1
|
Sun L, Zhang S, Yu Z, Zheng X, Liang S, Ren H, Qi X. Transcription-Associated Metabolomic Analysis Reveals the Mechanism of Fruit Ripening during the Development of Chinese Bayberry. Int J Mol Sci 2024; 25:8654. [PMID: 39201345 PMCID: PMC11355050 DOI: 10.3390/ijms25168654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
The ripening process of Chinese bayberries (Myrica rubra) is intricate, involving a multitude of molecular interactions. Here, we integrated transcriptomic and metabolomic analysis across three developmental stages of the Myrica rubra (M. rubra) to elucidate these processes. A differential gene expression analysis categorized the genes into four distinct groups based on their expression patterns. Gene ontology and pathway analyses highlighted processes such as cellular and metabolic processes, including protein and sucrose metabolism. A metabolomic analysis revealed significant variations in metabolite profiles, underscoring the dynamic interplay between genes and metabolites during ripening. Flavonoid biosynthesis and starch and sucrose metabolism were identified as key pathways, with specific genes and metabolites playing crucial roles. Our findings provide insights into the molecular mechanisms governing fruit ripening in M. rubra and offer potential targets for breeding strategies aimed at enhancing fruit quality.
Collapse
Affiliation(s)
- Li Sun
- Institute of Horticulture, State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.S.); (S.Z.); (Z.Y.); (X.Z.); (S.L.); (H.R.)
| | - Shuwen Zhang
- Institute of Horticulture, State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.S.); (S.Z.); (Z.Y.); (X.Z.); (S.L.); (H.R.)
| | - Zheping Yu
- Institute of Horticulture, State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.S.); (S.Z.); (Z.Y.); (X.Z.); (S.L.); (H.R.)
| | - Xiliang Zheng
- Institute of Horticulture, State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.S.); (S.Z.); (Z.Y.); (X.Z.); (S.L.); (H.R.)
| | - Senmiao Liang
- Institute of Horticulture, State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.S.); (S.Z.); (Z.Y.); (X.Z.); (S.L.); (H.R.)
| | - Haiying Ren
- Institute of Horticulture, State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.S.); (S.Z.); (Z.Y.); (X.Z.); (S.L.); (H.R.)
| | - Xingjiang Qi
- Institute of Horticulture, State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.S.); (S.Z.); (Z.Y.); (X.Z.); (S.L.); (H.R.)
- Xianghu Laboratory, Hangzhou 311231, China
| |
Collapse
|
2
|
Zhao C, Wang Z, Liao Z, Liu X, Li Y, Zhou C, Sun C, Wang Y, Cao J, Sun C. Integrated Metabolomic-Transcriptomic Analyses of Flavonoid Accumulation in Citrus Fruit under Exogenous Melatonin Treatment. Int J Mol Sci 2024; 25:6632. [PMID: 38928338 PMCID: PMC11204001 DOI: 10.3390/ijms25126632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The flavonoids in citrus fruits are crucial physiological regulators and natural bioactive products of high pharmaceutical value. Melatonin is a pleiotropic hormone that can regulate plant morphogenesis and stress resistance and alter the accumulation of flavonoids in these processes. However, the direct effect of melatonin on citrus flavonoids remains unclear. In this study, nontargeted metabolomics and transcriptomics were utilized to reveal how exogenous melatonin affects flavonoid biosynthesis in "Bingtangcheng" citrus fruits. The melatonin treatment at 0.1 mmol L-1 significantly increased the contents of seven polymethoxylated flavones (PMFs) and up-regulated a series of flavonoid pathway genes, including 4CL (4-coumaroyl CoA ligase), FNS (flavone synthase), and FHs (flavonoid hydroxylases). Meanwhile, CHS (chalcone synthase) was down-regulated, causing a decrease in the content of most flavonoid glycosides. Pearson correlation analysis obtained 21 transcription factors co-expressed with differentially accumulated flavonoids, among which the AP2/EREBP members were the most numerous. Additionally, circadian rhythm and photosynthesis pathways were enriched in the DEG (differentially expressed gene) analysis, suggesting that melatonin might also mediate changes in the flavonoid biosynthesis pathway by affecting the fruit's circadian rhythm. These results provide valuable information for further exploration of the molecular mechanisms through which melatonin regulates citrus fruit metabolism.
