1
|
富 丽, 袁 立, 王 杰, 陈 学, 柯 桂, 黄 煜, 杨 心, 刘 刚. [Advances of low-intensity pulsed ultrasound for treatment of musculoskeletal disorders in the past decade]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2025; 45:661-668. [PMID: 40159981 PMCID: PMC11955893 DOI: 10.12122/j.issn.1673-4254.2025.03.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Indexed: 04/02/2025]
Abstract
Musculoskeletal disorders (MSDs) are characterized by extensive pathological involvement and high prevalence and cause a significant disease burden. Long-term drug administration often causes by adverse effects with poor therapeutic efficacy. Low-intensity pulsed ultrasound (LIPUS), as a specialized therapeutic modality, delivers acoustic energy at a low intensity in a pulsed wave mode, thus ensuring stable energy transmission to the target tissues while minimizing thermal effects. This non-invasive approach has demonstrated significant potential for MSD treatment by delivering effective physical stimulations. Extensive animal and clinical studies have demonstrated the efficacy of LIPUS for accelerating the healing process of fresh fractures and nonunions, promoting soft tissue regeneration and suppressing inflammatory responses. Emerging evidence suggests promising applications of LIPUS in skeletal muscle injury treatment and promoting tissue regeneration and repair. This review outlines the recent advancements and mechanistic studies of LIPUS for treatment of common MSDs including fractures, nonunions, muscle injuries, and osteoarthritis, addressing also the technical parameters of commercially available LIPUS devices, current therapeutic approaches, the existing challenges, and future research directions.
Collapse
|
2
|
Lin L, Li S, Liu Q, Zhang X, Xiong Y, Zhao S, Cao L, Gong J, Liu Y, Wu R. Traditional pediatric massage enhanced the skeletal muscle mass in OVA-exposed adolescent rats via regulating SCFAs-FFAR2-IGF-1/AKT pathway. Front Microbiol 2025; 15:1492783. [PMID: 39831118 PMCID: PMC11739148 DOI: 10.3389/fmicb.2024.1492783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Objective This study aimed to investigate the potential relation between the retarded growth of skeletal muscle (SM) and dysbiosis of gut microbiota (GM) in children with asthma, and to explore the potential action mechanisms of traditional pediatric massage (TPM) from the perspective of regulating GM and short-chain fatty acids (SCFAs) production by using an adolescent rat model of asthma. Methods Male Sprague-Dawley rats aged 3weeks were divided randomly into the 5 groups (n=6~7) of control, ovalbumin (OVA), OVA + TPM, OVA + methylprednisolone sodium succinate (MP) and OVA + SCFAs. Pulmonary function (PF) was detected by whole body plethysmograph, including enhanced pause and minute ventilation. Airway allergic inflammation (AAI) status was assessed by concentrations of OVA-specific immunoglobulin E in plasma, interleukin (IL)-4 and IL-1β in bronchoalveolar lavage fluid via ELISA assay. SM mass was assessed by using cross-sectional areas of diaphragm muscle and gastrocnemius via hematoxylin and eosin staining. GM and SCFAs production were detected by 16S rDNA sequencing and GC-MS, respectively. The protein and gene expressions of free fatty acid receptor 2 in SM were detected by using immunohistochemical staining and qRT-PCR, respectively. qRT-PCR was used to detect other relative gene expressions that were closely related with SM mass. The activity of insulin-like growth factor-1 (IGF-1)/protein kinase B (PKB/AKT) pathway in SM was detected by western blotting test. Results OVA exposure caused obvious AAI and poor PF in adolescent rats. OVA-exposed adolescent rats had a retarded growth of SM mass and inhibited activity of IGF-1/AKT pathway, which was related with GM dysbiosis, reduced SCFAs production and FFAR2 expressions in SM. TPM efficiently enhanced the SM mass, along with alleviating AAI and improving PF. TPM activated IGF-1/AKT pathway in SM, which was closely related with correcting GM dysbiosis, enhanced SCFAs production and FFAR2 expressions. Conclusion The retarded growth of SM mass and inhibition of IGF-1/AKT pathway existed in OVA-exposed adolescent rats, which was related with GM dysbiosis, reduced SCFAs production and FFAR2 expressions in SM. TPM efficiently enhanced the SM mass, at least, partially via regulating GM, enhancing SCFAs production and activating FFAR2-IGF-1/AKT pathway.
