignancies. This study aims to elucidate the prognostic significance of SNAI1 expression in Lung Squamous Cell Carcinoma (LUSC) using data from The Cancer Genome Atlas (TCGA) database. METHODS SNAI1 expression levels in LUSC patients were stratified using X-tile software to establish optimal cut-off values. Kaplan-Meier survival analysis was performed to assess the impact of SNAI1 expression on overall survival (OS). Univariate and multivariate Cox regression analyses were conducted to evaluate the prognostic value of SNAI1, considering clinical parameters such as age, clinical stage, and TNM classification. Additionally, we explored the interaction between SNAI1 expression and metastatic status, and performed Gene Set Enrichment Analysis (GSEA) to investigate associated cellular pathways. Correlations between SNAI1 and immune checkpoint molecules were also examined. RESULTS Kaplan-Meier analysis revealed significant differences in OS among high, medium, and low SNAI1 expression groups (p < 0.001), with median survival times of 1.6, 3.0, and 5.8 years, respectively. Dichotomizing patients into high and low SNAI1 expression groups confirmed that high SNAI1 expression was associated with significantly poorer OS (p < 0.001). SNAI1 remained an independent prognostic factor in multivariate analysis. High SNAI1 expression correlated with poorer survival outcomes regardless of metastatic status, and the combination of high SNAI1 expression and metastasis resulted in the poorest survival. GSEA identified significant associations between SNAI1 and inflammatory, immune response pathways. Positive correlations were observed between SNAI1 and key immune checkpoint molecules, suggesting an interplay with immune checkpoint mechanisms. CONCLUSIONS High SNAI1 expression is a robust prognostic indicator of poor survival in LUSC, independent of other clinical factors. Its association with immune checkpoint molecules highlights its potential as a therapeutic target. These findings underscore the prognostic and therapeutic relevance of SNAI1 in LUSC and possibly other cancers. Further research is warranted to explore targeted therapies against SNAI1.
Collapse
Affiliation(s)
- Beibei Li
- Department of Respiratory Medicine, the Fifth Affiliated Hospital of Xinxiang Medical University (The First People's Hospital of Xinxiang), Xinxiang City, 453000, Henan Province, China.
| | - Rongkai Li
- Department of Respiratory Medicine, the Fifth Affiliated Hospital of Xinxiang Medical University (The First People's Hospital of Xinxiang), Xinxiang City, 453000, Henan Province, China
| |
Collapse
|
7
|
Xue R, Fan Z, An Y. Knockdown of PRDX2 Inhibits the Proliferation, Growth, Migration, Invasion, and MMP9 Activity of Ewing's Sarcoma Cells Cultured In Vitro. Cancer Rep (Hoboken) 2024; 7:e2122. [PMID: 39234629 PMCID: PMC11375325 DOI: 10.1002/cnr2.2122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Ewing's sarcoma (ES) is the second most common malignant primary bone tumor in children and adolescents. Peroxiredoxin 2 (PRDX2) is an antioxidant enzyme. AIMS Here, we investigated the role and mechanism of PRDX2 in the development of ES. METHODS AND RESULTS PRDX2 expression was knocked down in A673 and RDES cells by specific siRNA interference (si-PRDX2). Knockdown of PRDX2 strongly inhibited the proliferation, growth, migration, invasion, and MMP9 activity and induces apoptosis of A673 and RDES cells. si-PRDX2 significantly inhibited the phosphorylation of Akt and the expression of cyclin D1. The transcription factor that might regulate PRDX2 transcription was predicted with the JASPAR and UCSC databases, and analyzed using dual-luciferase and Chromatin co-immunoprecipitation experiments. SNAI1 could activate the transcription of PRDX2 by binding to predicted promoter binding site. CONCLUSION PRDX2 may be a potential therapeutic target for ES.
Collapse
Affiliation(s)
- Ruifeng Xue
- Department of Bone and Soft Tissue Tumors, Key Laboratory of Carcinogenesis and Translational ResearchPeking University Cancer Hospital & InstituteBeijingChina
| | - Zhengfu Fan
- Department of Bone and Soft Tissue Tumors, Key Laboratory of Carcinogenesis and Translational ResearchPeking University Cancer Hospital & InstituteBeijingChina
| | - Yunhe An
- Institute of Analysis and Testing, Beijng Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis)BeijingChina
| |
Collapse
|
8
|
Lei Q, Zhen S, Zhang L, Zhao Q, Yang L, Zhang Y. A2AR-mediated CXCL5 upregulation on macrophages promotes NSCLC progression via NETosis. Cancer Immunol Immunother 2024; 73:108. [PMID: 38642131 PMCID: PMC11032303 DOI: 10.1007/s00262-024-03689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/24/2024] [Indexed: 04/22/2024]
Abstract
Tumor-associated macrophages (TAMs) are abundant in tumors and interact with tumor cells, leading to the formation of an immunosuppressive microenvironment and tumor progression. Although many studies have explored the mechanisms underlying TAM polarization and its immunosuppressive functions, understanding of its progression remains limited. TAMs promote tumor progression by secreting cytokines, which subsequently recruit immunosuppressive cells to suppress the antitumor immunity. In this study, we established an in vitro model of macrophage and non-small cell lung cancer (NSCLC) cell co-culture to explore the mechanisms of cell-cell crosstalk. We observed that in NSCLC, the C-X-C motif chemokine ligand 5 (CXCL5) was upregulated in macrophages because of the stimulation of A2AR by adenosine. Adenosine was catalyzed by CD39 and CD73 in macrophages and tumor cells, respectively. Nuclear factor kappa B (NFκB) mediated the A2AR stimulation of CXCL5 upregulation in macrophages. Additionally, CXCL5 stimulated NETosis in neutrophils. Neutrophil extracellular traps (NETs)-treated CD8+ T cells exhibited upregulation of exhaustion-related and cytosolic DNA sensing pathways and downregulation of effector-related genes. However, A2AR inhibition significantly downregulated CXCL5 expression and reduced neutrophil infiltration, consequently alleviating CD8+ T cell dysfunction. Our findings suggest a complex interaction between tumor and immune cells and its potential as therapeutic target.