Collapse
Affiliation(s)
- Chenning Zhao
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Zhendong Wang
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Zhenkun Liao
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Xiaojuan Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China;
| | - Yujia Li
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Chenwen Zhou
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Cui Sun
- Hainan Institute, Zhejiang University, Sanya 572000, China;
| | - Yue Wang
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Jinping Cao
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
- Hainan Institute, Zhejiang University, Sanya 572000, China;
| | - Chongde Sun
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
- Hainan Institute, Zhejiang University, Sanya 572000, China;
| |
Collapse
|
3
|
Ma X, Hou Y, Umar AW, Wang Y, Yu L, Ahmad N, Yao N, Zhang M, Liu X. Safflower CtFLS1-Induced Drought Tolerance by Stimulating the Accumulation of Flavonols and Anthocyanins in Arabidopsis thaliana. Int J Mol Sci 2024; 25:5546. [PMID: 38791581 PMCID: PMC11122397 DOI: 10.3390/ijms25105546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Flavonol synthase gene (FLS) is a member of the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily and plays an important role in plant flavonoids biosynthetic pathways. Safflower (Carthamus tinctorius L.), a key source of traditional Chinese medicine, is widely cultivated in China. Although the flavonoid biosynthetic pathway has been studied in several model species, it still remains to be explored in safflower. In this study, we aimed to elucidate the role of CtFLS1 gene in flavonoid biosynthesis and drought stress responses. The bioinformatics analysis on the CtFLS1 gene showed that it contains two FLS-specific motifs (PxxxIRxxxEQP and SxxTxLVP), suggesting its independent evolution. Further, the expression level of CtFLS1 in safflower showed a positive correlation with the accumulation level of total flavonoid content in four different flowering stages. In addition, CtFLS1-overexpression (OE) Arabidopsis plants significantly induced the expression levels of key genes involved in flavonol pathway. On the contrary, the expression of anthocyanin pathway-related genes and MYB transcription factors showed down-regulation. Furthermore, CtFLS1-OE plants promoted seed germination, as well as resistance to osmotic pressure and drought, and reduced sensitivity to ABA compared to mutant and wild-type plants. Moreover, CtFLS1 and CtANS1 were both subcellularly located at the cell membrane and nucleus; the yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assay showed that they interacted with each other at the cell membrane. Altogether, these findings suggest the positive role of CtFLS1 in alleviating drought stress by stimulating flavonols and anthocyanin accumulation in safflower.
Collapse
Affiliation(s)
- Xintong Ma
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.M.); (Y.H.); (Y.W.); (L.Y.)
| | - Yuying Hou
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.M.); (Y.H.); (Y.W.); (L.Y.)
| | - Abdul Wakeel Umar
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai 519087, China;
| | - Yuhan Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.M.); (Y.H.); (Y.W.); (L.Y.)
| | - Lili Yu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.M.); (Y.H.); (Y.W.); (L.Y.)
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Na Yao
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.M.); (Y.H.); (Y.W.); (L.Y.)
| | - Min Zhang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.M.); (Y.H.); (Y.W.); (L.Y.)
- Ginseng and Antler Products Testing Center of the Ministry of Agriculture PRC, Jilin Agricultural University, Changchun 130118, China
| | - Xiuming Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.M.); (Y.H.); (Y.W.); (L.Y.)
| |
Collapse
|
4
|
Nguyen TTT, Kim MH, Park EJ, Lee H, Ko JH. Seasonal Developing Xylem Transcriptome Analysis of Pinus densiflora Unveils Novel Insights for Compression Wood Formation. Genes (Basel) 2023; 14:1698. [PMID: 37761838 PMCID: PMC10531420 DOI: 10.3390/genes14091698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Wood is the most important renewable resource not only for numerous practical utilizations but also for mitigating the global climate crisis by sequestering atmospheric carbon dioxide. The compressed wood (CW) of gymnosperms, such as conifers, plays a pivotal role in determining the structure of the tree through the reorientation of stems displaced by environmental forces and is characterized by a high content of lignin. Despite extensive studies on many genes involved in wood formation, the molecular mechanisms underlying seasonal and, particularly, CW formation remain unclear. This study examined the seasonal dynamics of two wood tissue types in Pinus densiflora: CW and opposite wood (OW). RNA sequencing of developing xylem for two consecutive years revealed comprehensive transcriptome changes and unique differences in CW and OW across seasons. During growth periods, such as spring and summer, we identified 2255 transcripts with differential expression in CW, with an upregulation in lignin biosynthesis genes and significant downregulation in stress response genes. Notably, among the laccases critical for monolignol polymerization, PdeLAC17 was found to be specifically expressed in CW, suggesting its vital role in CW formation. PdeERF4, an ERF transcription factor preferentially expressed in CW, seems to regulate PdeLAC17 activity. This research provides an initial insight into the transcriptional regulation of seasonal CW development in P. densiflora, forming a foundation for future studies to enhance our comprehension of wood formation in gymnosperms.