Collapse
Affiliation(s)
- Lin Lin
- Department of Traditional Chinese Medicine, Shijiazhuang Medical College, Shijiazhuang, Hebei, China
| | - Siyuan Li
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Que Liu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xingxing Zhang
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ying Xiong
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shaoyun Zhao
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Liyue Cao
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiaxuan Gong
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yaping Liu
- Department of Acupuncture Moxibustion, Nantong First People's Hospital, Nantong, Jiangsu, China
| | - Rong Wu
- Department of Medicine, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
3
|
Lv X, Wang X, Yue J, Wang X, Chen H, Gao Q. Effect of traction therapy on muscle satellite cell proliferation and differentiation in a rat model of knee stiffness. Stem Cell Res Ther 2024; 15:490. [PMID: 39707518 DOI: 10.1186/s13287-024-04108-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND In the rat knee stiffness model, the duration of traction treatment is mostly 20-40 min; however, relatively few studies have been conducted on longer traction treatment of extended knee stiffness in rats. Therefore, the aim of this study was to explore the efficacy of prolonged traction and its mechanism of action in extended knee stiffness in rats. METHODS The model of extended knee joint stiffness was established in rats and treated with powered flexion position traction. On the 10th and 20th days respectively, passive range of motion (PROM) assessments and musculoskeletal ultrasound were conducted. Rectus femoris muscle tissues were taken for Western blotting (WB) to detect the expression of muscle satellite cells proliferation and differentiation signaling factors. Histopathological staining was used to evaluate the degree of muscle atrophy and muscle fibrosis in the rectus femoris muscle, and immunofluorescence double staining was used to detect proliferation of muscle satellite cells number. The results from these analyses were used to assess the therapeutic outcomes of the traction treatment. RESULTS The findings indicated that chronic persistent traction significantly improved joint mobility, notably enhanced the proliferation of muscle satellite cells, and inhibited their differentiation. Furthermore, the treatment facilitated the repair and regeneration of damaged tissues, reduced muscular atrophy and fibrosis in the rectus femoris muscle, and alleviated knee stiffness. CONCLUSION Chronic persistent traction can effectively relieve knee joint stiffness, and its mechanism is related to the activation and proliferation of the rectus femoris muscle satellite cells, thereby promoting the repair and regeneration of damaged skeletal muscle.
Collapse
Affiliation(s)
- Xiaoqian Lv
- The Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233040, China
| | - Xiaoyu Wang
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Jianxing Yue
- The Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233040, China
| | - Xin Wang
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Haoyue Chen
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Qiang Gao
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China.
