1
|
Liu Z, Lin X, Tu Y, Zhou Y, Huang M, Fang C. MALAT1 promotes microglia activation and neuronal apoptosis through via the miR-124-3p/ SGK1 axis mediating experimental autoimmune encephalomyelitis disease progression in mice. Int Immunopharmacol 2025; 152:114417. [PMID: 40090080 DOI: 10.1016/j.intimp.2025.114417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/18/2025]
Abstract
Multiple sclerosis (MS) significantly impairs quality of life due to its high disability rate. Recent research indicates that the long non-coding RNA Malat1 is specifically upregulated in MS and is critically involved in mediating neuroinflammatory responses and microglial activation. This study explores the function and mechanism of the Malat1/miR-124-3p/Sgk1 pathway in MS and microglia activation. Initially, the study established an experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice using MOG35-55. Subsequently, it confirmed a correlation between the expression of Malat1 in the L5 spinal cord and disease progression and microglia numbers. Further, cell transfection and lentiviral infection of BV2 microglia were performed, followed by an assessment of interactions within the Malat1/miR-124-3p/Sgk1 pathway. Western blotting was used to detect changes in CD68 and IκBα/NFκB phosphorylation, key indicators of microglia activation. Furthermore, co-incubation of BV2 and HT-22 mouse hippocampal neuronal cells revealed that increased Malat1 expression enhances BV2's role in promoting HT-22 cell apoptosis under 200 ng/mL LPS. Both miR-124-3p inhibition and Sgk1 overexpression replicated these effects. Dual luciferase reporter assays confirmed that Malat1 absorbed miR-124-3p to upregulate Sgk1 expression. Malat1 overexpression in EAE mice led to an increase in TUNEL-positive cells and upregulated CD68 and phosphorylated IκBα/NFκB proteins. Conversely, intrathecal silencing of Malat1 reduced these protein expression changes. This study elucidates Malat1's role in MS, offering critical insights for developing future therapeutic strategies.
Collapse
Affiliation(s)
- Zhengxia Liu
- Department of Neurology, Women and Children's Hospital Affiliated to Ningbo University, Ningbo 315012, China
| | - Xiang Lin
- Department of Traditional Chinese Medicine, Women and Children's Hospital Affiliated to Ningbo University, Ningbo 315012, China
| | - Youquan Tu
- Department of Neurology, Women and Children's Hospital Affiliated to Ningbo University, Ningbo 315012, China
| | - Yun Zhou
- Department of Neurology, Women and Children's Hospital Affiliated to Ningbo University, Ningbo 315012, China
| | - Minghai Huang
- Department of Neurology, Women and Children's Hospital Affiliated to Ningbo University, Ningbo 315012, China
| | - Chunyan Fang
- Department of Neurology, Women and Children's Hospital Affiliated to Ningbo University, Ningbo 315012, China.
| |
Collapse
|
2
|
Xu X, Lu F, Yu D, Wang Y, Chen P, Hu W, Wo J, Jia S, Liu S. Cortex Dictamni induces retinitis pigmentosa in zebrafish by inhibiting pde6a post-transcriptional activity via mmu-mir-6240-p3_2. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119282. [PMID: 39716511 DOI: 10.1016/j.jep.2024.119282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cortex Dictamni (CD) is the dried root skin of Dictamnus dasycarpus Turcz, widely used in the field of traditional Chinese medicine. Recent adverse reactions to CD limited the clinical application in combination with other traditional Chinese medicines. AIM OF THE STUDY To investigate the retinitis pigmentosa (RP) effects of CD using the zebrafish model and elucidate the underlying molecular mechanism of CD-induced RP in zebrafish. MATERIALS AND METHODS The 3-dpf zebrafish larvae were divided into the control group and the CD group. RNA sequencing was conducted, followed by qRT-PCR to validate the expression of miRNAs and mRNAs. The dual luciferase reporter assay confirmed the interaction between mmu-mir-6240-p3_2 and pde6a. HT22 cells were transfected, treated with CD, and then evaluated for migration, invasion, malondialdehyde levels, superoxide dismutase activity, and acetylcholine activity. RESULTS The results showed 6228 differentially expressed genes and 66 miRNAs differentially expressed in zebrafish exposed to CD. The person correlation coefficient results showed that mmu-mir-6240-p3_2 had the highest correlation coefficient with pde6a, indicating a negative regulatory relationship. Furthermore, the results of dual luciferase reporter gene further showed that pde6a gene was the direct target of mmu-mir-6240-p3_2. Cell experiment results showed that inhibiting mir-6240-p3_2 can upregulate pde6a expression, alleviate HT22 cell injury, and reverse the inhibition of cell migration and invasion induced by CD. CONCLUSIONS CD induces RP in zebrafish by inhibiting pde6a post-transcriptional activity via mmu-mir-6240-p3_2. These findings have important implications for understanding the potential side effects of CD and for developing safer therapeutic strategies involving traditional Chinese medicines.