Collapse
Affiliation(s)
- Thi Thu Tram Nguyen
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea; (T.T.T.N.); (M.-H.K.)
| | - Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea; (T.T.T.N.); (M.-H.K.)
| | - Eung-Jun Park
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea; (E.-J.P.); (H.L.)
| | - Hyoshin Lee
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea; (E.-J.P.); (H.L.)
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea; (T.T.T.N.); (M.-H.K.)
| |
Collapse
|
5
|
Xin J, Che T, Huang X, Yan H, Jiang S. A comprehensive view of metabolic responses to CYP98 perturbation in ancestral plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107793. [PMID: 37276808 DOI: 10.1016/j.plaphy.2023.107793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Cytochrome P450 monooxygenase 98 (CYP98) is a critical rate-limiting enzyme of the phenylpropanoid pathway. One of the end-product of the phenylpropanoid pathway is a lignin monomer, although the occurrence of lignin in bryophytes is controversial. Here we investigated the functions of PpCYP98 in Physcomitrium patens by transcriptome and metabolome analyses. We identified 5266 differentially expressed genes (DEGs) and 68 differentially abundant secondary metabolites between wild-type and ΔPpCYP98 gametophores. Of the identified metabolites, 23 phenolic acids were identified, with only one showing upregulation. Among the phenolic acids, 4-coumaroyl tartaric acid and chlorogenic acid showed significant decreases. Declines were also observed in coniferylaldehyde and coniferin, precursor substances and downstream products of the lignin monomer coniferyl alcohol, respectively. Thus, the pre-lignin synthesis pathway already exists in bryophytes, and PpCYP98 plays vital roles in this pathway. Besides, most flavonoids show significant reductions, including eriodyctiol, dihydroquecetin, and dihydromyricetin, whereas naringenin chalone and dihydrokaempferol were increased after PpCYP98 knockout. Therefore, the synthesis of flavonoids shares the core pathway with phenylpropanoids and mainly starts from caffeoyl-CoA, that is the compound of divergence between the two pathways in moss. PpCYP98 showed systemic effects on metabolisms, including carbohydrate, fatty acid, and hormonal signaling transductions, suggesting that PpCYP98 might indirectly regulate carbon influx allocation. Our results demonstrated roles of PpCYP98 were essential for the development of the early landing plant.
Collapse
Affiliation(s)
- Jiankang Xin
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China.
| | - Tianmin Che
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China.
| | - Xiaolong Huang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China; Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, 550001, China; Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, 550001, China.
| | - Huiqing Yan
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China.
| | - Shan Jiang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China; College of International Education, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
6
|
Zheng W, Zhang W, Liu D, Yin M, Wang X, Wang S, Shen S, Liu S, Huang Y, Li X, Zhao Q, Yan L, Xu Y, Yu S, Hu B, Yuan T, Mei Z, Guo L, Luo J, Deng X, Xu Q, Huang L, Ma Z. Evolution-guided multiomics provide insights into the strengthening of bioactive flavone biosynthesis in medicinal pummelo. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37115171 PMCID: PMC10363765 DOI: 10.1111/pbi.14058] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Pummelo (Citrus maxima or Citrus grandis) is a basic species and an important type for breeding in Citrus. Pummelo is used not only for fresh consumption but also for medicinal purposes. However, the molecular basis of medicinal traits is unclear. Here, compared with wild citrus species/Citrus-related genera, the content of 43 bioactive metabolites and their derivatives increased in the pummelo. Furthermore, we assembled the genome sequence of a variety for medicinal purposes with a long history, Citrus maxima 'Huazhouyou-tomentosa' (HZY-T), at the chromosome level with a genome size of 349.07 Mb. Comparative genomics showed that the expanded gene family in the pummelo genome was enriched in flavonoids-, terpenoid-, and phenylpropanoid biosynthesis. Using the metabolome and transcriptome of six developmental stages of HZY-T and Citrus maxima 'Huazhouyou-smooth' (HZY-S) fruit peel, we generated the regulatory networks of bioactive metabolites and their derivatives. We identified a novel MYB transcription factor, CmtMYB108, as an important regulator of flavone pathways. Both mutations and expression of CmtMYB108, which targets the genes PAL (phenylalanine ammonia-lyase) and FNS (flavone synthase), displayed differential expression between Citrus-related genera, wild citrus species and pummelo species. This study provides insights into the evolution-associated changes in bioactive metabolism during the origin process of pummelo.
