1
|
Liu Y, Wang J, Yang J, Xia J, Yu J, Chen D, Huang Y, Yang F, Ruan Y, Xu JF, Pi J. Nanomaterial-mediated host directed therapy of tuberculosis by manipulating macrophage autophagy. J Nanobiotechnology 2024; 22:608. [PMID: 39379986 PMCID: PMC11462893 DOI: 10.1186/s12951-024-02875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Tuberculosis (TB), induced by Mycobacterium tuberculosis (Mtb) infection, remains a major public health issue worldwide. Mtb has developed complicated strategies to inhibit the immunological clearance of host cells, which significantly promote TB epidemic and weaken the anti-TB treatments. Host-directed therapy (HDT) is a novel approach in the field of anti-infection for overcoming antimicrobial resistance by enhancing the antimicrobial activities of phagocytes through phagosomal maturation, autophagy and antimicrobial peptides. Autophagy, a highly conserved cellular event within eukaryotic cells that is effective against a variety of bacterial infections, has been shown to play a protective role in host defense against Mtb. In recent decades, the introduction of nanomaterials into medical fields open up a new scene for novel therapeutics with enhanced efficiency and safety against different diseases. The active modification of nanomaterials not only allows their attractive targeting effects against the host cells, but also introduce the potential to regulate the host anti-TB immunological mechanisms, such as apoptosis, autophagy or macrophage polarization. In this review, we introduced the mechanisms of host cell autophagy for intracellular Mtb clearance, and how functional nanomaterials regulate autophagy for disease treatment. Moreover, we summarized the recent advances of nanomaterials for autophagy regulations as novel HDT strategies for anti-TB treatment, which may benefit the development of more effective anti-TB treatments.
Collapse
Affiliation(s)
- Yilin Liu
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Jiajun Wang
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Jiayi Yang
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Jiaqi Yu
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Dongsheng Chen
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Yuhe Huang
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Fen Yang
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China.
| | - Jun-Fa Xu
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China.
| | - Jiang Pi
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
2
|
Contreras A, Sánchez SA, Rodríguez-Medina C, Botero JE. The role and impact of viruses on cancer development. Periodontol 2000 2024; 96:170-184. [PMID: 38641954 DOI: 10.1111/prd.12566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/13/2024] [Accepted: 03/16/2024] [Indexed: 04/21/2024]
Abstract
This review focuses on three major aspects of oncoviruses' role in cancer development. To begin, we discuss their geographic distribution, revealing that seven oncoviruses cause 20% of all human cancers worldwide. Second, we investigate the primary carcinogenic mechanisms, looking at how these oncogenic viruses can induce cellular transformation, angiogenesis, and local and systemic inflammation. Finally, we investigate the possibility of SARS-CoV-2 infection reactivating latent oncoviruses, which could increase the risk of further disease. The development of oncovirus vaccines holds great promise for reducing cancer burden. Many unanswered questions about the host and environmental cofactors that contribute to cancer development and prevention remain, which ongoing research is attempting to address.
Collapse
Affiliation(s)
| | - Sandra Amaya Sánchez
- Advanced Periodontology Program, Escuela de Odontología, Universidad del Valle, Cali, Colombia
| | | | | |
Collapse
|
3
|
Lu C, Chai Y, Xu X, Wang Z, Bao Y, Fei Z. Large-scale in situ self-assembly and doping engineering of zinc ferrite nanoclusters for high performance bioimaging. Colloids Surf B Biointerfaces 2023; 229:113473. [PMID: 37517338 DOI: 10.1016/j.colsurfb.2023.113473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023]
Abstract
Iron oxide nanomaterials has good biocompatibility and safety, and has been used as contrast agents for magnetic resonance imaging (MRI). However, its clinical usefulness is hampered by its difficult preparation on large scale, its rapid clearance in vivo and low target tissue enrichment efficiency. Here, we report the synthesis of water-soluble, biocompatible, superparamagnetic non-stoichiometric zinc ferrite nanoclusters (nZFNCs) of approximately 50 g in a single batch using a one-pot synthesis technique. nZFNCs is a secondary cluster structure with a size of about 40 nm composed of zinc-doped iron oxide nanoparticles with a size of about 6 nm. The surface of nZFNCS is endowed with a large number of carboxyl groups as active sites. By simply controlling the synthesis process and adjusting the proportion of metal precursors, the amount of zinc doping can be controlled, while maintaining the same size to ensure similar pharmacokinetics. Compared with undoped, the magnetic responsiveness and relaxation efficiency of nZFNCs are significantly improved, and the transverse relaxation efficiency (r2) can reach 425.5 mM-1 s-1 (doping amount x = 0.25), which is 7 times higher than that of commercial Resovist and 10 times higher than that of Feridex. In vivo imaging results also further confirmed the excellent contrast enhancement performance of the nanoclusters, which can achieve high contrast for more than 2 h in the liver. The advantage of this platform over comparable systems is that the contrast enhancement features are derived from simple techniques that do not require complex physical and chemical methods.
Collapse
Affiliation(s)
- Chichong Lu
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Yuyun Chai
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xue Xu
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zhijie Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yingjie Bao
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zihan Fei
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
4
|
Characterization of the Urinary Metagenome and Virome in Healthy Children. Biomedicines 2022; 10:biomedicines10102412. [PMID: 36289674 PMCID: PMC9599034 DOI: 10.3390/biomedicines10102412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Recent advances in next-generation sequencing and metagenomic studies have provided insights into the microbial profile of different body sites. However, research on the microbial composition of urine is limited, particularly in children. The goal of this study was to optimize and develop reproducible metagenome and virome protocols using a small volume of urine samples collected from healthy children. We collected midstream urine specimens from 40 healthy children. Using the metagenomics shotgun approach, we tested various protocols. Different microbial roots such as Archaea, Bacteria, Eukaryota, and Viruses were successfully identified using our optimized urine protocol. Our data reflected much variation in the microbial fingerprints of children. Girls had significantly higher levels of Firmicutes, whereas boys had significantly higher levels of Actinobacteria. The genus Anaerococcus dominated the urinary bacteriome of healthy girls, with a significant increase in Anaerococcus prevotii, Anaerococcus vaginalis, and Veillonella parvula (p-value < 0.001) when compared with that of boys. An increased relative abundance of Xylanimonas and Arthrobacter, with a significantly high abundance of Arthrobacter sp. FB24 (p-value 0.0028) and Arthrobacter aurescences (p-value 0.015), was observed in boys. The urinary mycobiome showed a significant rise in the genus Malassezia and Malassezia globose fungus (p-value 0.009) in girls, whereas genus Saccharomyces (p-value 0.009) was significantly high in boys. The beta diversity of the urinary mycobiome was found to differ between different age groups. Boys had significantly more Mastadenovirus and Human mastadenovirus-A in their urinary virome than girls. With increasing age, we noticed an increase in the relative abundance of the order Caudovirales. Our optimized protocols allowed us to identify the unique microbes for each sex by using an adequate volume of urine (3−10 mL) to screen for the bacteriome, mycobiome, and virome profiles in the urine of healthy children. To the best of our knowledge, this is the first study to characterize the metagenomics profiles of urine in a healthy pediatric population.
Collapse
|