| |
Collapse
|
4
|
Li X, Deng Z, Lu W. Mechanistic study of the effect of flexible fixation and load-bearing stress environment on fracture healing and shaping. Animal Model Exp Med 2024; 7:816-823. [PMID: 38978345 PMCID: PMC11680484 DOI: 10.1002/ame2.12448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/27/2024] [Accepted: 05/22/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The biomechanical environment created by suture-button fixation Latarjet is conducive to the healing and shaping of the transplanted coracoid, but its mechanism remains unclear. The latest research has found that the absence of stem cell chemokine (CXCL12) impeded bone regeneration in Sonic Hedgehog (SHH)-deficient animals. However, whether the biomechanical environment affects SHH and CXCL12 function has not been studied. METHODS Rat fracture models were constructed to simulate stress environments under non-load-bearing and load-bearing conditions. The fracture healing and shaping, as well as the expression levels of SHH and CXCL12, were assessed through gross viewing, micro-computed tomography (micro-CT), and histochemical staining. RESULTS Under flexible fixation, the relative bone volume (BV/TV) of rats exposed to the load-bearing stress environment was significantly higher than that of rats under a non-load-bearing stress environment (p ≤ 0.05). Adverse bone shaping was not observed in rats subjected to flexible fixation. The levels of SHH and CXCL12 in load-bearing rats exhibited significant elevation (p ≤ 0.05). Under a load-bearing stress environment, no significant difference was observed in the BV/TV between the flexible fixation group and the rigid fixation group (p ≥ 0.05), but there was excessive hyperplasia of the fracture callus in the rigid fixation group. The levels of SHH and CXCL12 in rats subjected to rigid fixation were significantly elevated (p ≤ 0.05). CONCLUSIONS Flexible fixation and load-bearing stress environment may contribute to bone healing and shaping by influencing the levels of SHH and CXCL12, suggested that this mechanism may be relevant to the healing and shaping of the transplanted coracoid after suture-button fixation Latarjet.
Collapse
Affiliation(s)
- Xingfu Li
- Department of Sports MedicineShenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University)ShenzhenGuangdongChina
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National‐Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical EngineeringShenzhen University Medical SchoolShenzhenGuangdongChina
| | - Zhenhan Deng
- Department of Sports MedicineShenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University)ShenzhenGuangdongChina
- Department of Orthopedics SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Wei Lu
- Department of Sports MedicineShenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University)ShenzhenGuangdongChina
| |
Collapse
|
5
|
Duan H, Chen S, Mai X, Fu L, Huang L, Xiao L, Liao M, Chen H, Liu G, Xie L. Low-intensity pulsed ultrasound (LIPUS) promotes skeletal muscle regeneration by regulating PGC-1α/AMPK/GLUT4 pathways in satellite cells/myoblasts. Cell Signal 2024; 117:111097. [PMID: 38355078 DOI: 10.1016/j.cellsig.2024.111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Low-Intensity Pulsed Ultrasound (LIPUS) holds therapeutic potential in promoting skeletal muscle regeneration, a biological process mediated by satellite cells and myoblasts. Despite their central roles in regeneration, the detailed mechanistic of LIPUS influence on satellite cells and myoblasts are not fully underexplored. In the current investigation, we administrated LIPUS treatment to injured skeletal muscles and C2C12 myoblasts over five consecutive days. Muscle samples were collected on days 6 and 30 post-injury for an in-depth histological and molecular assessment, both in vivo and in vitro with immunofluorescence analysis. During the acute injury phase, LIPUS treatment significantly augmented the satellite cell population, concurrently enhancing the number and size of newly formed myofibers whilst reducing fibrosis levels. At 30 days post-injury, the LIPUS-treated group demonstrated a more robust satellite cell pool and a higher myofiber count, suggesting that early LIPUS intervention facilitates satellite cell proliferation and differentiation, thereby promoting long-term recovery. Additionally, LIPUS markedly accelerated C2C12 myoblast differentiation, with observed increases in AMPK phosphorylation in myoblasts, leading to elevated expression of Glut4 and PGC-1α, and subsequent glucose uptake and mitochondrial biogenesis. These findings imply that LIPUS-induced modulation of myoblasts may culminate in enhanced cellular energy availability, laying a theoretical groundwork for employing LIPUS in ameliorating skeletal muscle regeneration post-injury. NEW & NOTEWORTHY: Utilizing the cardiotoxin (CTX) muscle injury model, we investigated the influence of LIPUS on satellite cell homeostasis and skeletal muscle regeneration. Our findings indicate that LIPUS promotes satellite cell proliferation and differentiation, thereby facilitating skeletal muscle repair. Additionally, in vitro investigations lend credence to the hypothesis that the regulatory effect of LIPUS on satellite cells may be attributed to its capability to enhance cellular energy metabolism.