Collapse
Affiliation(s)
- Xiaomin Xu
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Fang Lu
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Donghua Yu
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Pingping Chen
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Wenkai Hu
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Jiameixue Wo
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Suxia Jia
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Shumin Liu
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China.
| |
Collapse
|
3
|
Simula ER, Jasemi S, Paulus K, Sechi LA. Upregulation of microRNAs correlates with downregulation of HERV-K expression in Parkinson's disease. J Neurovirol 2024; 30:550-555. [PMID: 39424758 PMCID: PMC11846710 DOI: 10.1007/s13365-024-01234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Human endogenous retroviruses (HERVs) involvement in neurological diseases has been extensively documented, although the etiology of HERV reactivation remains unclear. MicroRNAs represent one of the potential regulatory mechanisms of HERV reactivation. We identified fourteen microRNAs predicted to bind the HERV-K transcript, and subsequently analyzed for their gene expression levels alongside those of HERV-K. We documented an increased expression of four microRNAs in patients with Parkinson's disease compared to healthy controls, which correlated with a downregulation of HERV-K transcripts. We hypothesize that specific microRNAs may bind to HERV-K transcripts, leading to its downregulation.
Collapse
Affiliation(s)
- Elena Rita Simula
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy
| | - Somaye Jasemi
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy
| | - Kay Paulus
- Servizio di neuroabilitazione, Azienda Ospedaliera Universitaria Sassari, Sassari, Italy
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy.
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, Sassari, Italy.
| |
Collapse
|
4
|
Chen Y, Vats A, Xi Y, Wolf-Johnston A, Clinger O, Arbuckle R, Dermond C, Li J, Stolze D, Sahel JA, Jackson E, Birder L. Oral 8-aminoguanine against age-related retinal degeneration. RESEARCH SQUARE 2024:rs.3.rs-4022389. [PMID: 38765984 PMCID: PMC11100887 DOI: 10.21203/rs.3.rs-4022389/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Visual decline in the elderly is often attributed to retinal aging, which predisposes the tissue to pathologies such as age-related macular degeneration. Currently, effective oral pharmacological interventions for retinal degeneration are limited. We present a novel oral intervention, 8-aminoguanine (8-AG), targeting age-related retinal degeneration, utilizing the aged Fischer 344 rat model. A low-dose 8-AG regimen (5 mg/kg body weight) via drinking water, beginning at 22 months for 8 weeks, demonstrated significant retinal preservation. This was evidenced by increased retinal thickness, improved photoreceptor integrity, and enhanced electroretinogram responses. 8-AG effectively reduced apoptosis, oxidative damage, and microglial/macrophage activation associated with aging retinae. Age-induced alterations in the retinal purine metabolome, characterized by elevated levels of inosine, hypoxanthine, and xanthine, were partially mitigated by 8-AG. Transcriptomics highlighted 8-AG's anti-inflammatory effects on innate and adaptive immune responses. Extended treatment to 17 weeks further amplified the retinal protective effects. Moreover, 8-AG showed temporary protective effects in the RhoP23H/+ mouse model of retinitis pigmentosa, reducing active microglia/macrophages. Our study positions 8-AG as a promising oral agent against retinal aging. Coupled with previous findings in diverse disease models, 8-AG emerges as a promising anti-aging compound with the capability to reverse common aging hallmarks.