Collapse
Affiliation(s)
- Weikang Zheng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Wang Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Dahui Liu
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Minqiang Yin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | | | | | - Shengjun Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Yue Huang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Xinxin Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Qian Zhao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Lu Yan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Yuantao Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Shiqi Yu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Bin Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Tao Yuan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Zhinan Mei
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhaocheng Ma
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Zhang Z, Gao L, Ke M, Gao Z, Tu T, Huang L, Chen J, Guan Y, Huang X, Chen X. GmPIN1-mediated auxin asymmetry regulates leaf petiole angle and plant architecture in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1325-1338. [PMID: 35485227 DOI: 10.1111/jipb.13269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Crop breeding during the Green Revolution resulted in high yields largely due to the creation of plants with semi-dwarf architectures that could tolerate high-density planting. Although semi-dwarf varieties have been developed in rice, wheat and maize, none was reported in soybean (Glycine max), and few genes controlling plant architecture have been characterized in soybean. Here, we demonstrate that the auxin efflux transporter PINFORMED1 (GmPIN1), which determines polar auxin transport, regulates the leaf petiole angle in soybean. CRISPR-Cas9-induced Gmpin1abc and Gmpin1bc multiple mutants displayed a compact architecture with a smaller petiole angle than wild-type plants. GmPIN1 transcripts and auxin were distributed asymmetrically in the petiole base, with high levels of GmPIN1a/c transcript and auxin in the lower cells, which resulted in asymmetric cell expansion. By contrast, the (iso)flavonoid content was greater in the upper petiole cells than in the lower cells. Our results suggest that (iso)flavonoids inhibit GmPIN1a/c expression to regulate the petiole angle. Overall, our study demonstrates that a signal cascade that integrates (iso)flavonoid biosynthesis, GmPIN1a/c expression, auxin accumulation, and cell expansion in an asymmetric manner creates a desirable petiole curvature in soybean. This study provides a genetic resource for improving soybean plant architecture.
Collapse
Affiliation(s)
- Zhongqin Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Le Gao
- Department of Horticulture, Beijing Vocational College of Agriculture, Beijing, 102442, China
| | - Meiyu Ke
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhen Gao
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianli Tu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Laimei Huang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiaomei Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuefeng Guan
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
8
|
Bag S, Mondal A, Majumder A, Mondal SK, Banik A. Flavonoid mediated selective cross-talk between plants and beneficial soil microbiome. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1739-1760. [PMID: 35221830 PMCID: PMC8860142 DOI: 10.1007/s11101-022-09806-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/17/2022] [Indexed: 05/14/2023]
Abstract
UNLABELLED Plants generate a wide variety of organic components during their different growth phases. The majority of those compounds have been classified as primary and secondary metabolites. Secondary metabolites are essential in plants' adaptation to new changing environments and in managing several biotic and abiotic stress. It also invests some of its photosynthesized carbon as secondary metabolites to establish a mutual relationship with soil microorganisms in that specific niche. As soil harbors both pathogenic and beneficial microorganisms, it is essential to identify some specific metabolites that can discriminate beneficial and pathogenic ones. Thus, a detailed understanding of metabolite's architectures that interact with beneficial microorganisms could open a new horizon of ecology and agricultural research. Flavonoids are used as classic examples of secondary metabolites in this study to demonstrate recent developments in understanding and realizing how these valuable metabolites can be controlled at different levels. Most of the research was focused on plant flavonoids, which shield the host plant against competitors or predators, as well as having other ecological implications. Thus, in the present review, our goal is to cover a wide range of functional and signalling activities of secondary metabolites especially, flavonoids mediated selective cross-talk between plant and its beneficial soil microbiome. Here, we have summarized recent advances in understanding the interactions between plant species and their rhizosphere microbiomes through root exudates (flavonoids), with a focus on how these exudates facilitate rhizospheric associations. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-022-09806-3.
Collapse
Affiliation(s)
- Sagar Bag
- Laboratory of Microbial Interaction, School of Biotechnology, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156 India
| | - Anupam Mondal
- Laboratory of Microbial Interaction, School of Biotechnology, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156 India
| | - Anusha Majumder
- Laboratory of Microbial Interaction, School of Biotechnology, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156 India
| | - Sunil Kanti Mondal
- Department of Biotechnology, The University of Burdwan, Burdwan, West Bengal India
| | - Avishek Banik
- Laboratory of Microbial Interaction, School of Biotechnology, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156 India
| |
Collapse
|