Collapse
Affiliation(s)
- Huimin Duan
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shujie Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Anesthesiology, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, Guangdong, China
| | - Xudong Mai
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Liping Fu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Liujing Huang
- Medical Affairs Department, Guangzhou Betrue Technology Co., Ltd, Guangzhou 510700, China
| | - Lanling Xiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Miaomiao Liao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hong Chen
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China.
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Anesthesiology, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, Guangdong, China; Department of Internal Medicine, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China; Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; College of Life and Health Sciences, Guangdong Industry Polytechnic, Guangzhou, Guangdong 510300, China.
| |
Collapse
|
6
|
Wei D, Wang Z, Yue J, Chen Y, Meng J, Niu X. Effect of low-intensity focused ultrasound therapy on postpartum uterine involution in puerperal women: A randomized controlled trial. PLoS One 2024; 19:e0301825. [PMID: 38687759 PMCID: PMC11060566 DOI: 10.1371/journal.pone.0301825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/07/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Short-term poor uterine involution manifests as uterine contraction weakness. This is one of the important causes of postpartum hemorrhage, posing a serious threat to the mother's life and safety. The study aims to investigate whether low-intensity focused ultrasound (LIFUS) can effectively shorten lochia duration, alleviate postpartum complications, and accelerate uterine involution compared with the sham treatment. METHODS A multicenter, concealed, randomized, blinded, and sham-controlled clinical trial was conducted across three medical centers involving 176 subjects, utilizing a parallel group design. Enrollment occurred between October 2019 and September 2020, with a 42-day follow-up period. Participants meeting the inclusion and exclusion criteria based on normal prenatal examinations were randomly divided into the LIFUS group or the sham operation group via computer-generated randomization. Patients in the LIFUS group received usual care with the LIFUS protocol, wherein a LIFUS signal was transmitted to the uterine site through coupling gel, or sham treatment, where no low-intensity ultrasound signal output was emitted. The primary outcome, lochia duration, was assessed via weekly telephonic follow-ups post-discharge. The involution of the uterus, measured by uterine fundus height, served as the secondary outcome. RESULTS Among the 256 subjects screened for eligibility, 176 subjects were enrolled and randomly assigned to either the LIFUS group (n = 88) or the Sham group (n = 88). Data on the height of the uterine fundus were obtained from all the patients, with 696 out of 704 measurements (99%) successfully recorded. Overall, a statistically significant difference was noted in time to lochia termination (hazard ratio: 2.65; 95% confidence interval [CI]: 1.82-3.85; P < 0.001). The decline in fundal height exhibited notable discrepancies between the two groups following the second treatment session (mean difference: -1.74; 95% CI: -1.23 to -2.25; P < 0.001) and the third treatment session (mean difference: -3.26; 95% CI: -2.74 to -3.78; P < 0.001) after delivery. None of the subjects had any adverse reactions, such as skin damage or allergies during the treatment. CONCLUSIONS This study found that LIFUS treatment can promote uterine involution and abbreviate the duration of postpartum lochia. Ultrasound emerges as a safe and effective intervention, poised to address further clinical inquiries in the domain of postpartum rehabilitation.