Collapse
Affiliation(s)
- Qingyang Lei
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
| | - Shanshan Zhen
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
| | - Lei Zhang
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qitai Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China.
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China.
| |
Collapse
|
9
|
Quinsgaard EMB, Korsnes MS, Korsnes R, Moestue SA. Single-cell tracking as a tool for studying EMT-phenotypes. Exp Cell Res 2024; 437:113993. [PMID: 38485079 DOI: 10.1016/j.yexcr.2024.113993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
This article demonstrates that label-free single-cell video tracking is a useful approach for in vitro studies of Epithelial-Mesenchymal Transition (EMT). EMT is a highly heterogeneous process, involved in wound healing, embryogenesis and cancer. The process promotes metastasis, and increased understanding can aid development of novel therapeutic strategies. The role of EMT-associated biomarkers depends on biological context, making it challenging to compare and interpret data from different studies. We demonstrate single-cell video tracking for comprehensive phenotype analysis. In this study we performed single-cell video tracking on 72-h long recordings. We quantified several behaviours at a single-cell level during induced EMT in MDA-MB-468 cells. This revealed notable variations in migration speed, with different dose-response patterns and varying distributions of speed. By registering cell morphologies during the recording, we determined preferred paths of morphological transitions. We also found a clear association between migration speed and cell morphology. We found elevated rates of cell death, diminished proliferation, and an increase in mitotic failures followed by re-fusion of sister-cells. The method allows tracking of phenotypes in cell lineages, which can be particularly useful in epigenetic studies. Sister-cells were found to have significant similarities in their speeds and morphologies, illustrating the heritability of these traits.
Collapse
Affiliation(s)
- Ellen Marie Botne Quinsgaard
- Norwegian University of Science and Technology (NTNU), Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway.
| | - Mónica Suárez Korsnes
- Norwegian University of Science and Technology (NTNU), Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway; Korsnes Biocomputing (KoBio), Trondheim, Norway
| | | | - Siver Andreas Moestue
- Norwegian University of Science and Technology (NTNU), Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway; Department of Pharmacy, Nord University, Bodø, Norway
| |
Collapse
|
10
|
Min J, Mashimo C, Nambu T, Maruyama H, Takigawa H, Okinaga T. Resveratrol is an inhibitory polyphenol of epithelial-mesenchymal transition induced by Fusobacterium nucleatum. Arch Oral Biol 2024; 160:105897. [PMID: 38290225 DOI: 10.1016/j.archoralbio.2024.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Resveratrol is a natural phytoalexin that has anti-inflammatory properties, reverses doxorubicin resistance, and inhibits epithelial-mesenchymal transition (EMT) in many types of cancer cells. Fusobacterium nucleatum is reportedly enriched in oral squamous cell carcinoma (OSCC) tissues compared to adjacent normal tissues, sparking interest in the relationship between F. nucleatum and OSCC. Recently, F. nucleatum was shown to be associated with EMT in OSCC. In the present study, we aimed to investigate the effects of the natural plant compound resveratrol on F. nucleatum-induced EMT in OSCC. DESIGN F. nucleatum was co-cultured with OSCC cells, with a multiplicity of infection (MOI) of 300:1. Resveratrol was used at a concentration of 10 μM. Cell Counting Kit-8 and wound healing assays were performed to examine the viability and migratory ability of OSCC cells. Subsequently, real-time RT-PCR was performed to investigate the gene expression of EMT-related markers. Western blotting and immunofluorescence analyses were used to further analyze the expression of the epithelial marker E-cadherin and the EMT transcription factor SNAI1. RESULTS Co-cultivation with F. nucleatum did not significantly enhance cell viability. The co-cultured cells displayed similarities to the positive control of EMT, exhibiting enhanced migration and expression changes in EMT-related markers. SNAI1 was significantly upregulated, whereas E-cadherin, was significantly downregulated. Notably, resveratrol inhibited F. nucleatum-induced cell migration, decreasing the expression of SNAI1. CONCLUSIONS Resveratrol inhibited F. nucleatum-induced EMT by downregulating SNAI1, which may provide a target for OSCC treatment.
Collapse
Affiliation(s)
- Jie Min
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
| | - Chiho Mashimo
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
| | - Takayuki Nambu
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
| | - Hugo Maruyama
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
| | - Hiroki Takigawa
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
| | - Toshinori Okinaga
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| |
Collapse
|
11
|
Hao M, Jiang H, Zhao Y, Li C, Jiang J. Identification of potential biomarkers for aging diagnosis of mesenchymal stem cells derived from the aged donors. Stem Cell Res Ther 2024; 15:87. [PMID: 38520027 PMCID: PMC10960456 DOI: 10.1186/s13287-024-03689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The clinical application of human bone-marrow derived mesenchymal stem cells (MSCs) for the treatment of refractory diseases has achieved remarkable results. However, there is a need for a systematic evaluation of the quality and safety of MSCs sourced from donors. In this study, we sought to assess one potential factor that might impact quality, namely the age of the donor. METHODS We downloaded two data sets from each of two Gene Expression Omnibus (GEO), GSE39035 and GSE97311 databases, namely samples form young (< 65 years of age) and old (> 65) donor groups. Through, bioinformatics analysis and experimental validation to these retrieved data, we found that MSCs derived from aged donors can lead to differential expression of gene profiles compared with those from young donors, and potentially affect the function of MSCs, and may even induce malignant tumors. RESULTS We identified a total of 337 differentially expressed genes (DEGs), including two upregulated and eight downregulated genes from the databases of both GSE39035 and GSE97311. We further identified 13 hub genes. Six of them, TBX15, IGF1, GATA2, PITX2, SNAI1 and VCAN, were highly expressed in many human malignancies in Human Protein Atlas database. In the MSCs in vitro senescent cell model, qPCR analysis validated that all six hub genes were highly expressed in senescent MSCs. Our findings confirm that aged donors of MSCs have a significant effect on gene expression profiles. The MSCs from old donors have the potential to cause a variety of malignancies. These TBX15, IGF1, GATA2, PITX2, SNAI1, VCAN genes could be used as potential biomarkers to diagnosis aging state of donor MSCs, and evaluate whether MSCs derived from an aged donor could be used for therapy in the clinic. Our findings provide a diagnostic basis for the clinical use of MSCs to treat a variety of diseases. CONCLUSIONS Therefore, our findings not only provide guidance for the safe and standardized use of MSCs in the clinic for the treatment of various diseases, but also provide insights into the use of cell regeneration approaches to reverse aging and support rejuvenation.