Collapse
|
5
|
Battaglia S, Avenanti A, Vécsei L, Tanaka M. Neural Correlates and Molecular Mechanisms of Memory and Learning. Int J Mol Sci 2024; 25:2724. [PMID: 38473973 DOI: 10.3390/ijms25052724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Memory and learning are essential cognitive processes that enable us to obtain, retain, and recall information [...].
Collapse
Affiliation(s)
- Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Neuropsicology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
6
|
Pei W, Zhang Y, Zhu X, Zhao C, Li X, Lü H, Lv K. Multitargeted Immunomodulatory Therapy for Viral Myocarditis by Engineered Extracellular Vesicles. ACS NANO 2024; 18:2782-2799. [PMID: 38232382 DOI: 10.1021/acsnano.3c05847] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Immune regulation therapies are considered promising for treating classically activated macrophage (M1)-driven viral myocarditis (VM). Alternatively, activated macrophage (M2)-derived extracellular vesicles (M2 EVs) have great immunomodulatory potential owing to their ability to reprogram macrophages, but their therapeutic efficacy is hampered by insufficient targeting capacity in vivo. Therefore, we developed cardiac-targeting peptide (CTP) and platelet membrane (PM)-engineered M2 EVs enriched with viral macrophage inflammatory protein-II (vMIP-II), termed CTP/PM-M2 EVsvMIP-II-Lamp2b, to improve the delivery of EVs "cargo" to the heart tissues. In a mouse model of VM, the intravenously injected CTP/PM-M2 EVsvMIP-II-Lamp2b could be carried into the myocardium via CTP, PM, and vMIP-II. In the inflammatory microenvironment, macrophages differentiated from circulating monocytes and macrophages residing in the heart showed enhanced endocytosis rates for CTP/PM-M2 EVsvMIP-II-Lamp2b. Subsequently, CTP/PM-M2 EVsvMIP-II-Lamp2b successfully released functional M2 EVsvMIP-II-Lamp2b into the cytosol, which facilitated the reprogramming of inflammatory M1 macrophages to reparative M2 macrophages. vMIP-II not only helps to increase the targeting ability of M2 EVs but also collaborates with M2 EVs to regulate M1 macrophages in the inflammatory microenvironment and downregulate the levels of multiple chemokine receptors. Finally, the cardiac immune microenvironment was protectively regulated to achieve cardiac repair. Taken together, our findings suggest that CTP-and-PM-engineered M2 EVsvMIP-II-Lamp2b represent an effective means for treating VM and show promise for clinical applications.
Collapse
Affiliation(s)
- Weiya Pei
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu 241000, P.R. China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu 241000, P.R. China
- Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu 241000, P.R. China
| | - Yingying Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, P.R. China
| | - Xiaolong Zhu
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu 241000, P.R. China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu 241000, P.R. China
- Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu 241000, P.R. China
| | - Chen Zhao
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215163, P.R. China
| | - Xueqin Li
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu 241000, P.R. China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu 241000, P.R. China
- Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu 241000, P.R. China
| | - Hezuo Lü
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233030, P.R. China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu 233030, P.R. China
| | - Kun Lv
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu 241000, P.R. China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu 241000, P.R. China
- Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu 241000, P.R. China
| |
Collapse
|
7
|
Tanaka M, Szabó Á, Vécsei L, Giménez-Llort L. Emerging Translational Research in Neurological and Psychiatric Diseases: From In Vitro to In Vivo Models. Int J Mol Sci 2023; 24:15739. [PMID: 37958722 PMCID: PMC10649796 DOI: 10.3390/ijms242115739] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
Revealing the underlying pathomechanisms of neurological and psychiatric disorders, searching for new biomarkers, and developing novel therapeutics all require translational research [...].