Collapse
Affiliation(s)
- Dongmei Wei
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zhijian Wang
- Department of Gynecology and Obstetrics, Southern Hospital, Southern Medical University, Guangzhou, China
| | - Jun Yue
- Department of Gynecology and Obstetrics, Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yueyue Chen
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Jian Meng
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaoyu Niu
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
7
|
Dong N, Jiang B, Chang Y, Wang Y, Xue C. Integrated Omics Approach: Revealing the Mechanism of Auxenochlorella pyrenoidosa Protein Extract Replacing Fetal Bovine Serum for Fish Muscle Cell Culture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6064-6076. [PMID: 38465450 DOI: 10.1021/acs.jafc.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The process of producing cell-cultured meat involves utilizing a significant amount of culture medium, including fetal bovine serum (FBS), which represents a considerable portion of production expense while also raising environmental and safety concerns. This study demonstrated that supplementation with Auxenochlorella pyrenoidosa protein extract (APE) under low-serum conditions substantially increased Carassius auratus muscle (CAM) cell proliferation and heightened the expression of Myf5 compared to the absence of APE. An integrated intracellular metabolomics and proteomics analysis revealed a total of 13 and 67 differentially expressed metabolites and proteins, respectively, after supplementation with APE in the medium containing 5%FBS, modulating specific metabolism and signaling pathways, which explained the application of APE for passage cell culture under low-serum conditions. Further analysis revealed that the bioactive factors in the APE were protein components. Moreover, CAM cells cultured in reconstructed serum-free media containing APE, l-ascorbic acid, insulin, transferrin, selenium, and ethanolamine exhibited significantly accelerated growth in a scale-up culture. These findings suggest a promising alternative to FBS for fish muscle cell culture that can help reduce production costs and environmental impact in the production of cultured meat.
Collapse
Affiliation(s)
- Nannan Dong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Bingxue Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yaoguang Chang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yanchao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
8
|
Dang K, Gao Y, Wang H, Yang H, Kong Y, Jiang S, Qian A. Integrated metabolomics and proteomics analysis to understand muscle atrophy resistance in hibernating Spermophilus dauricus. Cryobiology 2024; 114:104838. [PMID: 38097057 DOI: 10.1016/j.cryobiol.2023.104838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Hibernating Spermophilus dauricus experiences minor muscle atrophy, which is an attractive anti-disuse muscle atrophy model. Integrated metabolomics and proteomics analysis was performed on the hibernating S. dauricus during the pre-hibernation (PRE) stage, torpor (TOR) stage, interbout arousal (IBA) stage, and post-hibernation (POST) stage. Time course stage transition-based (TOR vs. PRE, IBA vs. TOR, POST vs. IBA) differential expression analysis was performed based on the R limma package. A total of 14 co-differential metabolites were detected. Among these, l-cystathionine, l-proline, ketoleucine, serine, and 1-Hydroxy-3,6,7-Trimethoxy-2, 8-Diprenylxanthone demonstrated the highest levels in the TOR stage; Beta-Nicotinamide adenine dinucleotide, Dihydrozeatin, Pannaric acid, and Propionylcarnitine demonstrated the highest levels in the IBA stage; Adrenosterone, PS (18:0/14,15-EpETE), S-Carboxymethylcysteine, TxB2, and 3-Phenoxybenzylalcohol demonstrated the highest levels in the POST stage. Kyoto Encyclopedia of Genes and Genomes pathways annotation analysis indicated that biosynthesis of amino acids, ATP-binding cassette transporters, and cysteine and methionine metabolism were co-differential metabolism pathways during the different stages of hibernation. The stage-specific metabolism processes and integrated enzyme-centered metabolism networks in the different stages were also deciphered. Overall, our findings suggest that (1) the periodic change of proline, ketoleucine, and serine contributes to the hindlimb lean tissue preservation; and (2) key metabolites related to the biosynthesis of amino acids, ATP-binding cassette transporters, and cysteine and methionine metabolism may be associated with muscle atrophy resistance. In conclusion, our co-differential metabolites, co-differential metabolism pathways, stage-specific metabolism pathways, and integrated enzyme-centered metabolism networks are informative for biologists to generate hypotheses for functional analyses to perturb disuse-induced muscle atrophy.
