1
|
Jin J, den Besten HMW, Rietjens IMCM, Widjaja-van den Ende F. Chemical and Microbiological Hazards Arising from New Plant-Based Foods, Including Precision Fermentation-Produced Food Ingredients. Annu Rev Food Sci Technol 2025; 16:171-194. [PMID: 39745934 DOI: 10.1146/annurev-food-111523-122059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The growing human population, climate change, and environmental pollution pose urgent threats to global food security. New plant-based foods and precision fermentation that enable the production of new food ingredients can contribute to a revolutionary change in the food industry and can contribute to food security, yet they do not come without hazards. In this review, we describe the hazards of new plant-based foods, including precision fermentation-produced food ingredients. For these foods derived from plant-based raw materials, chemical and microbiological hazards are presented, including natural hazards, environmental hazards, and hazards derived from (inadequate) food processing. In addition, prospects for safety improvement of new plant-based foods and precision fermentation-produced food ingredients are also discussed. Chemical and microbiological hazards of new plant-based foods and precision fermentation-produced food ingredients are to be included in the hazard analysis and critical control point plans. New plant-based foods present hazards carried over from the plant-based raw materials and new hazards from the production process and storage, whereas the risks appear lower for precision fermentation-produced food ingredients than for regular fermented foods because of the use of a more controlled environment and purification of the targeted ingredients.
Collapse
Affiliation(s)
- Jing Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Heidy M W den Besten
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University & Research, Wageningen, The Netherlands;
| | | |
Collapse
|
2
|
Pakhomov O, Posokhov Y. Detecting changes of testicular interstitial cell membranes with a fluorescent probe after incubation and cryopreservation with cryoprotective agents. Cryobiology 2025; 118:105194. [PMID: 39755163 DOI: 10.1016/j.cryobiol.2024.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Membrane alterations are among central factors predetermining cell survival during cryopreservation. In the present research, we tested some serum-/xeno-free cryoprotective compositions including dimethyl sulfoxide (Me2SO) and polymers for their osmotic impact and toxicity towards testicular interstitial cells (ICs). IC survival was determined after their contact with Me2SO, dextran (D40), hydroxyethyl starch (HES), polyethylene glycols (PEG1500 and PEG400), or after cryopreservation and cryoprotective agent (CPA) removal. A ratiometric fluorescent membrane probe 2-(2'-hydroxyphenyl)-5-phenyl-1,3-oxazole (probe O1O) was applied to assess changes in the plasma membrane of ICs. The cell survival study has shown that Me2SO decreased IC survival in a time- and dosage-dependent manner. The CPA decreased the metabolic activity of ICs, thus implying its toxic effect on the living cell as a whole. Using probe O1O, we have demonstrated that the toxic effect also influenced the plasma membrane. IC membranes were not altered after incubation with 0.7 M Me2SO. The presence of D40, HES, or PEGs in such Me2SO containing media resulted in plasma membrane hydration and damage to the membranes of cells incubated with PEGs. Cryopreservation caused pronounced membrane dehydration of the survived ICs even after CPA removal in PEG-containing media and low indicators of IC survival. Interestingly, cryopreservation with the best cryoprotective media supplemented with 0.7 M Me2SO and 100 mg/ml D40 resulted in minimal membrane alterations, thus implying its higher ability to protect membranes during cryopreservation.
Collapse
Affiliation(s)
- Oleksandr Pakhomov
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya st, 61016, Kharkiv, Ukraine.
| | - Yevgen Posokhov
- The National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova st, 61000, University, 6 Trinklera st, 61022, Kharkiv, Ukraine; Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 6 Trinklera st, 61022 Kharkiv, Ukraine.
