1
|
El-Saadony MT, Saad AM, Alkafaas SS, Dladla M, Ghosh S, Elkafas SS, Hafez W, Ezzat SM, Khedr SA, Hussien AM, Fahmy MA, Elesawi IE, Salem HM, Mohammed DM, Abd El-Mageed TA, Ahmed AE, Mosa WFA, El-Tarabily MK, AbuQamar SF, El-Tarabily KA. Chitosan, derivatives, and its nanoparticles: Preparation, physicochemical properties, biological activities, and biomedical applications - A comprehensive review. Int J Biol Macromol 2025:142832. [PMID: 40187443 DOI: 10.1016/j.ijbiomac.2025.142832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Chitosan, derived from the deacetylation of chitin, is the second most widely used natural polymer, valued for its nontoxic, biocompatible, and biodegradable properties. These attributes have driven extensive research into diverse applications of chitosan and various derivatives. The key characteristics of chitosan muco-adhesion, permeability enhancement, drug release modulation, and antimicrobial activity are primarily due to its amino and hydroxyl groups. However, the limited solubility of raw chitosan in water and most organic solvents has posed challenges for broader application. Numerous chemically modified derivatives have been developed to address these inadequacies with improved physical and chemical properties. Among these derivatives, chitosan nanoparticles have emerged as versatile drug carriers with precise release kinetics and the capacity for targeted delivery, greatly enhancing drug efficacy and safety profiles for therapeutic applications. Due to these unique physicochemical properties, chitosan and chitosan nanoparticles are promising for improved drug delivery, vaccine administration, transplantation, gene therapy, and diagnostics. This review examines the physicochemical properties and bioactivities of chitosan and chitosan nanoparticles, emphasizing their broad-ranging biomedical applications.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg 191002, Russia
| | - Wael Hafez
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo 11511, Egypt
| | - Salma Mohamed Ezzat
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta 44511, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta 31733, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ibrahim Eid Elesawi
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Diseases of Birds, Rabbits, Fish & Their Care & Wildlife, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria 21531, Egypt
| | | | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
2
|
Chilamakuri SN, N M, Thalla M, Velayutham R, Lee Y, Cho SM, Jung H, Natesan S. Role of Microneedles for Improved Treatment of Obesity: Progress and Challenges. Mol Pharm 2025. [PMID: 40167034 DOI: 10.1021/acs.molpharmaceut.4c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Obesity is a global metabolic health epidemic characterized by excessive lipid and fat accumulation, leading to severe conditions such as diabetes, cancer, and cardiovascular disease. Immediate attention and management of obesity-related health risks are most warranted. The imbalance between fat absorption, metabolic rate, and environmental and genetic factors is responsible for obesity. Treatment typically involves lifestyle modifications, pharmacotherapy, and surgery. While lifestyle changes are crucial, effective treatment often necessitates medication as a preferred adjunct strategy. However, medications commonly used, such as oral pharmacotherapy, often show side effects due to systemic exposure and, thus, may not effectively target the intended areas, leading to drug loss. On the other hand, transdermal administration of drugs with microneedle (MN)-based technologies, a painless drug delivery approach with patient compliance, is gaining interest as an alternative obesity treatment, as it directly targets adipose tissue via local delivery, minimizing system exposure and dose reduction. This Review addresses the pathophysiology of obesity, current treatment strategies, challenges in the treatment of obesity using conventional formulations, the importance of the use of nano-based medications through transdermal delivery, and the use of MNs as a promising platform for the effective delivery of nanoparticle-based anti-obesity medications. The potential of combining MNs with stimuli-responsive and non-responsive adjuvant therapies to enhance treatment efficacy and patient outcomes is explored. In addition, the limitations and future perspectives related to the use of MNs for obesity are addressed to highlight the transformative potential of this technology for obesity management. MNs hold promise in precisely delivering anti-obesity drugs while requiring lower dosages and minimizing side effects compared to conventional oral or injectable therapies and ultimately improving the quality of life for individuals struggling with obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Sudarshan Naidu Chilamakuri