Collapse
Affiliation(s)
- Kai Dang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yuan Gao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Huiping Wang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, 710069, China; China Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Huajian Yang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, 710069, China; China Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Yong Kong
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, 710069, China; China Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Shanfeng Jiang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
9
|
Ji X, Duan H, Wang S, Chang Y. Low-intensity pulsed ultrasound in obstetrics and gynecology: advances in clinical application and research progress. Front Endocrinol (Lausanne) 2023; 14:1233187. [PMID: 37593351 PMCID: PMC10431596 DOI: 10.3389/fendo.2023.1233187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
In the past decade, research on ultrasound therapy in obstetrics and gynecology has rapidly developed. Currently, high-intensity ultrasound has been widely used in clinical practice, while low-intensity ultrasound has gradually emerged as a new trend of transitioning from pre-clinical research to clinical applications. Low-intensity pulsed ultrasound (LIPUS), characterized by a non-invasive low-intensity pulse wave stimulation method, employs its non-thermal effects to achieve safe, economical, and convenient therapeutic outcomes. LIPUS converts into biochemical signals within cells through pathways such as cavitation, acoustic flow, and mechanical stimulation, regulating molecular biological mechanisms and exerting various biological effects. The molecular biology mechanisms underlying the application of LIPUS in obstetrics and gynecology mainly include signaling pathways, key gene expression, angiogenesis, inflammation inhibition, and stem cell differentiation. LIPUS plays a positive role in promoting soft tissue regeneration, bone regeneration, nerve regulation, and changes in cell membrane permeability. LIPUS can improve the treatment benefit of premature ovarian failure, pelvic floor dysfunction, nerve damage caused by intrauterine growth restriction, ovariectomized osteoporosis, and incomplete uterine involution through the above biological effects, and it also has application value in the adjuvant treatment of malignant tumors such as ovarian cancer and cervical cancer. This study outlines the biological mechanisms and applications of LIPUS in treating various obstetric and gynecologic diseases, aiming to promote its precise application and provide a theoretical basis for its use in the field.
Collapse
Affiliation(s)
| | - Hua Duan
- Department of Minimally Invasive Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | | | | |
Collapse
|
10
|
Chen Y, Sun S, Zhou X, He M, Li Y, Liu C, Ta D. Low-intensity pulsed ultrasound and parathyroid hormone improve muscle atrophy in estrogen deficiency mice. ULTRASONICS 2023; 132:106984. [PMID: 36944299 DOI: 10.1016/j.ultras.2023.106984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 03/09/2023] [Indexed: 05/29/2023]
Abstract
Due to aging and long-term estrogen deficiency, postmenopausal women suffer muscle atrophy (MA), which is characterized by decreased muscle mass and muscle quality. Low-intensity pulsed ultrasound (LIPUS) is an acoustic wave inducing biological effects mainly by the mechanical stimulation and used as a non-invasive physical therapy for muscle repair. Parathyroid hormone (PTH) is an 84-amino-acid polypeptide, and its bioactive fragment [PTH (1-34)] has potential application in the treatment of MA. We speculate that the combination of physical therapy (i.e., the LIPUS) and regulatory hormone (i.e., the PTH) would be more effective in the treatment of MA. The objective of this study was to evaluate the individual and combined effects of LIPUS and PTH therapy on MA in estrogen deficiency mice. Seventy 8-week-old female C57BL/6J mice were used in this study and the MA model was induced by an intraperitoneal injection of 4-vinylcyclohexene diepoxide (VCD) for 20 consecutive days. The VCD-induced MA mice were randomly divided into MA, LIPUS, PTH and LIPUS + PTH (Combined) groups (n = 10/group). In the LIPUS group, the mice were treated by LIPUS in bilateral quadriceps muscles for 20 min, five times a week for 6 weeks. In the PTH group, the mice received subcutaneous injection of PTH (1-34) (80 ug/kg/d) five times a week, for 6 weeks. In the Combined group, the PTH was administrated 30 min before each LIPUS session. Hematoxylin-eosin (H&E) staining, serum biochemical analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were applied to evaluate the therapeutic effects of related treatments. The results showed that the MA mice had a disordered estrus cycle, significantly decreased muscle mass and myofibers cross-sectional area (CSA). After treatments, LIPUS, PTH and Combined groups had a significantly increased CSA, compared with the MA mice without treatment. In addition, Combined group had a significantly increased mRNA expression of Pax7, MyoD and MyoG, compared with LIPUS and PTH monotherapy groups. Our findings indicated that the combination of LIPUS and PTH treatment improves muscle regeneration ability, which might have potential for treating MA in postmenopausal women.