| |
Collapse
|
3
|
Nilsson F, Elf P, Capezza A, Wei X, Tsegaye B, Polisetti V, Svagan AJ, Hedenqvist M. Environmental concerns on water-soluble and biodegradable plastics and their applications - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177926. [PMID: 39693661 DOI: 10.1016/j.scitotenv.2024.177926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Water-soluble polymers are materials rapidly growing in volume and in number of materials and applications. Examples include synthetic plastics such as polyacrylamide, polyacrylic acid, polyethylene glycol, polyethylene oxide and polyvinyl alcohol, with applications ranging from cosmetics and paints to water purification, pharmaceutics and food packaging. Despite their abundance, their environmental concerns (e.g., bioaccumulation, toxicity, and persistence) are still not sufficiently assessed, especially since water soluble plastics are often not biodegradable, due to their chemical structure. This review aims to overview the most important water-soluble and biodegradable polymers, their applications, and their environmental impact. Degradation products from water-insoluble polymers designed for biodegradation can also be water soluble. Most water-soluble plastics are not immediately harmful for humans and the environment, but the degradation products are sometimes more hazardous, e.g. for polyacrylamide. An increased use of water-soluble plastics could also introduce unanticipated environmental hazards. Therefore, excessive use of water-soluble plastics in applications where they can enter the environment should be discouraged. Often the plastics can be omitted or replaced by natural polymers with lower risks. It is recommended to include non-biodegradable water-soluble plastics in regulations for microplastics, to make risk assessments for different water-soluble plastics and to develop labels for flushable materials.
Collapse
Affiliation(s)
- Fritjof Nilsson
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; FSCN Research Centre, Mid Sweden University, 85170 Sundsvall, Sweden.
| | - Patric Elf
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Antonio Capezza
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Xinfeng Wei
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Bahiru Tsegaye
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Veerababu Polisetti
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Anna J Svagan
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mikael Hedenqvist
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
4
|
Prokopiuk V, Onishchenko A, Pazura Y, Bespalova I, Kökbaş U, Tryfonyuk L, Mateychenko P, Kot K, Kurmangaliyeva S, Kot Y, Yefimova S, Tkachenko A. Nanostructured zinc carbonate hydroxide microflakes: assessing the toxicity against erythrocytes and L929 cells in vitro. NANOTECHNOLOGY 2024; 36:085102. [PMID: 39637441 DOI: 10.1088/1361-6528/ad9aac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Nanostructured materials have been suggested to be used as a source of dietary zinc for livestock animals. In this study, we assessed the cytotoxicity of newly synthesized nanostructured zinc carbonate hydroxide (ZnCH) Zn5(CO3)(OH)6microflakes. Cytotoxicity of the microflakes was assessed against murine L929 cell line and rat mature erythrocytes. Viability, motility, cell death pathways, implication of Ca2+, reactive oxygen species and reactive nitrogen species (RNS) signaling, caspases, and alterations of cell membranes following exposure of L929 cells to the microflakes were assessed. To assess hemocompatibility of the Zn-containing microflakes, osmotic fragility and hemolysis assays were performed, as well as multiple eryptosis parameters were evaluated. Our findings indicate a dose-response cytotoxicity of ZnCH microflakes against L929 cells with no toxicity observed for low concentrations (10 mg l-1and below). At high concentrations (25 mg l-1and above), ZnCH microflakes promoted nitrosyl stress, Ca2+- and caspase-dependent apoptosis, and altered lipid order of cell membranes in a dose-dependent manner, evidenced by up to 7-fold elevation of RNS-dependent fluorescence, 2.9-fold enhancement of Fura 2-dependent fluorescence, over 20-fold elevation of caspases-dependent fluorescence (caspase-3, caspase-8, and caspase-9), and up to 4.4-fold increase in the ratiometric index of the NR12S probe. Surprisingly, toxicity to enucleated mature erythrocytes was found to be lower compared to L929 cells. ZnCH microflakes induced eryptosis associated with oxidative stress, nitrosyl stress, Ca2+signaling and recruitment of caspases at 25-50-100 mg l-1. Eryptosis assays were found to be more sensitive than evaluation of hemolysis. Zn5(CO3)(OH)6microflakes show no cytotoxicity at low concentrations indicating their potential as a source of zinc for livestock animals.
