1
|
Liao JC, Xiang J, Gui WY, Luo HZ, You Q, He QR, Lu MX, Yang SY, Wang Q, Zou JD, Li CY. Broad range lipidomics and metabolomics coupled with 16S rRNA sequencing to reveal the mechanisms of Huangkui Capsule against cisplatin-induced nephrotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119197. [PMID: 39631718 DOI: 10.1016/j.jep.2024.119197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/22/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangkui Capsule (HKC) is a traditional Chinese medicinal preparation. Numerous clinical studies have reported that HKC has a good nephroprotection effect. The clinical application of cisplatin is greatly limited by its nephrotoxicity, and HKC shows promise in preventing cisplatin-induced nephrotoxicity (CIN). AIM OF THE STUDY To evaluate the effectiveness of HKC in alleviating CIN and explore its underlying action mechanisms. MATERIALS AND METHODS A rat model of CIN was established via single-dose injection of cisplatin. The effectiveness of HKC was evaluated by biochemical indices and pathological sections. Then, serum, kidney, and cecal endogenous metabolic profiles as well as the gut microbiota were characterized using lipidomics, metabolomics, and 16S rRNA high-throughput sequencing technique. Spearman's correlation analysis was carried out between gut microbiota, biomarkers, and biochemical indices. Finally, antibiotic treatment was performed to establish a pseudo-sterile rat model and validate the nephroprotection of HKC in a gut microbiota-dependent manner. RESULTS HKC could significantly attenuate the abnormal elevation of serum creatinine and urea nitrogen, kidney index, and kidney injury score in CIN rats, remarkably alleviate the disturbance of metabolic profiles of serum, kidney, and cecal contents, corresponding to the endogenous metabolites such as fatty acids, phosphatidylcholines, amino acids, acylcarnitines, and short-chain fatty acids, and enrich the diversity of gut microbiota. Spearman's correlation analysis revealed that Clostridium_sensu_stricto_1 was positively correlated with the altered short-chain fatty acids in serum and negatively correlated with the altered acylcarnitine in the kidney. In the pseudo-sterile rat model, the attenuation effect of HKC on the abnormal elevation of serum creatinine and urea nitrogen, along with the alleviation of metabolic profile disorders, was greatly diminished or even abolished, demonstrating the nephroprotective effect of HKC in a gut microbiota-dependent manner. CONCLUSIONS HKC exerted the nephroprotective effect on CIN in a gut microbiota-dependent manner, mainly by regulating Clostridium_sensu_stricto_1 mediated metabolisms of phosphatidylcholines, acylcarnitines, fatty acids, tryptophan, and short-chain fatty acids, thereby reducing the inflammatory response. The present study could provide reliable scientific evidence for gut microbiota-dependent mechanisms of HKC in the treatment of kidney injury and may widen the clinical application of HKC in cisplatin-containing cancer therapy.
Collapse
Affiliation(s)
- Jian-Cheng Liao
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Jie Xiang
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Wan-Yu Gui
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Hui-Zhi Luo
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Qing You
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Qi-Rui He
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Ming-Xia Lu
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Shu-Yun Yang
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Qiong Wang
- Department of Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China.
| | - Jian-Dong Zou
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China.
| | - Chang-Yin Li
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China.