Collapse
Affiliation(s)
- Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - László Vécsei
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary;
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Department of Psychiatry & Forensic Medicine, Faculty of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
8
|
Hong Y, Wang Y, Cui Y, Pan J, Mao S, Zhu Y, Wen T, Qi T, Wang A, Luo Y. MicroRNA-124-3p Attenuated Retinal Neovascularization in Oxygen-Induced Retinopathy Mice by Inhibiting the Dysfunction of Retinal Neuroglial Cells through STAT3 Pathway. Int J Mol Sci 2023; 24:11767. [PMID: 37511525 PMCID: PMC10380620 DOI: 10.3390/ijms241411767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNA (miRNA) is a non-coding RNA that can regulate the expression of many target genes, and it is widely involved in various important physiological activities. MiR-124-3p was found to associate with the normal development of retinal vessels in our previous study, but the mechanism of its anti-angiogenic effect on pathological retinal neovascularization still needed to be explored. Therefore, this study aimed to investigate the effect and mechanism of miR-124-3p on retinal neovascularization in mice with oxygen-induced retinopathy (OIR). Here, we found that intravitreal injection of miR-124-3p agomir attenuated pathological retinal neovascularization in OIR mice. Moreover, miR-124-3p preserved the astrocytic template, inhibited reactive gliosis, and reduced the inflammatory response as well as necroptosis. Furthermore, miR-124-3p inhibited the signal transducer and activator of transcription 3 (STAT3) pathway and decreased the expression of hypoxia-inducible factor-1α and vascular endothelial growth factor. Taken together, our results revealed that miR-124-3p inhibited retinal neovascularization and neuroglial dysfunction by targeting STAT3 in OIR mice.
Collapse
Affiliation(s)
- Yiwen Hong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yishen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yamei Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jianying Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Shudi Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yanjie Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Tao Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Tianyuan Qi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Aoxiang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yan Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| |
Collapse
|
9
|
Chen Y, Schlotterer A, Kurowski L, Li L, Dannehl M, Hammes HP, Lin J. miRNA-124 Prevents Rat Diabetic Retinopathy by Inhibiting the Microglial Inflammatory Response. Int J Mol Sci 2023; 24:ijms24032291. [PMID: 36768614 PMCID: PMC9917205 DOI: 10.3390/ijms24032291] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Diabetic retinopathy (DR) is characterized by vasoregression and glial activation. miRNA-124 (miR-124) reduces retinal microglial activation and alleviates vasoregression in a neurodegenerative rat model. Our aim was to determine whether miR-124 affects vascular and neural damage in the early diabetic retina. Diabetes was induced in 8-week-old Wistar rats by streptozotocin (STZ) injection. At 16 and 20 weeks, the diabetic rats were intravitreally injected with miR-124 mimic, and retinae were analyzed at 24 weeks. Microvascular damage was identified by evaluating pericyte loss and acellular capillary (AC) formation. Müller glial activation was assessed by glial fibrillary acidic protein (GFAP) immunofluorescence staining. Microglial activation was determined by immunofluorescent staining of ionized calcium-binding adaptor molecule 1 (Iba1) in whole mount retinae. The neuroretinal function was assessed by electroretinography. The expression of inflammation-associated genes was evaluated by qRT-PCR. A wound healing assay was performed to quantitate the mobility of microglial cells. The results showed that miR-124 treatment alleviated diabetic vasoregression by reducing AC formation and pericyte loss. miR-124 blunted Müller glial- and microglial activation in diabetic retinae and ameliorated neuroretinal function. The retinal expression of inflammatory factors including Tnf-α, Il-1β, Cd74, Ccl2, Ccl3, Vcam1, Tgf-β1, Arg1, and Il-10 was reduced by miR-124 administration. The elevated mobility of microglia upon high glucose exposure was normalized by miR-124. The expression of the transcription factor PU.1 and lipid raft protein Flot1 was downregulated by miR-124. In rat DR, miR-124 prevents vasoregression and glial activation, improves neuroretinal function, and modulates microglial activation and inflammatory responses.