Collapse
Affiliation(s)
- Miao Hao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, 130000, Changchun, Jilin, China
| | - Hongyu Jiang
- Life Spring AKY Pharmaceuticals, 130000, Changchun, Jilin, China
| | - Yuan Zhao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, 130000, Changchun, Jilin, China
| | - Chunyi Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, 130000, Changchun, Jilin, China.
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130000, Changchun, Jilin, China.
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, 130000, Changchun, Jilin, China.
| |
Collapse
|
12
|
Wu Q, Fu X, He X, Liu J, Li Y, Ou C. Experimental prognostic model integrating N6-methyladenosine-related programmed cell death genes in colorectal cancer. iScience 2024; 27:108720. [PMID: 38299031 PMCID: PMC10829884 DOI: 10.1016/j.isci.2023.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 02/02/2024] Open
Abstract
Colorectal cancer (CRC) intricacies, involving dysregulated cellular processes and programmed cell death (PCD), are explored in the context of N6-methyladenosine (m6A) RNA modification. Utilizing the TCGA-COADREAD/CRC cohort, 854 m6A-related PCD genes are identified, forming the basis for a robust 10-gene risk model (CDRS) established through LASSO Cox regression. qPCR experiments using CRC cell lines and fresh tissues was performed for validation. The CDRS served as an independent risk factor for CRC and showed significant associations with clinical features, molecular subtypes, and overall survival in multiple datasets. Moreover, CDRS surpasses other predictors, unveiling distinct genomic profiles, pathway activations, and associations with the tumor microenvironment. Notably, CDRS exhibits predictive potential for drug sensitivity, presenting a novel paradigm for CRC risk stratification and personalized treatment avenues.
Collapse
Affiliation(s)
- Qihui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaodan Fu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
| | - Yimin Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
| |
Collapse
|
13
|
Ma C, Tian Z, Wang D, Gao W, Qian L, Zang Y, Xu X, Jia J, Liu Z. Ubiquitin-specific Protease 35 Promotes Gastric Cancer Metastasis by Increasing the Stability of Snail1. Int J Biol Sci 2024; 20:953-967. [PMID: 38250150 PMCID: PMC10797686 DOI: 10.7150/ijbs.87176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Deubiquitinase (DUB) dysregulation is closely associated with multiple diseases, including tumors. In this study, we used data from The Cancer Genome Atlas and Gene Expression Omnibus databases to analyze the expression of 51 ubiquitin-specific proteases (USPs) in gastric cancer (GC) tissues and adjacent non-neoplastic tissues. The Kaplan-Meier Plotter database was used to analyze the association of the differentially expressed USPs with the overall survival of patients with GC. The results showed that five USPs (USP5, USP10, USP13, USP21, and USP35) were highly expressed in GC tissues and were associated with poor prognosis in patients with GC. Because the epithelial-mesenchymal transition enables epithelial cells to acquire mesenchymal features and contributes to poor prognosis, we investigated whether these USPs had regulatory effects on the key epithelial-mesenchymal transition transcription factor Snail1. Our results showed that USP35 exhibited the most significant regulation on Snail1. Overexpression of USP35 increased and its knockdown decreased Snail1 protein levels. Mechanistically, USP35 interacted with Snail1 and removed its polyubiquitinated chain, thereby increasing its stability. Furthermore, USP35 promoted the invasion and migration of GC cells depending on its DUB activity. USP35 knockdown exhibited the opposite effect. Snail1 depletion partially abrogated the biological effects of USP35. Experiments using nude mouse tail vein injections indicated that wild-type USP35, but not the catalytically inactive USP35-C450A mutant, dramatically enhanced cell colonization and tumorigenesis in the lungs of mice. In addition, USP35 positively correlated with Snail1 expression in clinical GC tissues. Helicobacter pylori infection increased USP35 and Snail1 expression levels. Altogether, we found that USP35 can deubiquitinate Snail1 and increase its expression, thereby contributing to the malignant progression of GC. Therefore, USP35 may serve as a viable target for GC treatment.