- Department of Pharmaceutics, Advance Formulation Laboratory, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, West Bengal, India
| | - Manasa N
- Department of Pharmaceutics, Advance Formulation Laboratory, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, West Bengal, India
| | - Maharshi Thalla
- Department of Pharmaceutical Sciences, Texas A&M University, Kingsville, Texas 78363, United States
| | - Ravichandiran Velayutham
- Department of Pharmaceutics, Advance Formulation Laboratory, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, West Bengal, India
| | - Youjin Lee
- Department of Integrative Biotechnology, Yonsei University, 85 Songdogwahak-ro, Incheon 21983, Republic of Korea
| | - Sung Min Cho
- Department of Integrative Biotechnology, Yonsei University, 85 Songdogwahak-ro, Incheon 21983, Republic of Korea
| | - Hyungil Jung
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 08389, Republic of Korea
- Department of Integrative Biotechnology, Yonsei University, 85 Songdogwahak-ro, Incheon 21983, Republic of Korea
| | - Subramanian Natesan
- Department of Pharmaceutics, Advance Formulation Laboratory, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, West Bengal, India
| |
Collapse
|
3
|
Hulimane Shivaswamy R, Binulal P, Benoy A, Lakshmiramanan K, Bhaskar N, Pandya HJ. Microneedles as a Promising Technology for Disease Monitoring and Drug Delivery: A Review. ACS MATERIALS AU 2025; 5:115-140. [PMID: 39802146 PMCID: PMC11718548 DOI: 10.1021/acsmaterialsau.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025]
Abstract
The delivery of molecules, such as DNA, RNA, peptides, and certain hydrophilic drugs, across the epidermal barrier poses a significant obstacle. Microneedle technology has emerged as a prominent area of focus in biomedical research because of its ability to deliver a wide range of biomolecules, vaccines, medicines, and other substances through the skin. Microneedles (MNs) form microchannels by disrupting the skin's structure, which compromises its barrier function, and facilitating the easy penetration of drugs into the skin. These devices enhance the administration of many therapeutic substances to the skin, enhancing their stability. Transcutaneous delivery of medications using a microneedle patch offers advantages over conventional drug administration methods. Microneedles containing active substances can be stimulated by different internal and external factors to result in the regulated release of the substances. To achieve efficient drug administration to the desired location, it is necessary to consider the design of needles with appropriate optimized characteristics. The choice of materials for developing and manufacturing these devices is vital in determining the pharmacodynamics and pharmacokinetics of drug delivery. This article provides the most recent update and overview of the numerous microneedle systems that utilize different activators to stimulate the release of active components from the microneedles. Further, it discusses the materials utilized for producing microneedles and the design strategies important in managing the release of drugs. An explanation of the commonly employed fabrication techniques in biomedical applications and electronics, particularly for integrated microneedle drug delivery systems, is discussed. To successfully implement microneedle technology in clinical settings, it is essential to comprehensively assess several factors, such as biocompatibility, drug stability, safety, and production cost. Finally, an in-depth review of these criteria and the difficulties and potential future direction of microneedles in delivering drugs and monitoring diseases is explored.