Collapse
Affiliation(s)
- Yuefu Chen
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Shuxin Sun
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Xinyan Zhou
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Min He
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Ying Li
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China.
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China.
| | - Dean Ta
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China
| |
Collapse
|
11
|
Qin H, Du L, Luo Z, He Z, Wang Q, Chen S, Zhu YL. The therapeutic effects of low-intensity pulsed ultrasound in musculoskeletal soft tissue injuries: Focusing on the molecular mechanism. Front Bioeng Biotechnol 2022; 10:1080430. [PMID: 36588943 PMCID: PMC9800839 DOI: 10.3389/fbioe.2022.1080430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Musculoskeletal soft tissue injuries are very common and usually occur during both sporting and everyday activities. The intervention of adjuvant therapies to promote tissue regeneration is of great importance to improving people's quality of life and extending their productive lives. Though many studies have focused on the positive results and effectiveness of the LIPUS on soft tissue, the molecular mechanisms standing behind LIPUS effects are much less explored and reported, especially the intracellular signaling pathways. We incorporated all research on LIPUS in soft tissue diseases since 2005 and summarized studies that uncovered the intracellular molecular mechanism. This review will also provide the latest evidence-based research progress in this field and suggest research directions for future experiments.
Collapse
Affiliation(s)
- Haocheng Qin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Du
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhong He
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Wang
- Department of Orthopedics, Kunshan Hospital of Chinese Medicine, Suzhou, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Lian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Yang X, Li P, Lei J, Feng Y, Tang L, Guo J. Integrated Application of Low-Intensity Pulsed Ultrasound in Diagnosis and Treatment of Atrophied Skeletal Muscle Induced in Tail-Suspended Rats. Int J Mol Sci 2022; 23:10369. [PMID: 36142280 PMCID: PMC9498990 DOI: 10.3390/ijms231810369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term exposure to microgravity leads to muscle atrophy, which is primarily characterized by a loss of muscle mass and strength and reduces one′s functional capability. A weightlessness-induced muscle atrophy model was established using the tail suspension test to evaluate the intervention or therapeutic effect of low-intensity pulsed ultrasound (LIPUS) on muscle atrophy. The rats were divided into five groups at random: the model group (B), the normal control group (NC), the sham-ultrasound control group (SUC), the LIPUS of 50 mW/cm2 radiation group (50 UR), and the LIPUS of 150 mW/cm2 radiation group (150 UR). Body weight, gastrocnemius weight, muscle force, and B-ultrasound images were used to evaluate muscle atrophy status. Results showed that the body weight, gastrocnemius weight, and image entropy of the tail suspension group were significantly lower than those of the control group (p < 0.01), confirming the presence of muscle atrophy. Although the results show that the muscle force and two weights of the rats stimulated by LIPUS are still much smaller than those of the NC group, they are significantly different from those of the pure tail suspension B group (p < 0.01). On day 14, the gastrocnemius forces of the rats exposed to 50 mW/cm2 and 150 mW/cm2 LIPUS were 150% and 165% of those in the B group. The gastrocnemius weights were both 135% of those in the B group. This suggests that ultrasound can, to a certain extent, prevent muscular atrophy.
Collapse
Affiliation(s)
- Xuebing Yang
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710119, China
| | - Pan Li
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710119, China
| | - Jiying Lei
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710119, China
- Junior Middle Department, Shanxi Modern Bilingual School, Taiyuan 030031, China
| | - Yichen Feng
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710119, China
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi’an 710119, China
| | - Jianzhong Guo
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|