Collapse
Affiliation(s)
- Cunying Ma
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Zhuangfei Tian
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Dandan Wang
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Wenrong Gao
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Lilin Qian
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Yichen Zang
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Xia Xu
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Jihui Jia
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Zhifang Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| |
Collapse
|
14
|
Liu Y, Yin Z, Wang Y, Chen H. Exploration and validation of key genes associated with early lymph node metastasis in thyroid carcinoma using weighted gene co-expression network analysis and machine learning. Front Endocrinol (Lausanne) 2023; 14:1247709. [PMID: 38144565 PMCID: PMC10739373 DOI: 10.3389/fendo.2023.1247709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
Background Thyroid carcinoma (THCA), the most common endocrine neoplasm, typically exhibits an indolent behavior. However, in some instances, lymph node metastasis (LNM) may occur in the early stages, with the underlying mechanisms not yet fully understood. Materials and methods LNM potential was defined as the tumor's capability to metastasize to lymph nodes at an early stage, even when the tumor volume is small. We performed differential expression analysis using the 'Limma' R package and conducted enrichment analyses using the Metascape tool. Co-expression networks were established using the 'WGCNA' R package, with the soft threshold power determined by the 'pickSoftThreshold' algorithm. For unsupervised clustering, we utilized the 'ConsensusCluster Plus' R package. To determine the topological features and degree centralities of each node (protein) within the Protein-Protein Interaction (PPI) network, we used the CytoNCA plugin integrated with the Cytoscape tool. Immune cell infiltration was assessed using the Immune Cell Abundance Identifier (ImmuCellAI) database. We applied the Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine (SVM), and Random Forest (RF) algorithms individually, with the 'glmnet,' 'e1071,' and 'randomForest' R packages, respectively. Ridge regression was performed using the 'oncoPredict' algorithm, and all the predictions were based on data from the Genomics of Drug Sensitivity in Cancer (GDSC) database. To ascertain the protein expression levels and subcellular localization of genes, we consulted the Human Protein Atlas (HPA) database. Molecular docking was carried out using the mcule 1-click Docking server online. Experimental validation of gene and protein expression levels was conducted through Real-Time Quantitative PCR (RT-qPCR) and immunohistochemistry (IHC) assays. Results Through WGCNA and PPI network analysis, we identified twelve hub genes as the most relevant to LNM potential from these two modules. These 12 hub genes displayed differential expression in THCA and exhibited significant correlations with the downregulation of neutrophil infiltration, as well as the upregulation of dendritic cell and macrophage infiltration, along with activation of the EMT pathway in THCA. We propose a novel molecular classification approach and provide an online web-based nomogram for evaluating the LNM potential of THCA (http://www.empowerstats.net/pmodel/?m=17617_LNM). Machine learning algorithms have identified ERBB3 as the most critical gene associated with LNM potential in THCA. ERBB3 exhibits high expression in patients with THCA who have experienced LNM or have advanced-stage disease. The differential methylation levels partially explain this differential expression of ERBB3. ROC analysis has identified ERBB3 as a diagnostic marker for THCA (AUC=0.89), THCA with high LNM potential (AUC=0.75), and lymph nodes with tumor metastasis (AUC=0.86). We have presented a comprehensive review of endocrine disruptor chemical (EDC) exposures, environmental toxins, and pharmacological agents that may potentially impact LNM potential. Molecular docking revealed a docking score of -10.1 kcal/mol for Lapatinib and ERBB3, indicating a strong binding affinity. Conclusion In conclusion, our study, utilizing bioinformatics analysis techniques, identified gene modules and hub genes influencing LNM potential in THCA patients. ERBB3 was identified as a key gene with therapeutic implications. We have also developed a novel molecular classification approach and a user-friendly web-based nomogram tool for assessing LNM potential. These findings pave the way for investigations into the mechanisms underlying differences in LNM potential and provide guidance for personalized clinical treatment plans.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of General Surgery, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), Hefei, Anhui, China
| | - Zhenglang Yin
- Department of General Surgery, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), Hefei, Anhui, China
| | - Yao Wang
- Digestive Endoscopy Department, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haohao Chen
- Department of General Surgery, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), Hefei, Anhui, China
| |
Collapse
|
15
|
Kielbik M, Przygodzka P, Szulc-Kielbik I, Klink M. Snail transcription factors as key regulators of chemoresistance, stemness and metastasis of ovarian cancer cells. Biochim Biophys Acta Rev Cancer 2023; 1878:189003. [PMID: 37863122 DOI: 10.1016/j.bbcan.2023.189003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Ovarian cancer is one of the deadliest gynecological malignancies among women. The reason for this outcome is the frequent acquisition of cancer cell resistance to platinum-based drugs and unresponsiveness to standard therapy. It has been increasingly recognized that the ability of ovarian cancer cells to adopt more aggressive behavior (mainly through the epithelial-to-mesenchymal transition, EMT), as well as dedifferentiation into cancer stem cells, significantly affects drug resistance acquisition. Transcription factors in the Snail family have been implicated in ovarian cancer chemoresistance and metastasis. In this article, we summarize published data that reveal Snail proteins not only as key inducers of the EMT in ovarian cancer but also as crucial links between the acquisition of ovarian cancer stem properties and spheroid formation. These Snail-related characteristics significantly affect the ovarian cancer cell response to treatment and are related to the acquisition of chemoresistance.
Collapse
Affiliation(s)
- Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Patrycja Przygodzka
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Izabela Szulc-Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland.
| |
Collapse
|
16
|
Luo Y, Zhu Q, Xiang S, Wang Q, Li J, Chen X, Yan W, Feng J, Zu X. Downregulated circPOKE promotes breast cancer metastasis through activation of the USP10-Snail axis. Oncogene 2023; 42:3236-3251. [PMID: 37717099 DOI: 10.1038/s41388-023-02823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer-related death among females. Metastasis accounts for the majority of BC related deaths. One feasible strategy to solve this challenging problem is to disrupt the capabilities required for tumor metastasis. Herein, we verified a novel metastasis suppressive circRNA, circPOKE in BC. circPOKE was downregulated in primary and metastatic BC tissues and overexpression of circPOKE inhibited the metastatic potential but not the proliferative ability of BC cells in vitro and in vivo. Mechanistically, circPOKE competitively binds to USP10, and reduces its binding to Snail, a key transcriptional regulator of EMT, thereby inhibiting Snail stability via the protein-ubiquitination degradation pathway. In addition, we found that circPOKE could be secreted into the extracellular space via exosomes and that exosome-carried circPOKE significantly inhibited the invasive capabilities of BC cells in vitro and in vivo. Furthermore, the levels of circPOKE, USP10 and Snail are clinically relevant in BC, suggesting that circPOKE may be used as a potential therapeutic target for patients with BC metastasis.