Collapse
Affiliation(s)
- Ying Chen
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Andrea Schlotterer
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Luke Kurowski
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Lin Li
- Department of Vascular Surgery, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Marcus Dannehl
- Department of Pediatrics, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Jihong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
- Correspondence: ; Tel.: +49-621-383-3774
| |
Collapse
|
10
|
Fu X, Feng S, Qin H, Yan L, Zheng C, Yao K. Microglia: The breakthrough to treat neovascularization and repair blood-retinal barrier in retinopathy. Front Mol Neurosci 2023; 16:1100254. [PMID: 36756614 PMCID: PMC9899825 DOI: 10.3389/fnmol.2023.1100254] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Microglia are the primary resident retinal macrophages that monitor neuronal activity in real-time and facilitate angiogenesis during retinal development. In certain retinal diseases, the activated microglia promote retinal angiogenesis in hypoxia stress through neurovascular coupling and guide neovascularization to avascular areas (e.g., the outer nuclear layer and macula lutea). Furthermore, continuously activated microglia secrete inflammatory factors and expedite the loss of the blood-retinal barrier which causes irreversible damage to the secondary death of neurons. In this review, we support microglia can be a potential cellular therapeutic target in retinopathy. We briefly describe the relevance of microglia to the retinal vasculature and blood-retinal barrier. Then we discuss the signaling pathway related to how microglia move to their destinations and regulate vascular regeneration. We summarize the properties of microglia in different retinal disease models and propose that reducing the number of pro-inflammatory microglial death and conversing microglial phenotypes from pro-inflammatory to anti-inflammatory are feasible for treating retinal neovascularization and the damaged blood-retinal barrier (BRB). Finally, we suppose that the unique properties of microglia may aid in the vascularization of retinal organoids.
Collapse
Affiliation(s)
- Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Shuyu Feng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Lin Yan
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Caiyan Zheng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China,*Correspondence: Kai Yao,
| |
Collapse
|
11
|
Zhao L, Hou C, Yan N. Neuroinflammation in retinitis pigmentosa: Therapies targeting the innate immune system. Front Immunol 2022; 13:1059947. [PMID: 36389729 PMCID: PMC9647059 DOI: 10.3389/fimmu.2022.1059947] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is an important cause of irreversible blindness worldwide and lacks effective treatment strategies. Although mutations are the primary cause of RP, research over the past decades has shown that neuroinflammation is an important cause of RP progression. Due to the abnormal activation of immunity, continuous sterile inflammation results in neuron loss and structural destruction. Therapies targeting inflammation have shown their potential to attenuate photoreceptor degeneration in preclinical models. Regardless of variations in genetic background, inflammatory modulation is emerging as an important role in the treatment of RP. We summarize the evidence for the role of inflammation in RP and mention therapeutic strategies where available, focusing on the modulation of innate immune signals, including TNFα signaling, TLR signaling, NLRP3 inflammasome activation, chemokine signaling and JAK/STAT signaling. In addition, we describe epigenetic regulation, the gut microbiome and herbal agents as prospective treatment strategies for RP in recent advances.
Collapse
Affiliation(s)
- Ling Zhao
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Hou
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Naihong Yan
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Naihong Yan,
| |
Collapse
|
12
|
Differential expression of aqueous humor microRNAs in central retinal vein occlusion and its association with matrix metalloproteinases: a pilot study. Sci Rep 2022; 12:16429. [PMID: 36180575 PMCID: PMC9525721 DOI: 10.1038/s41598-022-20834-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study is to investigate the differential expression of microRNAs (miRNAs) in the aqueous humor (AH) of patients with central retinal vein occlusion (CRVO), and their association with AH matrix metalloproteinase (MMP) activity. Eighteen subjects, including 10 treatment naïve patients with CRVO and 8 control subjects, scheduled for intravitreal injection and cataract surgery, respectively, were included. AH samples were collected at the beginning of the procedure. A microarray composed of 84 miRNAs was performed to identify differentially expressed miRNAs in CRVO AH, which were further analyzed using bioinformatic tools to identify directly related cytokines/proteins. Eight miRNAs (hsa-mir-16-5p, hsa-mir-142-3p, hsa-mir-19a-3p, hsa-mir-144-3p, hsa-mir-195-5p, hsa-mir-17-5p, hsa-mir-93-5p, and hsa-mir-20a-5p) were significantly downregulated in the CRVO group. Bioinformatic analysis revealed a direct relationship among downregulated miRNAs, CRVO, and the following proteins: MMP-2, MMP-9, tumor necrosis factor, transforming growth factor beta-1, caspase-3, interleukin-6, interferon gamma, and interleukin-1-beta. Activities of MMP-2 and -9 in AH were detected using gelatin zymography, showing significant increase in the CRVO group compared to the control group (p < 0.01). This pilot study first revealed that MMP-2 and -9 were directly related to downregulated miRNAs and showed significant increase in activity in AH of patients with CRVO. Therefore, the relevant miRNAs and MMPs in AH could serve as potential biomarkers or therapeutic targets for CRVO.