Collapse
Affiliation(s)
- Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya st, 61015 Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya st, 61015 Kharkiv, Ukraine
| | - Yuliia Pazura
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Iryna Bespalova
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Umut Kökbaş
- Medical Biochemistry Department, Nevsehir Haci Bektas Veli University, 2000 Evler Mah. Zübeyde Hanım Cad, 50300 Nevşehir, Turkey
| | - Liliya Tryfonyuk
- Institute of Health, National University of Water and Environmental Engineering, 11 Soborna st, 33028 Rivne, Ukraine
| | - Pavlo Mateychenko
- Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Kateryna Kot
- Department of Biochemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq, 61022 Kharkiv, Ukraine
| | - Saulesh Kurmangaliyeva
- Department of Microbiology, Virology and Immunology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev st, 030012 Aktobe, Kazakhstan
| | - Yurii Kot
- Department of Biochemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq, 61022 Kharkiv, Ukraine
| | - Svetlana Yefimova
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 25250 Vestec, Czech Republic
| |
Collapse
|
5
|
Bučinskas V, Udris D, Dzedzickis A, Petronienė JJ. Piezoelectric Behaviour in Biodegradable Carrageenan and Iron (III) Oxide Based Sensor. SENSORS (BASEL, SWITZERLAND) 2024; 24:4622. [PMID: 39066021 PMCID: PMC11280553 DOI: 10.3390/s24144622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
This paper is dedicated to the research of phenomena noticed during tests of biodegradable carrageenan-based force and pressure sensors. Peculiar voltage characteristics were noticed during the impact tests. Therefore, the sensors' responses to impact were researched more thoroughly, defining time-dependent sensor output signals from calibrated energy impact. The research was performed using experimental methods when a free-falling steel ball impacted the sensor material to create relatively definable impact energy. The sensor's output signal, which is analogue voltage, was registered using an oscilloscope and transmitted to the PC for further analysis. The obtained results showed a very interesting outcome, where the sensor, which was intended to be piezoresistive, demonstrated a combination of behaviour typical for galvanic cells and piezoelectric material. It provides a stable DC output that is sensitive to the applied statical pressure, and in case of a sudden impact, like a hit, it demonstrates piezoelectric behaviour with some particular effects, which are described in the paper as proton transfer in the sensor-sensitive material. Such phenomena and sensor design are a matter of further development and research.
Collapse
Affiliation(s)
- Vytautas Bučinskas
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, LT-10105 Vilnius, Lithuania; (A.D.); (J.J.P.)
| | - Dainius Udris
- Department of Electrical Engineering, Vilnius Gediminas Technical University, LT-10105 Vilnius, Lithuania
| | - Andrius Dzedzickis
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, LT-10105 Vilnius, Lithuania; (A.D.); (J.J.P.)
| | - Jūratė Jolanta Petronienė
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, LT-10105 Vilnius, Lithuania; (A.D.); (J.J.P.)
| |
Collapse
|
6
|
Kimilu N, Gładyś-Cieszyńska K, Pieszko M, Mańkowska-Wierzbicka D, Folwarski M. Carrageenan in the Diet: Friend or Foe for Inflammatory Bowel Disease? Nutrients 2024; 16:1780. [PMID: 38892712 PMCID: PMC11174395 DOI: 10.3390/nu16111780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
While the exact pathogenesis of IBD remains unclear, genetic, environmental and nutritional factors as well as the composition of the gut microbiome play crucial roles. Food additives, which are increasingly consumed in the Western diet, are being investigated for their potential effects on IBD. These additives can affect gut health by altering the composition of the microbiota, immune responses, and intestinal permeability, contributing to autoimmune diseases and inflammation. Despite the growing number of studies on food additives and IBD, the specific effects of carrageenan have not yet been sufficiently researched. This review addresses this gap by critically analyzing recent studies on the effects of carrageenan on the gut microbiota, intestinal permeability, and inflammatory processes. We searched the MEDLINE and SCOPUS databases using the following terms: carrageenan, carrageenan and inflammatory bowel disease, carrageenan and cancer, food additives and microbiome, food additives and intestinal permeability, and food additives and autoimmune diseases. In animal studies, degraded carrageenan has been shown to trigger intestinal ulceration and inflammation, highlighting its potential risk for exacerbating IBD. It can affect the gut microbiota, reduce bacterial diversity, and increase intestinal permeability, contributing to "leaky gut" syndrome. Some studies suggest that carrageenan may inhibit the growth of cancer cells by influencing the progression of the cell cycle, but the anti-cancer effect is still unclear. Carrageenan may also increase glucose intolerance and insulin resistance. Further research is needed to determine whether carrageenan should be excluded from the diet of individuals with IBD.
