1
|
Li C, Zhuo C, Ma X, Li R, Chen X, Li Y, Zhang Q, Yang L, Tian H, Wang L. Unique and overlapping mechanisms of valbenazine, deutetrabenazine, and vitamin E for tardive dyskinesia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:69. [PMID: 40268947 PMCID: PMC12019491 DOI: 10.1038/s41537-025-00618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/28/2025] [Indexed: 04/25/2025]
Abstract
In 2017, the Food and Drug Administration (FDA) approved valbenazine and deutetrabenazine, two vesicular monoamine transporter 2 (VMAT2) inhibitors, as treatments for tardive dyskinesia (TD). Additionally, some trials have suggested that vitamin E may benefit TD patients. However, the mechanistic basis for these treatments remains unclear. The objective of this study was to analyze and compare the mechanisms of valbenazine, deutetrabenazine, and vitamin E in TD treatment utilizing network pharmacology and molecular docking approaches. Putative target genes associated with valbenazine, deutetrabenazine, and vitamin E were retrieved from the PharmMapper, CTD, GeneCards, SwissTargetPrediction, and DrugBank databases. TD-related targets were identified using the GeneCards, DisGeNET, OMIM, and TTD databases. A protein-protein interaction (PPI) network was created to identify core targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted via DAVID, and Cytoscape was used to build a drug-pathway-target-disease network. Molecular docking evaluated drug-target interactions. A total of 32, 36, and 62 targets relevant to the treatment of TD were identified for valbenazine, deutetrabenazine, and vitamin E, respectively. PPI and KEGG pathway analyses suggested that valbenazine and deutetrabenazine may influence TD through the dopaminergic synapse signaling pathway via common core targets (e.g., Dopamine Receptor D1 (DRD1), DRD2, Monoamine Oxidase B (MAOB), Solute Carrier Family 6 Member 3 (SLC6A3), SLC18A2) and specific targets (DRD3 for valbenazine, MAOA for deutetrabenazine). Vitamin E may affect TD by targeting the PI3K-Akt pathway through AKT Serine/Threonine Kinase 1 (AKT1), Brain-Derived Neurotrophic Factor (BDNF), Insulin (INS), Nitric Oxide Synthase 3 (NOS3), and Toll-Like Receptor 4 (TLR4). This study provides insights into the common and unique molecular mechanisms by which valbenazine, deutetrabenazine, and vitamin E may treat TD. Pharmacological experiments should be conducted to verify and further explore these results. The findings offer a theoretical basis for further pharmacological investigation and a resource for TD drug screening.
Collapse
Affiliation(s)
- Chao Li
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Chuanjun Zhuo
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, China.
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China.
| | - Xiaoyan Ma
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Ranli Li
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Ximing Chen
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Yachen Li
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Qiuyu Zhang
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Lei Yang
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Hongjun Tian
- Department of Psychiatry, Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin, China
| | - Lina Wang
- Computational Biology and Animal Imaging Center (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Mental Health Center, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| |
Collapse
|
2
|
Trugilho L, Alvarenga L, Cardozo L, Paiva B, Brito J, Barboza I, Almeida J, dos Anjos J, Khosla P, Ribeiro-Alves M, Mafra D. Effects of Tocotrienol on Cardiovascular Risk Markers in Patients With Chronic Kidney Disease: A Randomized Controlled Trial. J Nutr Metab 2025; 2025:8482883. [PMID: 39840146 PMCID: PMC11745556 DOI: 10.1155/jnme/8482883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025] Open
Abstract
Tocotrienols, isomers of vitamin E, may provide an effective nutritional strategy to mitigate common cardiovascular risks such as dyslipidemia, inflammation, and oxidative stress in patients with chronic kidney disease (CKD). This double-blind, placebo-controlled, randomized clinical trial aimed to evaluate the effects of a tocotrienol-rich fraction (TRF) supplementation (300 mg/day) on oxidative stress and inflammatory markers, including transcription factors in nondialysis (ND) and hemodialysis (HD) CKD patients for three months. Interleukin-6, tumor necrosis factor-α (IL-6 and TNF-α), C-reactive protein (CRP), lipid peroxidation, biochemical parameters, and transcription factors such as NRF2 and NF-κB mRNA expression were evaluated. Seventeen HD patients (9 in the placebo group, 8 in the TRF group) and 16 ND CKD patients (8 in the placebo group and 8 in the TRF group) completed the study. In HD patients, significant reductions were observed in LDL cholesterol (p=0.04) and total plasma cholesterol levels (p=0.01) after TRF intervention. CRP serum levels decreased significantly in ND CKD patients (p=0.05) after TRF supplementation. Transcription factors NRF2 and NF-κB mRNA expressions remained unaltered in both groups. This study suggests that TRF supplementation may mitigate dyslipidemia and inflammation, factors involved with increased cardiovascular risk, in CKD patients, with variations in efficacy between HD and ND patients. Trial Registration: ClinicalTrials.gov identifier: NCT04900532.