Collapse
Affiliation(s)
- Yan Luo
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Qingyun Zhu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Shasha Xiang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Qi Wang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jun Li
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Xiguang Chen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Wen Yan
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jianbo Feng
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
17
|
Zhuang MQ, Jiang XL, Liu WD, Xie QH, Wang P, Dong LW, Hu HP, Zhou HB, Zhou YB. Aquaporin 1 is a prognostic marker and inhibits tumour progression through downregulation of Snail expression in intrahepatic cholangiocarcinoma. Dig Liver Dis 2023; 55:1133-1140. [PMID: 36642562 DOI: 10.1016/j.dld.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Recently, some studies have suggested a link between AQP1 and cancer progression. AIMS The aim of the present study was to investigate the influence of AQP1 on the clinicopathology and prognosis of intrahepatic cholangiocarcinoma (ICC) patients. METHODS We retrospectively detected the expression of AQP1 protein in 307 patients with ICC who underwent partial hepatectomy. Western blot analysis was used to detect AQP1 protein levels in stable AQP1 overexpression and knockdown cell lines. The influence of AQP1 on the invasion and metastasis ability of ICC cells was assessed by wound-healing and Transwell assays in vitro as well as by a splenic liver metastasis model in vivo. RESULTS Positive membranous AQP1 expression was identified in 34.2% (105/307) of the ICC specimens. Survival data revealed that positive AQP1 expression was significantly associated with favourable disease-free survival (DFS) and overall survival (OS) (p = 0.0290 and p = 0003, respectively). Moreover, high AQP1 expression inhibited the invasion and migration of ICC cells in vitro as well as inhibited liver metastasis in nude mice. Mechanistically, high AQP1 expression in ICC cells increased the levels of E-cadherin but decreased the levels of the Snail transcription factor. CONCLUSIONS AQP1 expression is associated with a favourable prognosis in ICC patients. AQP1 inhibits ICC cell invasion, metastasis, and epithelial-mesenchymal transition (EMT) through downregulation of Snail expression.
Collapse
Affiliation(s)
- Meng-Qi Zhuang
- Department of Digestive Medicine, Second Affiliated Hospital, Anhui Medical College, Anhui 230000, China; Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Xiao-Lan Jiang
- Department of Digestive Medicine, First people's Hospital of Honghe autonomous Prefecture, Yunnan Province 661199, China
| | - Wen-Di Liu
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Qiao-Hua Xie
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Peng Wang
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Li-Wei Dong
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - He-Ping Hu
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Hua-Bang Zhou
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China.
| | - Yu-Bao Zhou
- Department of Digestive Medicine, Second Affiliated Hospital, Anhui Medical College, Anhui 230000, China.
| |
Collapse
|
18
|
Xiao K, Peng S, Lu J, Zhou T, Hong X, Chen S, Liu G, Li H, Huang J, Chen X, Lin T. UBE2S interacting with TRIM21 mediates the K11-linked ubiquitination of LPP to promote the lymphatic metastasis of bladder cancer. Cell Death Dis 2023; 14:408. [PMID: 37422473 PMCID: PMC10329682 DOI: 10.1038/s41419-023-05938-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
Lymphatic metastasis is the most common pattern of bladder cancer (BCa) metastasis and has an extremely poor prognosis. Emerging evidence shows that ubiquitination plays crucial roles in various processes of tumors, including tumorigenesis and progression. However, the molecular mechanisms underlying the roles of ubiquitination in the lymphatic metastasis of BCa are largely unknown. In the present study, through bioinformatics analysis and validation in tissue samples, we found that the ubiquitin-conjugating E2 enzyme UBE2S was positively correlated with the lymphatic metastasis status, high tumor stage, histological grade, and poor prognosis of BCa patients. Functional assays showed that UBE2S promoted BCa cell migration and invasion in vitro, as well as lymphatic metastasis in vivo. Mechanistically, UBE2S interacted with tripartite motif containing 21 (TRIM21) and jointly induced the ubiquitination of lipoma preferred partner (LPP) via K11-linked polyubiquitination but not K48- or K63-linked polyubiquitination. Moreover, LPP silencing rescued the anti-metastatic phenotypes and inhibited the epithelial-mesenchymal transition of BCa cells after UBE2S knockdown. Finally, targeting UBE2S with cephalomannine distinctly inhibited the progression of BCa in cell lines and human BCa-derived organoids in vitro, as well as in a lymphatic metastasis model in vivo, without significant toxicity. In conclusion, our study reveals that UBE2S, by interacting with TRIM21, degrades LPP through K11-linked ubiquitination to promote the lymphatic metastasis of BCa, suggesting that UBE2S represents a potent and promising therapeutic target for metastatic BCa.
Collapse
Affiliation(s)
- Kanghua Xiao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China
| | - Junlin Lu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China
| | - Ting Zhou
- Biobank of Sun Yat-sen University Cancer Center, Guangzhou, 510120, Guangdong, PR China
| | - Xuwei Hong
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| | - Siting Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China
| | - Guangyao Liu
- School of Medicine, South China University of Technology, Guangzhou, 510120, Guangdong, PR China
| | - Hong Li
- BioMed Laboratory, Guangzhou Jingke Biotech Group, Guangzhou, 510120, Guangdong, PR China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510120, Guangdong, PR China.
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510120, Guangdong, PR China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, PR China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, 510120, Guangdong, PR China.
| |
Collapse
|
19
|
Wen T, Guo S. Bioinformatics analysis of the prognostic and clinical value of senescence-related gene signature in papillary thyroid cancer. Medicine (Baltimore) 2023; 102:e33934. [PMID: 37266618 PMCID: PMC10238039 DOI: 10.1097/md.0000000000033934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
Cellular senescence can both inhibit and promote the occurrence of tumors, so how to apply cellular senescence therapy is of great importance. However, it is worth to be analyzed from multiple perspectives by researchers, especially for tumors with a high incidence like papillary thyroid cancer (PTC). We obtained senescence-related differentially expressed genes (SRGs) from The Cancer Genome Atlas (TCGA) and gene expression omnibus database. Enrichment analysis of SRGs was performed via gene ontology and Kyoto Encyclopedia of Genes and Genomes. Prognostic model was constructed by univariate and multivariate Cox regression analysis. Evaluation of clinical value was analyzed via Receiver operating characteristic curve, Kaplan-Meier curve and Cox regression. Immune infiltrates were investigated through ESTIMATE and single-sample gene set enrichment analysis. Immunohistochemical images were obtained from The Human Protein Atlas. Twenty-seven SRGs from TCGA cohort and gene expression omnibus datasets were found. These genes are mainly concentrated in senescence-related terms and pathways, including "DNA damage response, signal transduction by p53 class mediator," "signal transduction in response to DNA damage," "p53 signaling pathway" and "Endocrine resistance." Based on SRGs, prognostic model was constructed by E2F transcription factor 1, snail family transcriptional repressor 1 and phospholipase A2 receptor 1. PTC patients were divided into a low-risk group and a high-risk group according to the median value (cutoff point = 0.969) of risk score in TCGA cohort. The diagnostic efficiency of this model is good (area under curve = 0.803, 0.809, and 0.877 at 1, 2, and 3 years in TCGA; area under curve = 0.964, 0.813 in GPL570 and GPL96), particularly advanced grade, state and tumor mutation burden, such as Stage III - IV, T3 - 4, H-tumor mutation burden. Furthermore, High-risk group was significantly associated with poor prognosis and more immune infiltration. Our prognostic model has a good diagnostic and prognostic efficacy, and there is a certain clinical application value. In addition, we provide the first new insight into the genesis, diagnosis, prognosis and treatment of PTC based on senescence-related genes.