Collapse
Affiliation(s)
- Nina Kimilu
- Students’ Scientific Circle of Clinical Nutrition, Medical University of Gdansk, 80-211 Gdansk, Poland
| | | | - Magdalena Pieszko
- Department of Clinical Nutrition and Dietetics, Medical University of Gdansk, 80-210 Gdansk, Poland (M.P.)
| | - Dorota Mańkowska-Wierzbicka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marcin Folwarski
- Department of Clinical Nutrition and Dietetics, Medical University of Gdansk, 80-210 Gdansk, Poland (M.P.)
- Home Enteral and Parenteral Nutrition Unit, Nicolaus Copernicus Hospital, 80-803 Gdansk, Poland
| |
Collapse
|
7
|
Prokopiuk V, Onishchenko A, Tryfonyuk L, Posokhov Y, Gorbach T, Kot Y, Kot K, Maksimchuk P, Nakonechna O, Tkachenko A. Marine Polysaccharides Carrageenans Enhance Eryptosis and Alter Lipid Order of Cell Membranes in Erythrocytes. Cell Biochem Biophys 2024; 82:747-766. [PMID: 38334853 DOI: 10.1007/s12013-024-01225-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Aim In the current study, hemocompatibility of three major commercially available types of carrageenans (ι, κ and λ) was investigated focusing on eryptosis. MATERIALS AND METHODS Carrageenans of ι-, κ- and λ-types were incubated with washed erythrocytes (hematocrit 0.4%) at 0-1-5-10 g/L for either 24 h or 48 h. Incubation was followed by flow cytometry-based quantitative analysis of eryptosis parameters, including cell volume, cell membrane scrambling and reactive oxygen species (ROS) production, lipid peroxidation markers and confocal microscopy-based evaluation of intracellular Ca2+ levels, assessment of lipid order in cell membranes and the glutathione antioxidant system. Confocal microscopy was used to assess carrageenan cellular internalization using rhodamine B isothiocyanate-conjugated carrageenans. RESULTS All three types of carrageenans were found to trigger eryptosis. Pro-eryptotic properties were type-dependent and λ-carrageenan had the strongest impact inducing phosphatidylserine membrane asymmetry, changes in cell volume, Ca2+ signaling and oxidative stress characterized by ROS overproduction, activation of lipid peroxidation and severe glutathione system depletion. Eryptosis induction by carrageenans does not require their uptake by erythrocytes. Changes in physicochemical properties of cell membrane were also type-dependent. No carrageenan-induced generation of superoxide and hydroxyl radicals was observed in cell-free milieu. CONCLUSIONS Our findings suggest that ι-, κ- and λ-types trigger eryptosis in a type-dependent manner and indicate that carrageenans can be further investigated as potential eryptosis-regulating therapeutic agents.
Collapse
Affiliation(s)
- Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, 61015, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine
| | - Liliya Tryfonyuk
- Institute of Health, National University of Water and Environmental Engineering, 11 Soborna st, 33000, Rivne, Ukraine
| | - Yevgen Posokhov
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine
- Department of Organic Chemistry, Biochemistry, Paints and Coatings, The National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova st, 61000, Kharkiv, Ukraine
| | - Tetyana Gorbach
- Department of Biochemistry, Kharkiv National Medical University, 4 Nauky ave., 61022, Kharkiv, Ukraine
| | - Yurii Kot
- Department of Biochemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq., 61022, Kharkiv, Ukraine
| | - Kateryna Kot
- Department of Biochemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq., 61022, Kharkiv, Ukraine
| | - Pavel Maksimchuk
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky ave, 61072, Kharkiv, Ukraine
| | - Oksana Nakonechna
- Department of Biochemistry, Kharkiv National Medical University, 4 Nauky ave., 61022, Kharkiv, Ukraine
| | - Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine.