Collapse
Affiliation(s)
| | - Pranav Binulal
- Department of Electronic
Systems Engineering, Indian Institute of
Science, Bangalore 560012, India
| | - Aloysious Benoy
- Department of Electronic
Systems Engineering, Indian Institute of
Science, Bangalore 560012, India
| | - Kaushik Lakshmiramanan
- Department of Electronic
Systems Engineering, Indian Institute of
Science, Bangalore 560012, India
| | - Nitu Bhaskar
- Department of Electronic
Systems Engineering, Indian Institute of
Science, Bangalore 560012, India
| | - Hardik Jeetendra Pandya
- Department of Electronic
Systems Engineering, Indian Institute of
Science, Bangalore 560012, India
| |
Collapse
|
4
|
Aktürk G, Gündüz Ö. Transdermal Drug Delivery: An Overview of the Evolving Field. Balkan Med J 2025; 42:3-4. [PMID: 39757385 PMCID: PMC11725667 DOI: 10.4274/balkanmedj.galenos.2024.2024-111224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Affiliation(s)
- Gözde Aktürk
- Department of Medical Pharmacology Trakya University Faculty of Medicine, Edirne, Türkiye
| | - Özgür Gündüz
- Department of Medical Pharmacology Trakya University Faculty of Medicine, Edirne, Türkiye
| |
Collapse
|
5
|
Li M, Xu Y, Yu Y, Li W, Chen L, Zhao B, Gao Y, Gao J, Lin H. Transdermal delivery of natural products against atopic dermatitis. Chin J Nat Med 2024; 22:1076-1088. [PMID: 39725509 DOI: 10.1016/s1875-5364(24)60681-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Indexed: 12/28/2024]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition. Natural products have gained traction in AD treatment due to their accessibility, low toxicity, and favorable pharmacological properties. However, their application is primarily constrained by poor solubility, instability, and limited permeability. The transdermal drug delivery system (TDDS) offers potential solutions for transdermal delivery, enhanced penetration, improved efficacy, and reduced toxicity of natural drugs, aligning with the requirements of modern AD treatment. This review examines the application of hydrogels, microneedles (MNs), liposomes, nanoemulsions, and other TDDS-carrying natural products in AD treatment, with a primary focus on their effects on penetration and accumulation in the skin. The aim is to provide valuable insights into the treatment of AD and other dermatological conditions.
Collapse
Affiliation(s)
- Minghui Li
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanan Yu
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Wanshu Li
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Lixia Chen
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Bo Zhao
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Yuli Gao
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hangjuan Lin
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China.
| |
Collapse
|
6
|
Gaikwad SS, Zanje AL, Somwanshi JD. Advancements in transdermal drug delivery: A comprehensive review of physical penetration enhancement techniques. Int J Pharm 2024; 652:123856. [PMID: 38281692 DOI: 10.1016/j.ijpharm.2024.123856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Transdermal drug administration has grown in popularity in the pharmaceutical research community due to its potential to improve drug bioavailability, compliance among patients, and therapeutic effectiveness. To overcome the substantial barrier posed by the stratum corneum (SC) and promote drug absorption within the skin, various physical penetration augmentation approaches have been devised. This review article delves into popular physical penetration augmentation techniques, which include sonophoresis, iontophoresis, magnetophoresis, thermophoresis, needle-free injection, and microneedles (MNs) Sonophoresis is a technique that uses low-frequency ultrasonic waves to break the skin's barrier characteristics, therefore improving drug transport and distribution. In contrast, iontophoresis uses an applied electric current to push charged molecules of drugs inside the skin, effectively enhancing medication absorption. Magnetophoresis uses magnetic fields to drive drug carriers into the dermis, a technology that has shown promise in aiding targeted medication delivery. Thermophoresis is the regulated heating of the skin in order to improve drug absorption, particularly with thermally sensitive drug carriers. Needle-free injection technologies, such as jet injectors (JIs) and microprojection arrays, offer another option by producing temporary small pore sizes in the skin, facilitating painless and effective drug delivery. MNs are a painless, minimally invasive method, easy to self-administration, as well as high drug bioavailability. This study focuses on the underlying processes, current breakthroughs, and limitations connected with all of these approaches, with an emphasis on their applicability in diverse therapeutic areas. Finally, a thorough knowledge of these physical enhancement approaches and their incorporation into pharmaceutical research has the potential to revolutionize drug delivery, providing more efficient and secure treatment choices for a wide range of health-related diseases.