Collapse
Affiliation(s)
- Liana Trugilho
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Lívia Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Physiology-Graduate Program in Biological Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ludmila Cardozo
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Bruna Paiva
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Jessyca Brito
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Physiology-Graduate Program in Biological Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Isis Barboza
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Jonatas Almeida
- Clinic Unit of Research, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Juliana dos Anjos
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Pramod Khosla
- Department of Nutrition and Food Science, Wayne State University, Detroit, Michigan, USA
| | - Marcelo Ribeiro-Alves
- HIV/AIDS Clinical Research Center, National Institute of Infectology Evandro Chagas (INI/Fiocruz), Manguinhos, Rio de Janeiro, Brazil
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Physiology-Graduate Program in Biological Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Mo HY, Shan CH, Chen LW, Chen X, Han C, Wu D, Tao FB, Gao H. Antioxidant vitamins' modification of the adverse health effects induced by phthalate exposure: A scoping review of epidemiological and experimental studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117190. [PMID: 39426110 DOI: 10.1016/j.ecoenv.2024.117190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
The exposure to and health hazards of phthalates have received abundant attention. However, reducing phthalate exposure and further decreasing the associated health risks are difficult. Nonetheless, it is important to actively seek relevant measures. Recently, antioxidant vitamins have been frequently mentioned to improve phthalate-related issues. This scoping review summarizes the existing epidemiological and experimental studies on the interaction of phthalates with antioxidant vitamins. Through a systematic search, sparse epidemiological studies explored the effects of interaction between phthalates and vitamins on reproduction, the endocrine, respiratory, and nervous system and human aging. Four prospective studies were conducted in China, the United States, Canada and Netherlands. Only one study from Netherlands focused on the female reproductive system.The other three studies focused on neurological damage to fetuses caused by phthalate exposure, and its mitigation by vitamin supplementation during pregnancy. Four cross-sectional studies were conducted based on the United States National Health and Nutrition Examination Survey database. These studies involved hazards in different systems and interactions with different vitamins. Overall, epidemiological evidence suggests that antioxidant vitamins such as vitamin A, B, D, and folic acid probably may alter the health hazards induced by phthalate exposure. Current animal studies often focus on three phthalates, DBP, DEHP and DIDP,2 and most commonly, the first two phthalates. These chemicals cause reproductive, urinary, digestive and neurodevelopmental damage; the antioxidant vitamin C, E and B could mitigate the harm caused by phthalates. Possible mechanisms involve reducing oxidative stress, removing methylation,etc. Determining whether these mechanisms are similar to those in humans requires a rigorous experimental study.