| |
Collapse
|
8
|
Wang J, Zhu K, Zhang M, Zhou Q, Ji W, Yao Z, Li D. Pharmacokinetics, tissue distribution, and subacute toxicity of oral carrageenan in mice. Int J Biol Macromol 2024; 266:130725. [PMID: 38490394 DOI: 10.1016/j.ijbiomac.2024.130725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Carrageenan (CGN) is a typical sulfated polysaccharide widely applied in the food and pharmaceutical industries. Its in vivo behavior plays vital roles in understanding structural and biological functional relationships. The lack of UV chromophores in highly sulfated polysaccharides presents a challenge for their in vivo behavior studies. Therefore, this study aimed to develop a fast and effective quantitative fluorescence method for investigating the pharmacokinetics and tissue distribution of CGN. Fluorescence isothiocyanate labeling of CGN (FCGN) and microplate reader-based measurements were developed and validated to study its pharmacokinetics. These results showed that the FCGN concentration peaked at 3 h, the mean residence time was 36.6 h, and the clearance rate was 0.1 L/h/kg. Most of the FCGN was excreted in the feces, while 9.2 % was excreted in the urine, suggesting absorption and metabolism. The pharmacokinetic parameters indicated that the FCGN was absorbed quickly, eliminated slowly, and could remain in the body for a sustained profile. Moreover, ex vivo imaging and quantification of FCGN in tissues revealed that FCGN accumulated in the liver and kidney. Furthermore, oral administration of CGN or KOs for 14 days led to changes in liver and kidney indices. Histological analysis of significant organs revealed hepatocyte necrosis in the liver, renal tubular vacuolization in the kidney, and incomplete colonic epithelial cells. The KOs had a more significant effect on inflammatory cell infiltration than did CGNs. These in vivo findings laid the foundation for the study and application of CGN in food and pharmaceutical applications.
Collapse
Affiliation(s)
- Jiahui Wang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Kehan Zhu
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Miaomiao Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Qian Zhou
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Wen Ji
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Zhen Yao
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Duxin Li
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
9
|
Tahiri M, Johnsrud C, Steffensen IL. Evidence and hypotheses on adverse effects of the food additives carrageenan (E 407)/processed Eucheuma seaweed (E 407a) and carboxymethylcellulose (E 466) on the intestines: a scoping review. Crit Rev Toxicol 2023; 53:521-571. [PMID: 38032203 DOI: 10.1080/10408444.2023.2270574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023]
Abstract
This scoping review provides an overview of publications reporting adverse effects on the intestines of the food additives carrageenan (CGN) (E 407)/processed Eucheuma seaweed (PES) (E 407a) and carboxymethylcellulose (CMC) (E 466). It includes evidence from human, experimental mammal and in vitro research publications, and other evidence. The databases Medline, Embase, Scopus, Web of Science Core Collection, Cochrane Database of Systematic Reviews and Epistemonikos were searched without time limits, in addition to grey literature. The publications retrieved were screened against predefined criteria. From two literature searches, 2572 records were screened, of which 224 records were included, as well as 38 records from grey literature, making a total of 262 included publications, 196 on CGN and 101 on CMC. These publications were coded and analyzed in Eppi-Reviewer and data gaps presented in interactive maps. For CGN, five, 69 and 33 research publications on humans, experimental mammals and in vitro experiments were found, further separated as degraded or native (non-degraded) CGN. For CMC, three human, 20 animal and 14 in vitro research publications were obtained. The most studied adverse effects on the intestines were for both additives inflammation, the gut microbiome, including fermentation, intestinal permeability, and cancer and metabolic effects, and immune effects for CGN. Further studies should focus on native CGN, in the form and molecular weight used as food additive. For both additives, randomized controlled trials of sufficient power and with realistic dietary exposure levels of single additives, performed in persons of all ages, including potentially vulnerable groups, are needed.