Collapse
Affiliation(s)
- Sachin S Gaikwad
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - Abhijit L Zanje
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Jeevan D Somwanshi
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| |
Collapse
|
7
|
Behrooz AB, Cordani M, Fiore A, Donadelli M, Gordon JW, Klionsky DJ, Ghavami S. The obesity-autophagy-cancer axis: Mechanistic insights and therapeutic perspectives. Semin Cancer Biol 2024; 99:24-44. [PMID: 38309540 DOI: 10.1016/j.semcancer.2024.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Saeid Ghavami
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
8
|
Kim TH, Kim NY, Lee HU, Choi JW, Kang T, Chung BG. Smartphone-based iontophoresis transdermal drug delivery system for cancer treatment. J Control Release 2023; 364:383-392. [PMID: 37914000 DOI: 10.1016/j.jconrel.2023.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Cancer is a leading cause of the death worldwide. However, the conventional cancer therapy still suffers from several limitations, such as systemic side effects, poor efficacy, and patient compliance due to limited accessibility to the tumor site. To address these issues, the localized drug delivery system has emerged as a promising approach. In this study, we developed an iontophoresis-based transdermal drug delivery system (TDDS) controlled by a smartphone application for cancer treatment. Iontophoresis, a low-intensity electric current-based TDDS, enhances drug permeation across the skin to provide potential for localized drug delivery and minimize systemic side effects. The fundamental mechanism of our system was modeled using finite element analysis and its performance was corroborated through the flow-through skin permeation tests using a plastic-based microfluidic chip. The results of in vitro cell experiments and skin deposition tests successfully demonstrated that our smartphone-controlled iontophoresis system significantly enhanced the drug permeation for cancer treatment. Therefore, this hand-held smartphone-based iontophoresis TDDS could be a powerful tool for self-administrated anticancer drug delivery applications.
Collapse
Affiliation(s)
- Tae Hyeon Kim
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Na Yeon Kim
- Department of Biomedical Engineering, Sogang University, Seoul, Republic of Korea
| | - Hee Uk Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Ji Wook Choi
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea; Institute of Integrated Biotechnology, Sogang University, Seoul, Republic of Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea; Department of Biomedical Engineering, Sogang University, Seoul, Republic of Korea; Institute of Smart Biosensor, Sogang University, Seoul, Republic of Korea; Institute of Integrated Biotechnology, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Ashour MM, Mabrouk M, Aboelnasr MA, Beherei HH, Tohamy KM, Das DB. Anti-Obesity Drug Delivery Systems: Recent Progress and Challenges. Pharmaceutics 2023; 15:2635. [PMID: 38004612 PMCID: PMC10674714 DOI: 10.3390/pharmaceutics15112635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Obesity has reached an epidemic proportion in the last thirty years, and it is recognized as a major health issue in modern society now with the possibility of serious social and economic consequences. By the year 2030, nearly 60% of the global population may be obese or overweight, which emphasizes a need for novel obesity treatments. Various traditional approaches, such as pharmacotherapy and bariatric surgery, have been utilized in clinical settings to treat obesity. However, these methods frequently show the possibility of side effects while remaining ineffective. There is, therefore, an urgent need for alternative obesity treatments with improved efficacy and specificity. Polymeric materials and chemical strategies are employed in emerging drug delivery systems (DDSs) to enhance therapy effectiveness and specificity by stabilizing and controlling the release of active molecules such as natural ingredients. Designing DDSs is currently a top priority research objective with an eye towards creating obesity treatment approaches. In reality, the most recent trends in the literature demonstrate that there are not enough in-depth reviews that emphasize the current knowledge based on the creation and design of DDSs for obesity treatment. It is also observed in the existing literature that a complex interplay of different physical and chemical parameters must be considered carefully to determine the effectiveness of the DDSs, including microneedles, for obesity treatment. Additionally, it is observed that these properties depend on how the DDS is synthesized. Although many studies are at the animal-study stage, the use of more advanced DDS techniques would significantly enhance the development of safe and efficient treatment approaches for obese people in the future. Considering these, this review provides an overview of the current anti-obesity treatment approaches as well as the conventional anti-obesity therapeutics. The article aims to conduct an in-depth discussion on the current trends in obesity treatment approaches. Filling in this knowledge gap will lead to a greater understanding of the safest ways to manage obesity.
Collapse
Affiliation(s)
- Mohamed M. Ashour
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt;
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Mohamed A. Aboelnasr
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (K.M.T.)
| | - Hanan H. Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Khairy M. Tohamy
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (K.M.T.)