Collapse
Affiliation(s)
- Tingting Wen
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shuang Guo
- Department of Internal Medicine-Oncology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Brown BA, Lazzara MJ. Single-cell RNA sequencing reveals microenvironment context-specific routes for epithelial-mesenchymal transition in pancreas cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542969. [PMID: 37398348 PMCID: PMC10312528 DOI: 10.1101/2023.05.30.542969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
In the PDAC tumor microenvironment, multiple factors initiate the epithelial-mesenchymal transition (EMT) that occurs heterogeneously among transformed ductal cells, but it is unclear if different drivers promote EMT through common or distinct signaling pathways. Here, we use single-cell RNA sequencing (scRNA-seq) to identify the transcriptional basis for EMT in pancreas cancer cells in response to hypoxia or EMT-inducing growth factors. Using clustering and gene set enrichment analysis, we find EMT gene expression patterns that are unique to the hypoxia or growth factor conditions or that are common between them. Among the inferences from the analysis, we find that the FAT1 cell adhesion protein is enriched in epithelial cells and suppresses EMT. Further, the receptor tyrosine kinase AXL is preferentially expressed in hypoxic mesenchymal cells in a manner correlating with YAP nuclear localization, which is suppressed by FAT1 expression. AXL inhibition prevents EMT in response to hypoxia but not growth factors. Relationships between FAT1 or AXL expression with EMT were confirmed through analysis of patient tumor scRNA-seq data. Further exploration of inferences from this unique dataset will reveal additional microenvironment context-specific signaling pathways for EMT that may represent novel drug targets for PDAC combination therapies.
Collapse
|
21
|
Casamassimi A, Ciccodicola A, Rienzo M. Transcriptional Regulation and Its Misregulation in Human Diseases. Int J Mol Sci 2023; 24:ijms24108640. [PMID: 37239985 DOI: 10.3390/ijms24108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Transcriptional regulation is a critical biological process that allows the cell or an organism to respond to a variety of intra- and extracellular signals, to define cell identity during development, to maintain it throughout its lifetime, and to coordinate cellular activity [...].
Collapse
Affiliation(s)
- Amelia Casamassimi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 80138 Naples, Italy
| | - Alfredo Ciccodicola
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino 111, 80131 Naples, Italy
- Department of Science and Technology, University of Naples "Parthenope", 80143 Naples, Italy
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
22
|
Ida S, Takahashi H, Tada H, Mito I, Matsuyama T, Chikamatsu K. Dynamic changes of the EMT spectrum between circulating tumor cells and the tumor microenvironment in human papillomavirus-positive head and neck squamous cell carcinoma. Oral Oncol 2023; 137:106296. [PMID: 36571985 DOI: 10.1016/j.oraloncology.2022.106296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) differs in terms of cellular and molecular biological characteristics from HPV-negative HNSCC. However, differences in circulating tumor cells (CTCs) between HPV-positive and -negative HNSCC remain unclear. MATERIALS AND METHODS We first analyzed eight epithelial-mesenchymal transition (EMT)-related genes (VIM, CDH1, CDH2, SNAI1, SNAI2, TWIST1, ZEB1, and ZEB2) using The Cancer Genome Atlas (TCGA) database. Next, we isolated CTCs from patients with HNSCC using CD45-negative selection and expression analysis of epithelial-related genes (EPCAM, EGFR, and MET) by RT-qPCR. CTC-positive samples were further analyzed for EMT-related genes. In addition, we investigated the proportion of circulating T cell subsets and CD38+ T cells using flow cytometry and their involvement in CTCs. RESULTS Compared with HPV-negative HNSCC, expression of CDH1, SNAI1, SNAI2, TWIST1, and ZEB1 was downregulated in HPV-positive HNSCC, as determined by TCGA analysis. CTCs were detected in 19 (52.8 %) of 36 HPV-positive and 26 (68.4 %) of 38 HPV-negative patients with HNSCC. EPCAM-positive and MET-positive CTCs were significantly more frequent in patients with HPV-negative HNSCC. HPV-positive patients with HNSCC exhibited significantly high SNAI1 and ZEB2 expression in CTCs. Interestingly, differences in SNAI1 expression levels differed markedly between CTCs and TCGA based on HPV status. Moreover, HPV-positive patients with HNSCC exhibiting SNAI1-high CTCs showed a superior prognosis and a lower proportion of CD38+ T cells than those with SNAI1-low CTCs. CONCLUSION Our results provide novel insights into the EMT-MET spectrum of CTCs and may contribute to the development of prognostic biomarkers for HPV-positive HNSCC.
Collapse
Affiliation(s)
- Shota Ida
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Japan
| | - Hideyuki Takahashi
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Japan
| | - Hiroe Tada
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Japan
| | - Ikko Mito
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Japan
| | - Toshiyuki Matsuyama
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Japan
| | - Kazuaki Chikamatsu
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Japan.