Collapse
Affiliation(s)
- Mirlinda Tahiri
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Celine Johnsrud
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Inger-Lise Steffensen
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
10
|
Mavelil-Sam R, Ouseph EM, Morreale M, Scaffaro R, Thomas S. Recent Developments and Formulations for Hydrophobic Modification of Carrageenan Bionanocomposites. Polymers (Basel) 2023; 15:polym15071650. [PMID: 37050264 PMCID: PMC10097169 DOI: 10.3390/polym15071650] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Versatility of the anionic algal polysaccharide carrageenan has long been discussed and explored, especially for their affinity towards water molecules. While this feature is advantageous in certain applications such as water remediation, wound healing, etc., the usefulness of this biopolymer is extremely limited when it comes to applications such as food packaging. Scientists around the globe are carrying out research works on venturing diverse methods to integrate a hydrophobic nature into these polysaccharides without compromising their other functionalities. Considering these foregoing studies, this review was designed to have an in-depth understanding of diverse methods and techniques adopted for tuning the hydrophobic nature of carrageenan-based bionanocomposites, both via surface alterations or by changes made to their chemical structure and attached functional groups. This review article mainly focused on how the hydrophobicity of carrageenan bionanocomposites varied as a function of the type and refinement of carrageenan, and with the incorporation of additives including plasticisers, nanofillers, bioactive agents, etc. Incorporation of nanofillers such as polysaccharide-based nanoparticles, nanoclays, bioceramic and mineral based nanoparticles, carbon dots and nanotubes, metal oxide nanoparticles, etc., along with their synergistic effects in hybrid bionanocomposites are also dealt with in this comprehensive review article.
Collapse
Affiliation(s)
- Rubie Mavelil-Sam
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, India;
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686 560, India;
| | | | - Marco Morreale
- Faculty of Engineering and Architecture, Kore University of Enna, 94100 Enna, Italy
- Correspondence: (M.M.); (R.S.); (S.T.)
| | - Roberto Scaffaro
- Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
- Correspondence: (M.M.); (R.S.); (S.T.)
| | - Sabu Thomas
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, India;
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686 560, India;
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
- Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
- International and Inter-University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam 686 650, India
- Correspondence: (M.M.); (R.S.); (S.T.)
| |
Collapse
|
11
|
Charlie-Silva I, Feitosa NM, Pontes LG, Fernandes BH, Nóbrega RH, Gomes JMM, Prata MNL, Ferraris FK, Melo DC, Conde G, Rodrigues LF, Aracati MF, Corrêa-Junior JD, Manrique WG, Superio J, Garcez AS, Conceição K, Yoshimura TM, Núñez SC, Eto SF, Fernandes DC, Freitas AZ, Ribeiro MS, Nedoluzhko A, Lopes-Ferreira M, Borra RC, Barcellos LJG, Perez AC, Malafaia G, Cunha TM, Belo MAA, Galindo-Villegas J. Plasma proteome responses in zebrafish following λ-carrageenan-Induced inflammation are mediated by PMN leukocytes and correlate highly with their human counterparts. Front Immunol 2022; 13:1019201. [PMID: 36248846 PMCID: PMC9559376 DOI: 10.3389/fimmu.2022.1019201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Regulation of inflammation is a critical process for maintaining physiological homeostasis. The λ-carrageenan (λ-CGN) is a mucopolysaccharide extracted from the cell wall of red algae (Chondrus crispus) capable of inducing acute intestinal inflammation, which is translated into the production of acute phase reactants secreted into the blood circulation. However, the associated mechanisms in vertebrates are not well understood. Here, we investigated the crucial factors behind the inflammatory milieu of λ-CGN-mediated inflammation administered at 0, 1.75, and 3.5% (v/w) by i.p. injection into the peritoneal cavity of adult zebrafish (ZF) (Danio rerio). We found that polymorphonuclear leukocytes (neutrophils) and lymphocytes infiltrating the ZF peritoneal cavity had short-term persistence. Nevertheless, they generate a strong pattern of inflammation that affects systemically and is enough to produce edema in the cavity. Consistent with these findings, cell