| |
Collapse
|
2
|
Zhang X, Wu W, Li Y, Peng Z. Exploring the role and therapeutic potential of lipid metabolism in acute kidney injury. Ren Fail 2024; 46:2403652. [PMID: 39319697 PMCID: PMC11425701 DOI: 10.1080/0886022x.2024.2403652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Acute kidney injury (AKI) is a prevalent condition, yet no specific treatment is available. Extensive research has revealed the pivotal role of lipid-related alterations in AKI. Lipid metabolism plays an essential role in the sustenance of the kidneys. In addition to their energy-supplying function, lipids contribute to the formation of renal biomembranes and the establishment of the renal microenvironment. Moreover, lipids or their metabolites actively participate in signal transduction, which governs various vital biological processes, such as proliferation, differentiation, apoptosis, autophagy, and epithelial-mesenchymal transition. While previous studies have focused predominantly on abnormalities in lipid metabolism in chronic kidney disease, this review focuses on lipid metabolism anomalies in AKI. We explore the significance of lipid metabolism products as potential biomarkers for the early diagnosis and classification of AKI. Additionally, this review assesses current preclinical investigations on the modulation of lipid metabolism in the progression of AKI. Finally, on the basis of existing research, this review proposes future directions, highlights challenges, and presents novel targets and innovative ideas for the treatment of and intervention in AKI.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Wen Wu
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Critical Care Medicine, Yichang Central People's Hospital, Yichang, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Critical Care Medicine, Center of Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Chen B, Cheng C, Wu Y, Li S, Han M, Zhen L, Peng Y, Guo S, Shen K, Gao X, Chai R, Wang G, Zhou F. PGC-1 α-mediated imbalance of mitochondria-lipid droplet homeostasis in neomycin-induced ototoxicity and nephrotoxicity. Acta Pharm Sin B 2024; 14:4413-4430. [PMID: 39525588 PMCID: PMC11544387 DOI: 10.1016/j.apsb.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/23/2024] [Accepted: 04/24/2024] [Indexed: 11/16/2024] Open
Abstract
Ototoxicity and nephrotoxicity are the most prevalent side effects of aminoglycoside antibiotics (gentamicin, amikacin, neomycin) and platinum anti-tumor drugs (cisplatin, carboplatin). The inner ear and kidney share similarities in drug deposition and toxicity, but the underlying pathophysiological mechanisms remain unclear. Investigating the shared mechanisms and metabolic alterations in these distinct organs will provide valuable insights for clinical therapy. A strong correlation has been identified between the spatiotemporal accumulation patterns of neomycin and the specific occurrence of lipid metabolism disorders in these two organs. The primary allocation of neomycin to mitochondria results in a notable escalation in the accumulation of lipid droplets (LDs) and more interactions between mitochondria and LDs, leading to a sequence of disturbances in lipid metabolism, such as increased lipid ROS and the blocked transfer of fatty acids from LDs to mitochondria. PGC-1α deficiency worsens the neomycin-induced disorders in lipid metabolism and intensifies the pathological interactions between mitochondria and LDs, as indicated by the exacerbated disturbance of dynamic LD turnover, increased level of oxidized lipids and decreased use of fatty acids. This investigation provides a fresh perspective on the lipid metabolic dysfunction related to mitochondria-LD interactions in drug-induced ototoxicity and nephrotoxicity, potentially providing novel avenues for intervention strategies.
Collapse
Affiliation(s)
- Bin Chen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yunhao Wu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210096, China
| | - Mo Han
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Le Zhen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Peng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Suhan Guo
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Kaidi Shen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210096, China
| | - Renjie Chai
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Moreno-Gordaliza E, González-Nicolás MÁ, Lázaro A, Barbas C, Gómez-Gómez MM, López-Gonzálvez Á. Untargeted metabolomics analysis of serum and urine unveils the protective effect of cilastatin on altered metabolic pathways during cisplatin-induced acute kidney injury. Biochem Pharmacol 2024; 227:116435. [PMID: 39025411 DOI: 10.1016/j.bcp.2024.116435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/26/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Acute kidney injury (AKI) is one of the most serious complications of cisplatin anticancer therapies. Cilastatin is a highly promising nephroprotective agent to eventually enter clinical use, but its biochemical mechanism is still not fully understood. We have employed an untargeted metabolomics approach based on capillary electrophoresis mass spectrometry (CE-MS) analysis of serum and urine from an in vivo rat model, to explore the metabolic pathways involved in cisplatin-induced AKI and cilastatin nephroprotection. A total of 155 and 76 identified metabolites were found to be significantly altered during cisplatin treatment in urine and serum, respectively. Most of these altered metabolites were either partially or totally recovered by cilastatin and cisplatin co-treatment. The main metabolic pathways disturbed by cisplatin during AKI involved diverse amino acids metabolism and biosynthesis, tricarboxylic acids (TCA) cycle, nicotinate and nicotinamide metabolism, among others. Cilastatin was proved to protect diverse cisplatin-altered pathways involving metabolites related to immunomodulation, inflammation, oxidative stress and amino acid metabolism in proximal tubules. However, cisplatin-altered mitochondrial metabolism (especially, the energy-producing TCA cycle) remained largely unprotected by cilastatin, suggesting an unresolved mitochondrial direct damage. Multivariate analysis allowed effective discrimination of cisplatin-induced AKI and cilastatin renoprotection based on metabolic features. A number of potential serum and urine biomarkers could also be foreseen for cisplatin-induced AKI detection and cilastatin nephroprotection.