| |
Collapse
|
23
|
Long F, Li S, Xu Y, Liu M, Zhang X, Zhou J, Chen Y, Rong Y, Meng X, Wang F. Dynamic gene screening enabled identification of a 10-gene panel for early detection and progression assessment of gastric cancer. Comput Struct Biotechnol J 2022; 21:677-687. [PMID: 36659923 PMCID: PMC9826902 DOI: 10.1016/j.csbj.2022.12.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Early diagnosis and progression assessment are critical for the timely detection and treatment of gastric cancer (GC) patients. Identification of diagnostic biomarkers for early detection of GC represents an unmet clinical need, and how these markers further influence GC progression is explored rarely. We performed dynamic gene screening based on high-throughput data analysis from patients with precancerous lesions and early gastric cancer (EGC) and identified a 10-gene panel by the lasso regression model. This panel demonstrated good diagnostic performance in TCGA (AUC = 0.95, sensitivity = 86.67 %, specificity = 90.63 %) and GEO (AUC = 0.84, sensitivity = 91.67 %, specificity = 78.13 %) cohorts. Moreover, three GC subtypes were clustered based on this panel, in which cluster 2 (C2) demonstrated the highest tumor progression level with a high expression of 10 genes, showing a decreased tumor mutation burden, significantly enriched epithelial-mesenchymal transition hallmark and increased immune exclusion/exhausted features. Finally, the cell localization of these panel genes was explored in scRNA-seq data based on more than 40,000 cells. The 10-gene panel is expected to be a new clinical early detection signature for GC and may aid in progression assessment and personalized treatment of patients.
Collapse
Affiliation(s)
- Fei Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China,Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuo Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China,Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yaqi Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Liu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junting Zhou
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yiyi Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Rong
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China,Forensic Center of Justice, Zhongnan Hospital of Wuhan University, Wuhan China,Corresponding authors at: Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xiangyu Meng
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China,Corresponding authors at: Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China,Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China,Corresponding author at: Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
24
|
An T, Lu Y, Gong Z, Wang Y, Su C, Tang G, Hou J. Research Progress for Targeting Deubiquitinases in Gastric Cancers. Cancers (Basel) 2022; 14:cancers14235831. [PMID: 36497313 PMCID: PMC9735992 DOI: 10.3390/cancers14235831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Gastric cancers (GCs) are malignant tumors with a high incidence that threaten global public health. Despite advances in GC diagnosis and treatment, the prognosis remains poor. Therefore, the mechanisms underlying GC progression need to be identified to develop prognostic biomarkers and therapeutic targets. Ubiquitination, a post-translational modification that regulates the stability, activity, localization, and interactions of target proteins, can be reversed by deubiquitinases (DUBs), which can remove ubiquitin monomers or polymers from modified proteins. The dysfunction of DUBs has been closely linked to tumorigenesis in various cancer types, and targeting certain DUBs may provide a potential option for cancer therapy. Multiple DUBs have been demonstrated to function as oncogenes or tumor suppressors in GC. In this review, we summarize the DUBs involved in GC and their associated upstream regulation and downstream mechanisms and present the benefits of targeting DUBs for GC treatment, which could provide new insights for GC diagnosis and therapy.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanting Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250353, China
| | - Zhaoqi Gong
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yongtao Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chen Su
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Guimei Tang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (G.T.); (J.H.)
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
- Correspondence: (G.T.); (J.H.)
| |
Collapse
|
25
|
Functional characterization of FBXL7 as a novel player in human cancers. Cell Death Dis 2022; 8:342. [PMID: 35906197 PMCID: PMC9338262 DOI: 10.1038/s41420-022-01143-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
F-box and leucine-rich repeat protein 7 (FBXL7), an F-box protein responsible for substrate recognition by the SKP1-Cullin-1-F-box (SCF) ubiquitin ligases, plays an emerging role in the regulation of tumorigenesis and tumor progression. FBXL7 promotes polyubiquitylation and degradation of diverse substrates and is involved in many biological processes, including apoptosis, cell proliferation, cell migration and invasion, tumor metastasis, DNA damage, glucose metabolism, planar cell polarity, and drug resistance. In this review, we summarize the downstream substrates and upstream regulators of FBXL7. We then discuss its role in tumorigenesis and tumor progression as either an oncoprotein or a tumor suppressor, and further describe its aberrant expression and association with patient survival in human cancers. Finally, we provide future perspectives on validating FBXL7 as a cancer biomarker for diagnosis and prognosis and/or as a potential therapeutic target for anticancer treatment.
Collapse
|
26
|
Pouliquen DL, Boissard A, Henry C, Coqueret O, Guette C. Curcuminoids as Modulators of EMT in Invasive Cancers: A Review of Molecular Targets With the Contribution of Malignant Mesothelioma Studies. Front Pharmacol 2022; 13:934534. [PMID: 35873564 PMCID: PMC9304619 DOI: 10.3389/fphar.2022.934534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Curcuminoids, which include natural acyclic diarylheptanoids and the synthetic analogs of curcumin, have considerable potential for fighting against all the characteristics of invasive cancers. The epithelial-to-mesenchymal transition (EMT) is a fundamental process for embryonic morphogenesis, however, the last decade has confirmed it orchestrates many features of cancer invasiveness, such as tumor cell stemness, metabolic rewiring, and drug resistance. A wealth of studies has revealed EMT in cancer is in fact driven by an increasing number of parameters, and thus understanding its complexity has now become a cornerstone for defining future therapeutic strategies dealing with cancer progression and metastasis. A specificity of curcuminoids is their ability to target multiple molecular targets, modulate several signaling pathways, modify tumor microenvironments and enhance the host’s immune response. Although the effects of curcumin on these various parameters have been the subject of many reviews, the role of curcuminoids against EMT in the context of cancer have never been reviewed so far. This review first provides an updated overview of all EMT drivers, including signaling pathways, transcription factors, non-coding RNAs (ncRNAs) and tumor microenvironment components, with a special focus on the most recent findings. Secondly, for each of these drivers the effects of curcumin/curcuminoids on specific molecular targets are analyzed. Finally, we address some common findings observed between data reported in the literature and the results of investigations we conducted on experimental malignant mesothelioma, a model of invasive cancer representing a useful tool for studies on EMT and cancer.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