Collapse
|
13
|
Kuo HC, Lee KF, Chen SL, Chiu SC, Lee LY, Chen WP, Chen CC, Chu CH. Neuron–Microglia Contacts Govern the PGE2 Tolerance through TLR4-Mediated de Novo Protein Synthesis. Biomedicines 2022; 10:biomedicines10020419. [PMID: 35203628 PMCID: PMC8962342 DOI: 10.3390/biomedicines10020419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
Cellular and molecular mechanisms of the peripheral immune system (e.g., macrophage and monocyte) in programming endotoxin tolerance (ET) have been well studied. However, regulatory mechanism in development of brain immune tolerance remains unclear. The inducible COX-2/PGE2 axis in microglia, the primary innate immune cells of the brain, is a pivotal feature in causing inflammation and neuronal injury, both in acute excitotoxic insults and chronic neurodegenerative diseases. This present study investigated the regulatory mechanism of PGE2 tolerance in microglia. Multiple reconstituted primary brain cells cultures, including neuron–glial (NG), mixed glial (MG), neuron-enriched, and microglia-enriched cultures, were performed and consequently applied to a treatment regimen for ET induction. Our results revealed that the levels of COX-2 mRNA and supernatant PGE2 in NG cultures, but not in microglia-enriched and MG cultures, were drastically reduced in response to the ET challenge, suggesting that the presence of neurons, rather than astroglia, is required for PGE2 tolerance in microglia. Furthermore, our data showed that neural contact, instead of its soluble factors, is sufficient for developing microglial PGE2 tolerance. Simultaneously, this finding determined how neurons regulated microglial PGE2 tolerance. Moreover, by inhibiting TLR4 activation and de novo protein synthesis by LPS-binding protein (LBP) manipulation and cycloheximide, our data showed that the TLR4 signal and de novo protein synthesis are necessary for microglia to develop PGE2 tolerance in NG cells under the ET challenge. Altogether, our findings demonstrated that neuron–microglia contacts are indispensable in emerging PGE2 tolerance through the regulation of TLR4-mediated de novo protein synthesis.
Collapse
Affiliation(s)
- Hsing-Chun Kuo
- Division of Basic Medical Sciences, Department of Nursing, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan;
- Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Kam-Fai Lee
- Department of Pathology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
| | - Shiou-Lan Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung 80708, Taiwan;
| | - Shu-Chen Chiu
- National Laboratory Animal Center (NLAC), NARLabs, Tainan 74147, Taiwan;
| | - Li-Ya Lee
- Grape King Biotechnology Inc (Grape King Bio Ltd.), Zhong-Li, Taoyuan 32542, Taiwan; (L.-Y.L.); (W.-P.C.); (C.-C.C.)
| | - Wan-Ping Chen
- Grape King Biotechnology Inc (Grape King Bio Ltd.), Zhong-Li, Taoyuan 32542, Taiwan; (L.-Y.L.); (W.-P.C.); (C.-C.C.)
| | - Chin-Chu Chen
- Grape King Biotechnology Inc (Grape King Bio Ltd.), Zhong-Li, Taoyuan 32542, Taiwan; (L.-Y.L.); (W.-P.C.); (C.-C.C.)
| | - Chun-Hsien Chu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan
- Correspondence: or ; Tel.: +886-6-235-3535 (ext. 3592); Fax: +886-6-209-5845
| |
Collapse
|