Collapse
Affiliation(s)
- Estefanía Moreno-Gordaliza
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid (ROR 02p0gd045), Avda. Computense s/n, 28040 Madrid, Spain.
| | - M Ángeles González-Nicolás
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Alberto Lázaro
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; Department of Physiology, School of Medicine, Universidad Complutense de Madrid (ROR 02p0gd045), Avda. Complutense s/n, 28040 Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Faculty of Pharmacy, Universidad San Pablo-CEU (CEU Universities), Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - M Milagros Gómez-Gómez
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid (ROR 02p0gd045), Avda. Computense s/n, 28040 Madrid, Spain
| | - Ángeles López-Gonzálvez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Faculty of Pharmacy, Universidad San Pablo-CEU (CEU Universities), Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| |
Collapse
|
5
|
Guo H, Lan T, Lu X, Geng K, Shen X, Mao H, Guo Q. ROS-responsive curcumin-encapsulated nanoparticles for AKI therapy via promoting lipid degradation in renal tubules. J Mater Chem B 2024; 12:3063-3078. [PMID: 38441636 DOI: 10.1039/d3tb02318d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Lipid accumulation is a factor contributing to the pathogenesis of acute kidney injury (AKI), yet there are currently no approved pharmacotherapies aside from adjuvant therapy. A developed reactive oxygen species (ROS)-responsive drug delivery system (NPSBG@Cur) was developed to deliver the autophagy activator curcumin (Cur) in order to alleviate AKI by activating autophagy and promoting lipid droplet degradation. The nanoparticles were shown to be ROS-responsive in the H2O2 medium and demonstrate ROS-responsive uptake in palmitate (PA)-induced oxidative stress-damaged cells. NPSBG@Cur was found to effectively inhibit lipid accumulation by autophagosome transport in kidney tubular cells. Additionally, in a mouse AKI model, NPSBG@Cur was observed to significantly ameliorate renal damage by activating autophagy flux and improving lipid transport. These results suggest that the ROS-responsive drug delivery system augmented the therapeutic effect of Cur on AKI by improving lipid metabolism through autophagy activation. Therefore, targeting lipid metabolism with NPSBG@Cur may be a promising AKI treatment strategy.
Collapse
Affiliation(s)
- Honglei Guo
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China.
| | - Tianyu Lan
- College of Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, Guizhou Province, China.
| | - Xin Lu
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 550025, China.
| | - Kedui Geng
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 550025, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 550025, China.
| | - Huijuan Mao
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China.