- *Correspondence: Daniel L. Pouliquen,
| | - Alice Boissard
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Cécile Henry
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Olivier Coqueret
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Catherine Guette
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| |
Collapse
|
27
|
Xia Y, Zha J, Curull V, Sánchez-Font A, Guitart M, Rodríguez-Fuster A, Aguiló R, Barreiro E. Gene expression profile of epithelial-mesenchymal transition in tumors of patients with nsclc: the influence of COPD. ERJ Open Res 2022; 8:00105-2022. [PMID: 35854873 PMCID: PMC9289374 DOI: 10.1183/23120541.00105-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is involved in the pathophysiology of lung cancer (LC) and COPD, and the latter is an important risk factor for LC. We hypothesised that the EMT gene expression profile and signalling cascade may differ in LC patients with COPD from those with no respiratory diseases. In lung tumour specimens obtained through video-assisted thoracoscopic surgery from LC (n=20, control group) and LC-COPD patients (n=30), gene expression (quantitative real-time PCR amplification) of EMT markers SMAD3, SMAD4, ZEB2, TWIST1, SNAI1, ICAM1, VIM, CDH2, MMP1 and MMP9 was detected. In lung tumours of LC-COPD compared to LC patients, gene expression of SMAD3, SMAD4, ZEB2 and CDH2 significantly declined, while no significant differences were detected for the other analysed markers. A significant correlation was found between pack-years (smoking burden) and SMAD3 gene expression among LC-COPD patients. LC-COPD patients exhibited mild-to-moderate airway obstruction and a significant reduction in diffusion capacity compared to LC patients. In lung tumour samples of patients with COPD, several markers of EMT expression, namely SMAD3, SMAD4, ZEB2 and CDH2, were differentially expressed suggesting that these markers are likely to play a role in the regulation of EMT in patients with this respiratory disease. Cigarette smoke did not seem to influence the expression of EMT markers in this study. These results have potential clinical implications in the management of patients with LC, particularly in those with underlying respiratory diseases. The downregulation of the epithelial–mesenchymal transition repressor SMAD pathway may favour a pro-tumoural micro-environment in patients with chronic airway diseases, namely COPD, which could be targeted therapeuticallyhttps://bit.ly/39oXnoG
Collapse
|
28
|
Long S, Wang J, Weng F, Xiang D, Sun G. Extracellular Matrix Protein 1 Regulates Colorectal Cancer Cell Proliferative, Migratory, Invasive and Epithelial-Mesenchymal Transition Activities Through the PI3K/AKT/GSK3β/Snail Signaling Axis. Front Oncol 2022; 12:889159. [PMID: 35574325 PMCID: PMC9093678 DOI: 10.3389/fonc.2022.889159] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
Abstract
In prior reports, extracellular matrix protein 1 (ECM1) upregulation has been reported in colorectal cancer (CRC) patient tumor tissues, and has been suggested to be related to the metastatic progression of CRC, although the underlying mechanisms have yet to be clarified. In this study, we found that ECM1 was overexpressed in both CRC tissues and cell lines. Upregulation of ECM1 was correlated with tumor size, lymph node status and TNM stage in CRC patients. Knocking down ECM1 suppressed CRC cell growth, migration and invasion, in addition to reducing the expression of Vimentin and increasing E-cadherin expression. The overexpression of ECM1, in contrast, yielded the opposite phenotypic outcomes while also promoting the expression of p-AKT, p-GSK3β, and Snail, which were downregulated when ECM1 was knocked down. Treatment with LY294002 and 740 Y-P reversed the impact upregulation and downregulation of ECM1 on CRC cell metastasis and associated EMT induction. In vivo analyses confirmed that ECM1 overexpression was able to enhance EMT induction and CRC tumor progression. In conclusion, ECM1 influences CRC development and progression in an oncogenic manner, and regulates CRC metastasis and EMT processes via the PI3K/AKT/GSK3β/Snail signaling axis.
Collapse
Affiliation(s)
- Sirui Long
- Departments of Oncology, Chongqing University Jiangjin Hospital, Chongqing, China.,Departments of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Jie Wang
- Departments of Oncology, Chongqing University Jiangjin Hospital, Chongqing, China.,Departments of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Fanbin Weng
- Departments of Oncology, Chongqing University Jiangjin Hospital, Chongqing, China.,Departments of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Debing Xiang
- Departments of Oncology, Chongqing University Jiangjin Hospital, Chongqing, China.,Departments of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Guiyin Sun
- Departments of Oncology, Chongqing University Jiangjin Hospital, Chongqing, China.,Departments of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| |
Collapse
|
29
|
Ma X, Qi W, Yang F, Pan H. Deubiquitinase JOSD1 promotes tumor progression via stabilizing Snail in lung adenocarcinoma. Am J Cancer Res 2022; 12:2323-2336. [PMID: 35693075 PMCID: PMC9185601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023] Open
Abstract
Accumulating evidence suggests that the deubiquitinase JOSD1 accounts for aggressiveness and unfavorable prognosis in multiple human cancers. But, the significance of JOSD1 in lung adenocarcinoma (LUAD) is elusive. We established that JOSD1 was aberrantly overexpressed in LUAD tissues, relative to normal tissues. Elevated JOSD1 levels in LUAD tissues positively related to advanced clinicopathological characteristics and poor overall survival (OS) in LUAD patients. Furthermore, we found that JOSD1 knockdown suppressed tumor cell proliferation and metastasis, whereas overexpression of JOSD1 led to opposite phenotypes. Mechanistically, JOSD1 stabilized Snail protein through deubiquitination, which promotes the epithelial-to-mesenchymal transition (EMT) process. Indeed, JOSD1 promoted tumor cell invasion as well as metastasis on the dependence of Snail. The protein expression analysis of LUAD tissues indicated that JOSD1 positively correlated with Snail. Moreover, JOSD1 and Snail co-overexpression had the worst prognosis in LUAD patients. Overall, these results demonstrated that JOSD1 was significantly overexpressed in LUAD and stabilized Snail via deubiquitination to promote LUAD metastasis.
Collapse
Affiliation(s)
- Xingjie Ma
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Jiaxing UniversityJiaxing 314001, Zhejiang, China
| | - Weibo Qi
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Jiaxing UniversityJiaxing 314001, Zhejiang, China
| | - Fan Yang
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Jiaxing UniversityJiaxing 314001, Zhejiang, China
| | - Huan Pan
- Department of Central Laboratory, First Affiliated Hospital of Jiaxing UniversityJiaxing 314001, Zhejiang, China
| |
Collapse
|