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, UK
| |
Collapse
|
10
|
Kang MS, Park TE, Jo HJ, Kang MS, Lee SB, Hong SW, Kim KS, Han DW. Recent Trends in Macromolecule-Based Approaches for Hair Loss Treatment. Macromol Biosci 2023; 23:e2300148. [PMID: 37245081 DOI: 10.1002/mabi.202300148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Macromolecules are large, complex molecules composed of smaller subunits known as monomers. The four primary categories of macromolecules found in living organisms are carbohydrates, lipids, proteins, and nucleic acids; they also encompass a broad range of natural and synthetic polymers. Recent studies have shown that biologically active macromolecules can help regenerate hair, providing a potential solution for current hair regeneration therapies. This review examines the latest developments in the use of macromolecules for the treatment of hair loss. The fundamental principles of hair follicle (HF) morphogenesis, hair shaft (HS) development, hair cycle regulation, and alopecia have been introduced. Microneedle (MN) and nanoparticle (NP) delivery systems are innovative treatments for hair loss. Additionally, the application of macromolecule-based tissue-engineered scaffolds for the in vitro and in vivo neogenesis of HFs is discussed. Furthermore, a new research direction is explored wherein artificial skin platforms are adopted as a promising screening method for hair loss treatment drugs. Through these multifaceted approaches, promising aspects of macromolecules for future hair loss treatments are identified.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Tae Eon Park
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Min Seok Kang
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Su Bin Lee
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
- Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Ki Su Kim
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Advanced Organic Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
11
|
Abu-Huwaij R, Alkarawi A, Salman D, Alkarawi F. Exploring the use of niosomes in cosmetics for efficient dermal drug delivery. Pharm Dev Technol 2023; 28:708-718. [PMID: 37448342 DOI: 10.1080/10837450.2023.2233613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023]
Abstract
Dermal drug delivery has emerged as a promising alternative to traditional methods of drug administration due to its non-invasive nature and ease of use. However, the stratum corneum, the outermost layer of the skin, presents a significant barrier to drug penetration. Niosomes, self-assembled vesicular structures composed of nonionic surfactants and cholesterol, have been extensively investigated as a means of overcoming this barrier and improving the efficacy of dermal drug delivery. This review summarizes the current state of research on the use of niosomes in dermal drug delivery in cosmetics, with a particular focus on their formulation, characterization, and application in the delivery of various drug classes. The review highlights the advantages of niosomes over conventional drug delivery methods, including improved solubility and stability of drugs, controlled release, and enhanced skin permeation. The review also discusses the challenges associated with niosome-based drug delivery, such as their complex formulation and optimization, and the need for further studies on their long-term safety and toxicity.
Collapse
Affiliation(s)
| | - Adian Alkarawi
- College of Pharmacy, Amman Arab University, Mubis, Jordan
| | - Dima Salman
- College of Pharmacy, Amman Arab University, Mubis, Jordan
| | | |
Collapse
|
12
|
Khalid R, Mahmood S, Mohamed Sofian Z, Hilles AR, Hashim NM, Ge Y. Microneedles and Their Application in Transdermal Delivery of Antihypertensive Drugs-A Review. Pharmaceutics 2023; 15:2029. [PMID: 37631243 PMCID: PMC10459756 DOI: 10.3390/pharmaceutics15082029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
One of the most cutting-edge, effective, and least invasive pharmaceutical innovations is the utilization of microneedles (MNs) for drug delivery, patient monitoring, diagnostics, medicine or vaccine delivery, and other medical procedures (e.g., intradermal vaccination, allergy testing, dermatology, and blood sampling). The MN-based system offers many advantages, such as minimal cost, high medical effectiveness, comparatively good safety, and painless drug application. Drug delivery through MNs can possibly be viewed as a viable instrument for various macromolecules (e.g., proteins, peptides, and nucleic acids) that are not efficiently administered through traditional approaches. This review article provides an overview of MN-based research in the transdermal delivery of hypertensive drugs. The critical attributes of microneedles are discussed, including the mechanism of drug release, pharmacokinetics, fabrication techniques, therapeutic applications, and upcoming challenges. Furthermore, the therapeutic perspective and improved bioavailability of hypertensive drugs that are poorly aqueous-soluble are also discussed. This focused review provides an overview of reported studies and the recent progress of MN-based delivery of hypertensive drugs, paving the way for future pharmaceutical uses. As MN-based drug administration bypasses first-pass metabolism and the high variability in drug plasma levels, it has grown significantly more important for systemic therapy. In conclusion, MN-based drug delivery of hypertensive drugs for increasing bioavailability and patient compliance could support a new trend of hypertensive drug delivery and provide an alternative option, overcoming the restrictions of the current dosage forms.