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 550025, China.
| |
Collapse
|
6
|
Hebert JF, Eiwaz MB, Nickerson MN, Munhall AC, Pai AA, Groat T, Andeen NK, Hutchens MP. Legal Performance-enhancing Drugs Alter Course and Treatment of Rhabdomyolysis-induced Acute Kidney Injury. Mil Med 2023; 188:346-353. [PMID: 37948276 PMCID: PMC10637309 DOI: 10.1093/milmed/usad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 04/28/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION Rhabdomyolysis-induced acute kidney injury (RIAKI) can interrupt physical training and increase mortality in injured warfighters. The legal performance-enhancing drugs caffeine and ibuprofen, which can cause renal injury, are widely used by service members. Whether caffeine or ibuprofen affects RIAKI is unknown. Cilastatin treatment was recently identified as an experimental treatment to prevent RIAKI at injury. To determine potential interacting factors in RIAKI treatment, we test the hypothesis that caffeine and ibuprofen worsen RIAKI and interfere with treatment. MATERIALS AND METHODS In mice, RIAKI was induced by glycerol intramuscular injection. Simultaneously, mice received caffeine (3 mg/kg), ibuprofen (10 mg/kg), or vehicle. A second cohort received volume resuscitation (PlasmaLyte, 20 mL/kg) in addition to caffeine or ibuprofen. In a third cohort, cilastatin (200 mg/kg) was administered concurrently with drug and glycerol administration. Glomerular filtration rate (GFR), blood urea nitrogen (BUN), urine output (UOP), renal pathology, and renal immunofluorescence for kidney injury molecule 1 were quantified after 24 hours. RESULTS Caffeine did not worsen RIAKI; although BUN was modestly increased by caffeine administration, 24-hour GFR, UOP, and renal histopathology were similar between vehicle-treated, caffeine-treated, and caffeine + PlasmaLyte-treated mice. Ibuprofen administration greatly worsened RIAKI (GFR 14.3 ± 19.5 vs. 577.4 ± 454.6 µL/min/100 g in control, UOP 0.5 ± 0.4 in ibuprofen-treated mice vs. 2.7 ± 1.7 mL/24 h in control, and BUN 264 ± 201 in ibuprofen-treated mice vs. 66 ± 21 mg/dL in control, P < .05 for all); PlasmaLyte treatment did not reverse this effect. Cilastatin with or without PlasmaLyte did not reverse the deleterious effect of ibuprofen in RIAKI. CONCLUSIONS Caffeine does not worsen RIAKI. The widely used performance-enhancing drug ibuprofen greatly worsens RIAKI in mice. Standard or experimental treatment of RIAKI including the addition of cilastatin to standard resuscitation is ineffective in mice with RIAKI exacerbated by ibuprofen. These findings may have clinical implications for the current therapy of RIAKI and for translational studies of novel treatment.
Collapse
Affiliation(s)
- Jessica F Hebert
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mahaba B Eiwaz
- Operative Care Division, Portland Veterans Administration Medical Center, Portland, OR 97239, USA
| | - Megan N Nickerson
- Operative Care Division, Portland Veterans Administration Medical Center, Portland, OR 97239, USA
| | - Adam C Munhall
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Akash A Pai
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Tahnee Groat
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nicole K Andeen
- Department of Pathology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Michael P Hutchens
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
- Operative Care Division, Portland Veterans Administration Medical Center, Portland, OR 97239, USA
| |
Collapse
|
7
|
Gandin V, Hoeschele JD, Margiotta N. Special Issue "Cisplatin in Cancer Therapy: Molecular Mechanisms of Action 3.0". Int J Mol Sci 2023; 24:ijms24097917. [PMID: 37175624 PMCID: PMC10178266 DOI: 10.3390/ijms24097917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The year 2023 marks the 45th year since FDA approval of cisplatin as an anticancer drug, and, at present, it is widely used against a spectrum of human tumors, including early-stage ovarian cancer, non-small cell lung cancer (typically developed by smokers), head and neck, and advanced bladder cancer [...].