Collapse
Affiliation(s)
- Hua-Yan Mo
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - Chun-Han Shan
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - Li-Wen Chen
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - Xin Chen
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - Chen Han
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - De Wu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - Fang-Biao Tao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Hui Gao
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
4
|
El-Sawy WSM, El-Bahrawy AH, Messiha BAS, Hemeida RAM, Khalaf MM. The impact of PPAR-γ/Nrf-2/HO-1, NF-κB/IL-6/ Keap-1, and Bcl-2/caspase-3/ATG-5 pathways in mitigation of DOX-induced cardiotoxicity in an animal model: The potential cardioprotective role of oxyresveratrol and/or dapagliflozin. Food Chem Toxicol 2024; 191:114863. [PMID: 38997059 DOI: 10.1016/j.fct.2024.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/04/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Antioxidants given concurrently with chemotherapy offer an effective strategy for reducing the negative effects of the drug. One remaining obstacle to the use of doxorubicin (DOX) in chemotherapy is cardiotoxicity. Using vitamin E (Vit. E) as a reference standard, our study focuses on the potential preventive benefits of oxyresveratrol (ORES) and/or dapagliflozin (DAPA) against DOX-induced cardiac injury. Acute cardiotoxicity was noticed after a single intravenous injection of a male rat's tail vein with 10 mg/kg of DOX. Oral doses of ORES (80 mg/kg), DAPA (10 mg/kg), and Vit. E (1 g/kg) were given, respectively. Pretreatment of animals with Vit. E, ORES and/or DAPA revealed a considerable alleviation of heart damage, as evidenced by histopathological change mitigation and a notable drop in serum AST, LDH, CK, CK-MB, and cardiac contents of MDA and NO2-. Also, serum TAC, tissue GSH, and SOD showed substantial increases. Additionally, tissue caspase-3, serum IL-6, and TNF-α were considerably reduced. Moreover, a downregulation in cardiac gene expression of ATG-5, Keap-1, and NF-κB in addition to an upregulation of Bcl-2 gene expression and HO-1, Nrf-2, and PPAR-γ protein expression clearly appeared. Ultimately, ORES and/or DAPA have an optimistic preventive action against severe heart deterioration caused by DOX.
Collapse
Affiliation(s)
- Waleed S M El-Sawy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Ali H El-Bahrawy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Basim A S Messiha
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ramadan A M Hemeida
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minya, 61519, Egypt
| | - Marwa M Khalaf
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
5
|
Trugilho L, Alvarenga L, Cardozo LF, Barboza I, Leite M, Fouque D, Mafra D. Vitamin E and conflicting understandings in noncommunicable diseases: Is it worth supplementing? Clin Nutr ESPEN 2024; 59:343-354. [PMID: 38220396 DOI: 10.1016/j.clnesp.2023.12.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Vitamin E is a lipid-soluble nutrient found mainly in vegetable oils and oilseeds. It is divided into eight homologous compounds; however, only α-tocopherol exhibits vitamin activity. Many advantages are related to these compounds, including cellular protection through antioxidant and anti-inflammatory activity, and improving lipid metabolism. Physiopathology of many diseases incepts with reduced antioxidant defense, characterized by an increased reactive oxygen species production and activation of transcription factors involved in inflammation, such as nuclear factor-kappa B (NF-κB), that can be linked to oxidative stress. Moreover, disorders of lipid metabolism can increase the risk of cardiovascular diseases. In addition, intestinal dysbiosis plays a vital role in developing chronic non-communicable diseases. In this regard, vitamin E can be considered to mitigate those disorders, but data still needs to be more conclusive. This narrative review aims to elucidate the mechanisms of action of vitamin E and if supplementation can be beneficial in a disease scenario regarding non-communicable diseases.