Collapse
Affiliation(s)
- Ramsha Khalid
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (R.K.); (Z.M.S.)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (R.K.); (Z.M.S.)
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (R.K.); (Z.M.S.)
| | - Ayah R. Hilles
- INHART, International Islamic University Malaysia, Jalan Gombak, Kuala Lumpur 53100, Malaysia;
| | - Najihah Mohd Hashim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Center for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Yi Ge
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
13
|
Gopan G, Jose J, Khot KB, Bandiwadekar A. The use of cellulose, chitosan and hyaluronic acid in transdermal therapeutic management of obesity: A review. Int J Biol Macromol 2023:125374. [PMID: 37330096 DOI: 10.1016/j.ijbiomac.2023.125374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Obesity is a clinical condition with rising popularity and detrimental impacts on human health. According to the World Health Organization, obesity is the sixth most common cause of death worldwide. It is challenging to combat obesity because medications that are successful in the clinical investigation have harmful side effects when administered orally. The conventional approaches for treating obesity primarily entail synthetic compounds and surgical techniques but possess severe adverse effects and recurrences. As a result, a safe and effective strategy to combat obesity must be initiated. Recent studies have shown that biological macromolecules of the carbohydrate class, such as cellulose, hyaluronic acid, and chitosan, can enhance the release and efficacy of medications for obesity but due to their short biological half-lives and poor oral bioavailability, their distribution rate is affected. This helps to comprehend the need for an effective therapeutic approach via a transdermal drug delivery system. This review focuses on the transdermal administration, utilizing cellulose, chitosan, and hyaluronic acid via microneedles, as it offers a promising solution to overcome existing therapy limitations in managing obesity and it also highlights how microneedles can effectively deliver therapeutic substances through the skin's outer layer, bypassing pain receptors and specifically targeting adipose tissue.
Collapse
Affiliation(s)
- Gopika Gopan
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| | - Kartik Bhairu Khot
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Akshay Bandiwadekar
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| |
Collapse
|
14
|
Increasing Skeletal Muscle Mass in Mice by Non-Invasive Intramuscular Delivery of Myostatin Inhibitory Peptide by Iontophoresis. Pharmaceuticals (Basel) 2023; 16:ph16030397. [PMID: 36986496 PMCID: PMC10058260 DOI: 10.3390/ph16030397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Sarcopenia is a major public health issue that affects older adults. Myostatin inhibitory-D-peptide-35 (MID-35) can increase skeletal muscle and is a candidate therapeutic agent, but a non-invasive and accessible technology for the intramuscular delivery of MID-35 is required. Recently, we succeeded in the intradermal delivery of various macromolecules, such as siRNA and antibodies, by iontophoresis (ItP), a non-invasive transdermal drug delivery technology that uses weak electricity. Thus, we expected that ItP could deliver MID-35 non-invasively from the skin surface to skeletal muscle. In the present study, ItP was performed with a fluorescently labeled peptide on mouse hind leg skin. Fluorescent signal was observed in both skin and skeletal muscle. This result suggested that the peptide was effectively delivered to skeletal muscle from skin surface by ItP. Then, the effect of MID-35/ItP on skeletal muscle mass was evaluated. The skeletal muscle mass increased 1.25 times with ItP of MID-35. In addition, the percentage of new and mature muscle fibers tended to increase, and ItP delivery of MID-35 showed a tendency to induce alterations in the levels of mRNA of genes downstream of myostatin. In conclusion, ItP of myostatin inhibitory peptide is a potentially useful strategy for treating sarcopenia.
Collapse
|
15
|
Ma N, Liu Y, Ling G, Zhang P. Preparation of meloxicam-salicylic acid co-crystal and its application in the treatment of rheumatoid arthritis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|