Collapse
Affiliation(s)
- Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, 35131 Padua, Italy
| | - James D Hoeschele
- Department of Chemistry, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Nicola Margiotta
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
8
|
Cisplatin nephrotoxicity: new insights and therapeutic implications. Nat Rev Nephrol 2023; 19:53-72. [PMID: 36229672 DOI: 10.1038/s41581-022-00631-7] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2022] [Indexed: 11/08/2022]
Abstract
Cisplatin is an effective chemotherapeutic agent for various solid tumours, but its use is limited by adverse effects in normal tissues. In particular, cisplatin is nephrotoxic and can cause acute kidney injury and chronic kidney disease. Preclinical studies have provided insights into the cellular and molecular mechanisms of cisplatin nephrotoxicity, which involve intracellular stresses including DNA damage, mitochondrial pathology, oxidative stress and endoplasmic reticulum stress. Stress responses, including autophagy, cell-cycle arrest, senescence, apoptosis, programmed necrosis and inflammation have key roles in the pathogenesis of cisplatin nephrotoxicity. In addition, emerging evidence suggests a contribution of epigenetic changes to cisplatin-induced acute kidney injury and chronic kidney disease. Further research is needed to determine how these pathways are integrated and to identify the cell type-specific roles of critical molecules involved in regulated necrosis, inflammation and epigenetic modifications in cisplatin nephrotoxicity. A number of potential therapeutic targets for cisplatin nephrotoxicity have been identified. However, the effects of renoprotective strategies on the efficacy of cisplatin chemotherapy needs to be thoroughly evaluated. Further research using tumour-bearing animals, multi-omics and genome-wide association studies will enable a comprehensive understanding of the complex cellular and molecular mechanisms of cisplatin nephrotoxicity and potentially lead to the identification of specific targets to protect the kidney without compromising the chemotherapeutic efficacy of cisplatin.
Collapse
|
9
|
Szabó A, Omeralfaroug A, Bjellaas T, Kövér G, Turbók J, Kovács M. The effects of fumonisin B 1 at the No Observed Adverse Effect Level (NOAEL) and 5-times above on the renal histology and lipidome of rats. Food Chem Toxicol 2022:113333. [PMID: 35988863 DOI: 10.1016/j.fct.2022.113333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022]
Abstract
Fumonisin B1 (FB1) mycotoxin was intraperitoneally (IP) administered at the No Observed Adverse Effect Level (NOAEL = 0.2 mg/kg BW/day as IP equivalent, "L") and 5-times above ("H") to male rats, in a controlled ("C"), 5-day study (n = 10/group, total n = 30). BW (bodyweight) of H rats decreased after day 4, kidney weight after 5 days. Renal histology revealed tubular epithelial desquamation, tubular dilatation, nuclear swelling, pale chromatin, cell vacuolation and casual karyopycnosis (H). Lipidomic analysis was performed with liquid chromatography - time-of-flight mass spectrometry (LC-TOF). Renal sphinganine (Sa) concentration increased 500 (L) to 1000-fold (H) and Sa-1-P to over 200 and 350-fold, respectively), with FB1 dose-dependence. Renal triacyclglycerols, diacylglycerols, ceramides and sphingomyelins were depleted, while cholesterol and cholesterol ester concentrations increased. Spearman correlation of free sphingoid bases (Sa, Sa-1-P, sphingosine (So) and So-1-P) was positive with histopathological damage severity, sphingomyelins and ceramides provided negative relationship (-0.78 and -0.8, resp.). Two-way cluster analysis and sparse partial least squares discriminant analysis (sPLS-DA) was used for experimental group classification. Fully effective group separation was achieved for ceramides, sphingomyelins and phosphatidyl-cholines, highlighting molecular species of possible diagnostic value. Lipidomic results highlight possible re-consideration of the NOAEL.
Collapse
Affiliation(s)
- András Szabó
- Hungarian University of Agriculture and Life Sciences, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungary.
| | - Ali Omeralfaroug
- Hungarian University of Agriculture and Life Sciences, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungary.
| | | | - György Kövér
- Hungarian University of Agriculture and Life Sciences, Institute of Animal Breeding Sciences, Department of Animal Breeding, Hungary.
| | - Janka Turbók
- Hungarian University of Agriculture and Life Sciences, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungary.
| | - Melinda Kovács
- Hungarian University of Agriculture and Life Sciences, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungary; ELKH - MATE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary.
| |
Collapse
|