Collapse
Affiliation(s)
- Liana Trugilho
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Livia Alvarenga
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Ludmila Fmf Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Isis Barboza
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Maurilo Leite
- Division of Nephrology, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Denis Fouque
- Department of Nephrology, Centre Hopitalier Lyon Sud, INSERM 1060, CENS, Université de Lyon, France
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Kawanishi H, Koremoto M, Franssen CFM, van Londen M. Clotting Propensity of Surface-Treated Membranes in a Hemodialysis Set-up That Avoids Systemic Anticoagulation. Semin Nephrol 2023; 43:151482. [PMID: 38262850 DOI: 10.1016/j.semnephrol.2023.151482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The development of biocompatible membranes, aiming to limit the inflammatory response, oxidative stress, and coagulability during hemodialysis, has been an important step in reducing dialysis-related adverse outcomes. This includes a reduction in the risk of clotting of the extracorporeal circuit, thus enabling hemodialysis with a reduced dose or even without systemic anticoagulant drugs in patients with an increased bleeding risk. In this article, we summarize the in vitro research and clinical evidence on the antithrombotic properties of vitamin E- and heparin-coated membranes.
Collapse
Affiliation(s)
| | | | - Casper F M Franssen
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Marco van Londen
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Ratre P, Chauhan P, Bhargava A, Tiwari R, Thareja S, Srivastava RK, Mishra PK. Nano-engineered vitamins as a potential epigenetic modifier against environmental air pollutants. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:547-564. [PMID: 35724323 DOI: 10.1515/reveh-2022-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Air pollution has emerged as a serious threat to human health due to close association with spectrum of chronic ailments including cardiovascular disorders, respiratory diseases, nervous system dysfunctions, diabetes and cancer. Exposure to air-borne pollutants along with poor eating behaviours and inferior dietary quality irreversibly impacts epigenomic landscape, leading to aberrant transcriptional control of gene expression which is central to patho-physiology of non-communicable diseases. It is assumed that nutriepigenomic interventions such as vitamins can control such adverse effects through their immediate action on mitochondrial epigenomic-axis. Importantly, the exhaustive clinical utility of vitamins-interceded epigenetic synchronization is not well characterized. Therefore, improving the current limitations linked to stability and bioavailability issues in vitamin formulations is highly warranted. The present review not only sums up the available data on the role of vitamins as potential epigenetic modifiers but also discusses the importance of nano-engineered vitamins as potential epidrugs for dietary and pharmacological intervention to mitigate the long-term effects of air pollution toxicity.
Collapse
Affiliation(s)
- Pooja Ratre
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Prachi Chauhan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | | | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
8
|
Xiong Z, Liu L, Jian Z, Ma Y, Li H, Jin X, Liao B, Wang K. Vitamin E and Multiple Health Outcomes: An Umbrella Review of Meta-Analyses. Nutrients 2023; 15:3301. [PMID: 37571239 PMCID: PMC10421296 DOI: 10.3390/nu15153301] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
The relationship between vitamin E intake or circulating α-tocopherol and various health outcomes is still debatable and uncertain. We conducted an umbrella review to identify the relationships between vitamin E intake or circulating tocopherol and health outcomes by merging and recalculating earlier meta-analyses. The connections that were found to be statistically significant were then classified into different evidence levels based on p values, between-study heterogeneity, prediction intervals, and small study effects. We finally included 32 eligible meta-analyses with four vitamin E sources and 64 unique health outcomes. Only the association between circulating α-tocopherol and wheeze or asthma in children was substantiated by consistent evidence. Suggestive evidence was suggested for seven results on endothelial function (supplemental vitamin E): serum C-reactive protein (CRP) concentrations (supplemental vitamin E), cervical cancer (dietary vitamin E), esophageal cancer (dietary vitamin E), cervical intraepithelial neoplasia (CIN, dietary vitamin E), pancreatic cancer (total vitamin E intake), and colorectal cancer (circulating α-tocopherol levels); all of these showed a protective effect consistent with the vitamin E source. In conclusion, our work has indicated that vitamin E is protective for several particular health outcomes. Further prospective studies are required when other factors that may contribute to bias are considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Banghua Liao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu 610041, China; (Z.X.); (L.L.); (Z.J.); (Y.M.); (H.L.); (X.J.)