infiltration, which causes notable tissue changes, resulted in the overexpression of several acute inflammatory markers at the protein level. Using reversed-phase high-performance liquid chromatography followed by a hybrid linear ion-trap mass spectrometry shotgun proteomic approach, we identified 2938 plasma proteins among the animals injected with PBS and 3.5% λ-CGN. First, the bioinformatic analysis revealed the composition of the plasma proteome. Interestingly, 72 commonly expressed proteins were recorded among the treated and control groups, but, surprisingly, 2830 novel proteins were differentially expressed exclusively in the λ-CGN-induced group. Furthermore, from the commonly expressed proteins, compared to the control group 62 proteins got a significant (p < 0.05) upregulation in the λ-CGN-treated group, while the remaining ten proteins were downregulated. Next, we obtained the major protein-protein interaction networks between hub protein clusters in the blood plasma of the λ-CGN induced group. Moreover, to understand the molecular underpinnings of these effects based on the unveiled protein sets, we performed a bioinformatic structural similarity analysis and generated overlapping 3D reconstructions between ZF and humans during acute inflammation. Biological pathway analysis pointed to the activation and abundance of diverse classical immune and acute phase reactants, several catalytic enzymes, and varied proteins supporting the immune response. Together, this information can be used for testing and finding novel pharmacological targets to treat human intestinal inflammatory diseases.
Collapse
Affiliation(s)
| | - Natália M. Feitosa
- Integrated Laboratory of Translational Bioscience, Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Macaé, Brazil
| | | | - Bianca H. Fernandes
- Laboratório de Controle Genético e Sanitário, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Rafael H. Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| | - Juliana M. M. Gomes
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana N. L. Prata
- Department of Pharmacology, Instituto de CiênciasBiomédicas-Universidade Federal de Minas Gerais (ICB-UFMG), Belo Horizonte, Brazil
| | - Fausto K. Ferraris
- Department of Pharmacology and Toxicology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Daniela C. Melo
- Laboratory of Zebrafish from Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gabriel Conde
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Letícia F. Rodrigues
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Mayumi F. Aracati
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - José D. Corrêa-Junior
- Department of Morphology, Instituto de CiênciasBiomédicas-Universidade Federal de Minas Gerais (ICB-UFMG), Belo Horizonte, Brazil
| | - Wilson G. Manrique
- Veterinary College, Federal University of Rondonia, Rolim de Moura, Brazil
| | - Joshua Superio
- Department of Aquaculture, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Katia Conceição
- Peptide Biochemistry Laboratory, Universidade Federal de São Paulo (UNIFESP), Sao Jose Dos Campos, Brazil
| | - Tania M. Yoshimura
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Silvia C. Núñez
- University Brazil, São Paulo, Brazil
- University Brazil, Descalvado, Brazil
| | - Silas F. Eto
- Development and Innovation Laboratory, Center of Innovation and Development, Butantan Institute, São Paulo, Brazil
| | - Dayanne C. Fernandes
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Anderson Z. Freitas
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Martha S. Ribeiro
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, Saint Petersburg, Russia
| | | | - Ricardo C. Borra
- Department of Genetics and Evolution, Federal University of São Carlos, São Paulo, Brazil
| | - Leonardo J. G. Barcellos
- Postgraduate Program in Pharmacology, Federal University of Santa Maria, Rio Grande do Sul, Brazil
- Postgraduate Program in Bioexperimentation. University of Passo Fundo, Rio Grande do Sul, Brazil
| | - Andrea C. Perez
- Department of Pharmacology and Toxicology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Guilheme Malafaia
- Biological Research Laboratory, Goiano Federal Institute, Urutaí, Brazil
| | - Thiago M. Cunha
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Marco A. A. Belo
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
- University Brazil, São Paulo, Brazil
- University Brazil, Descalvado, Brazil
| | - Jorge Galindo-Villegas
- Department of Genomics, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|