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu 610041, China; (Z.X.); (L.L.); (Z.J.); (Y.M.); (H.L.); (X.J.)
| |
Collapse
|
9
|
Yousef H, Khandoker AH, Feng SF, Helf C, Jelinek HF. Inflammation, oxidative stress and mitochondrial dysfunction in the progression of type II diabetes mellitus with coexisting hypertension. Front Endocrinol (Lausanne) 2023; 14:1173402. [PMID: 37383391 PMCID: PMC10296202 DOI: 10.3389/fendo.2023.1173402] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Type II diabetes mellitus (T2DM) is a metabolic disorder that poses a serious health concern worldwide due to its rising prevalence. Hypertension (HT) is a frequent comorbidity of T2DM, with the co-occurrence of both conditions increasing the risk of diabetes-associated complications. Inflammation and oxidative stress (OS) have been identified as leading factors in the development and progression of both T2DM and HT. However, OS and inflammation processes associated with these two comorbidities are not fully understood. This study aimed to explore changes in the levels of plasma and urinary inflammatory and OS biomarkers, along with mitochondrial OS biomarkers connected to mitochondrial dysfunction (MitD). These markers may provide a more comprehensive perspective associated with disease progression from no diabetes, and prediabetes, to T2DM coexisting with HT in a cohort of patients attending a diabetes health clinic in Australia. Methods Three-hundred and eighty-four participants were divided into four groups according to disease status: 210 healthy controls, 55 prediabetic patients, 32 T2DM, and 87 patients with T2DM and HT (T2DM+HT). Kruskal-Wallis and χ2 tests were conducted between the four groups to detect significant differences for numerical and categorical variables, respectively. Results and discussion For the transition from prediabetes to T2DM, interleukin-10 (IL-10), C-reactive protein (CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), humanin (HN), and p66Shc were the most discriminatory biomarkers, generally displaying elevated levels of inflammation and OS in T2DM, in addition to disrupted mitochondrial function as revealed by p66Shc and HN. Disease progression from T2DM to T2DM+HT indicated lower levels of inflammation and OS as revealed through IL-10, interleukin-6 (IL-6), interleukin-1β (IL-1β), 8-OHdG and oxidized glutathione (GSSG) levels, most likely due to antihypertensive medication use in the T2DM +HT patient group. The results also indicated better mitochondrial function in this group as shown through higher HN and lower p66Shc levels, which can also be attributed to medication use. However, monocyte chemoattractant protein-1 (MCP-1) levels appeared to be independent of medication, providing an effective biomarker even in the presence of medication use. The results of this study suggest that a more comprehensive review of inflammation and OS biomarkers is more effective in discriminating between the stages of T2DM progression in the presence or absence of HT. Our results further indicate the usefulness of medication use, especially with respect to the known involvement of inflammation and OS in disease progression, highlighting specific biomarkers during disease progression and therefore allowing a more targeted individualized treatment plan.
Collapse
Affiliation(s)
- Hibba Yousef
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ahsan H. Khandoker
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Samuel F. Feng
- Department of Science and Engineering, Sorbonne University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Charlotte Helf
- Dermatology, Venereology and Allergology, University Hospital Schleswig-Holstein, Schleswig-Holstein, Germany
| | - Herbert F. Jelinek
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Biotechnology Center, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Kadatane SP, Satariano M, Massey M, Mongan K, Raina R. The Role of Inflammation in CKD. Cells 2023; 12:1581. [PMID: 37371050 DOI: 10.3390/cells12121581] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic kidney disease (CKD) affects many adults worldwide. Persistent low-grade inflammation is a substantial factor in its development and progression and has correlated with increased mortality and cardiovascular problems. This low-grade inflammation is a product of dysregulation of the normal balance between pro- and anti-inflammatory markers. Various factors such as increased innate immune system activation, reactive oxygen species production, periodontal disease, dysregulation of anti-inflammatory systems and intestinal dysbiosis result in the dysregulation of this balance. Furthermore, this low-grade inflammation has down-effects such as hypertension, renal fibrosis and acceleration of renal function decline. Moreover, low-grade inflammation over time has been linked to malignancy in CKD. As CKD progresses, many patients require dialysis, which has a negative bidirectional relationship with persistent inflammation. Treatment options for inflammation in CKD are vast, including cytokine inhibitors, statins and diets. However, more research is needed to create a standardized management plan. In this review, we will examine the normal physiology of the kidney and its relationship with the immune system. We will then delve into the pathology behind persistent inflammation, the various causes of inflammation, the downstream effects of inflammation, dialysis and potential treatments for inflammation in CKD.
Collapse
Affiliation(s)
| | - Matthew Satariano
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Michael Massey
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Kai Mongan
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Rupesh Raina
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH 44302, USA
- Department of Nephrology, Akron Children's Hospital, Akron, OH 44308, USA
| |
Collapse
|
11
|
Galli F, Bonomini M, Bartolini D, Zatini L, Reboldi G, Marcantonini G, Gentile G, Sirolli V, Di Pietro N. Vitamin E (Alpha-Tocopherol) Metabolism and Nutrition in Chronic Kidney Disease. Antioxidants (Basel) 2022; 11:989. [PMID: 35624853 PMCID: PMC9137556 DOI: 10.3390/antiox11050989] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023] Open
Abstract
Vitamin E (alpha-tocopherol) is an essential micronutrient and fat-soluble antioxidant with proposed role in protecting tissues from uncontrolled lipid peroxidation. This vitamin has also important protein function and gene modulation effects. The metabolism of vitamin E depends on hepatic binding proteins that selectively retain food alpha-tocopherol for incorporation into nascent VLDL and tissue distribution together with esterified cholesterol and triglycerides. Chronic kidney disease (CKD) is a condition of oxidative stress and increased lipid peroxidation, that are associated with alterations of alpha-tocopherol metabolism and function. Specific changes have been reported for the levels of its enzymatic metabolites, including both short-chain and long-chain metabolites, the latter being endowed with regulatory functions on enzymatic and gene expression processes important for the metabolism of lipids and xenobiotics detoxification, as well as for the control of immune and inflammatory processes. Vitamin E therapy has been investigated in CKD using both oral vitamin E protocols and vitamin E-coated hemodialyzers, showing promising results in the secondary prevention of cardiovascular disease, as well as of immune and hematological complications. These therapeutic approaches are reviewed in the present article, together with a narrative excursus on the main findings indicating CKD as a condition of relative deficiency and impaired metabolism of vitamin E.
Collapse
Affiliation(s)
- Francesco Galli
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy; (D.B.); (L.Z.); (G.M.)
| | - Mario Bonomini
- Department of Medicine and Aging, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy; (M.B.); (V.S.)
| | - Desirée Bartolini
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy; (D.B.); (L.Z.); (G.M.)
| | - Linda Zatini
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy; (D.B.); (L.Z.); (G.M.)
| | - Gianpaolo Reboldi
- Department of Medicine and Surgery, Centro di Ricerca Clinica e Traslazionale, CERICLET, University of Perugia, 06126 Perugia, Italy;
| | - Giada Marcantonini
- Department of Pharmaceutical Science, University of Perugia, 06126 Perugia, Italy; (D.B.); (L.Z.); (G.M.)
| | - Giorgio Gentile
- Royal Cornwall Hospitals, NHS Trust, Cornwall, Truro TR1 3LJ, UK;
- Department of Nephrology, University of Exeter Medical School, Exeter EX1 2HZ, UK
| | - Vittorio Sirolli
- Department of Medicine and Aging, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy; (M.B.); (V.S.)
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|
12
|
Buonsenso D, Gennaro LD, Rose CD, Morello R, D'Ilario F, Zampino G, Piazza M, Boner AL, Iraci C, O'Connell S, Cohen VB, Esposito S, Munblit D, Reena J, Sigfrid L, Valentini P. Long-term outcomes of pediatric infections: from traditional infectious diseases to long Covid. Future Microbiol 2022; 17:551-571. [PMID: 35264003 PMCID: PMC8910780 DOI: 10.2217/fmb-2022-0031] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
There is limited evidence available on the long-term impact of SARS-CoV-2 infection in children. In this article, the authors analyze the recent evidence on pediatric long Covid and lessons learnt from a pediatric post-Covid unit in Rome, Italy. To gain a better understanding of the concerns raised by parents and physicians in relation to the potential long-term consequences of this novel infection, it is important to recognize that long-term effect of a post-infectious disease is not a new phenomenon.
Collapse
Affiliation(s)
- Danilo Buonsenso
- Department of Woman & Child Health & Public Health, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
- Center for Global Health Research & Studies, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Leonardo Di Gennaro
- Department of Diagnostic Imaging, Hemorrhagic & Thrombotic Diseases Center, Oncological Radiotherapy, & Hematology, Foundation ‘A Gemelli’ IRCCS University Hospital, Rome, Italy
| | - Cristina De Rose
- Department of Woman & Child Health & Public Health, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Rosa Morello
- Department of Woman & Child Health & Public Health, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Federico D'Ilario
- Department of Woman & Child Health & Public Health, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Giuseppe Zampino
- Department of Woman & Child Health & Public Health, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Michele Piazza
- Pediatric Section, Department of Surgery, Dentistry, pediatrics, & Gynaecology, University of Verona, Verona, Italy
| | - Attilio L Boner
- Pediatric Section, Department of Surgery, Dentistry, pediatrics, & Gynaecology, University of Verona, Verona, Italy
| | | | | | - Valentina B Cohen
- Patient author, member of the CAC Community Advisory Council of Solve ME/CFS Initiative, Pietro Barilla Children's Hospital, Department of Medicine & Surgery, University of Parma, Via Gramsci 14, Parma, 43126, Italy
| | - Susanna Esposito
- Pietro Barilla Children's Hospital, Department of Medicine & Surgery, University of Parma, Via Gramsci 14, Parma, 43126, Italy
| | - Daniel Munblit
- Department of pediatrics & pediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Joseph Reena
- MSc Immunology, Imperial College London, London, UK
| | - Louise Sigfrid
- ISARIC Global Support Centre, Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK
| | - Piero Valentini
- Department of Woman & Child Health & Public Health, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| |
Collapse
|
13
|
Bonomini M, Piscitani L, Di Liberato L, Sirolli V. Biocompatibility of Surface-Modified Membranes for Chronic Hemodialysis Therapy. Biomedicines 2022; 10:biomedicines10040844. [PMID: 35453594 PMCID: PMC9025662 DOI: 10.3390/biomedicines10040844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Hemodialysis is a life-sustaining therapy for millions of people worldwide. However, despite considerable technical and scientific improvements, results are still not fully satisfactory in terms of morbidity and mortality. The membrane contained in the hemodialyzer is undoubtedly the main determinant of the success and quality of hemodialysis therapy. Membrane properties influence solute removal and the interactions with blood components that define the membrane’s biocompatibility. Bioincompatibility is considered a potential contributor to several uremic complications. Thus, the development of more biocompatible polymers used as hemodialyzer membrane is of utmost importance for improving results and clinical patient outcomes. Many different surface-modified membranes for hemodialysis have been manufactured over recent years by varying approaches in the attempt to minimize blood incompatibility. Their main characteristics and clinical results in hemodialysis patients were reviewed in the present article.
Collapse
Affiliation(s)
- Mario Bonomini
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (L.D.L.); (V.S.)
- Correspondence:
| | - Luca Piscitani
- Nephrology and Dialysis Unit, Department of Medicine, San Salvatore Hospital, Via Vetoio, 67100 L’Aquila, Italy;
| | - Lorenzo Di Liberato
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (L.D.L.); (V.S.)
| | - Vittorio Sirolli
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (L.D.L.); (V.S.)
| |
Collapse
|