1
|
Sun M, Ma J, Zhang G, Song M, Lv R, Liang J, Shi Y, Zhao L. Brain Targeting Bacterial Extracellular Vesicles Enhance Ischemic Stroke Therapy via Efficient ROS Elimination and Suppression of Immune Infiltration. ACS NANO 2025; 19:15491-15508. [PMID: 40249658 DOI: 10.1021/acsnano.4c16161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Ischemic stroke (IS) as a detrimental neurological disease is accompanied by oxidative-stress-induced injury, concurrent inflammatory response, overactivated brain immune microenvironment, and disruption of the blood-brain barrier (BBB). This cascade of events ultimately leads to neuronal death and significantly impairs the recovery of neurological function. In this study, we presented extracellular vesicles derived from the gut probiotic Lactobacillus reuteri (LrEVs) integrated with brain targeting, reactive oxygen species (ROS) scavenging, and reduced infiltration of immune cells for effective multiple therapeutic interventions of IS. LrEVs inherited peptidoglycan (PGN) specifically targeted upregulated toll-like receptor 2 (TLR2) in the injured region of the ischemic brain, achieving the effective penetration of the BBB and accumulation in the ischemic brain. In the meantime, LrEVs prevented neuronal apoptosis after stroke by scavenging ROS overproduction and modulating microglial polarization through inhibition of the MAPK and NF-κB pathways. Furthermore, LrEVs inhibited the aggregation of C-C motif chemokine ligand 2 (CCL2), reduced the infiltration of peripheral immune cells such as macrophages and neutrophils into ischemic brain tissue, and suppressed the impairment of BBB, thereby improving the overactivated brain immune microenvironment. The findings provide a vesicle that combines ROS scavenging and modulation of the immune microenvironment, showcasing the potential of gut-probiotic-derived vesicles to treat neurological damage.
Collapse
Affiliation(s)
- Mengdi Sun
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Jinghan Ma
- Institution of Life Science, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Ge Zhang
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Mingzhu Song
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Ruizhen Lv
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Jia Liang
- Institution of Life Science, Jinzhou Medical University, Jinzhou 121000, PR China
- Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, PR China
- Collaborative Innovation Center for Age-related Disease, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
- Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, PR China
- Collaborative Innovation Center for Age-related Disease, Jinzhou Medical University, Jinzhou 121000, PR China
| |
Collapse
|
2
|
Yadav P, Debnath N, Pradhan D, Mehta PK, Kumar A, Yadav ML, Yadav AK. Probiotic Lactobacillus-Derived Extracellular Vesicles: Insights Into Disease Prevention and Management. Mol Nutr Food Res 2025:e70013. [PMID: 40200671 DOI: 10.1002/mnfr.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 04/10/2025]
Abstract
Bacterial extracellular vesicles (BEVs) have emerged as versatile and promising tools for therapeutic interventions across a spectrum of medical applications. Among these, Lactobacillus-derived extracellular vesicles (LDEVs) have garnered significant attention due to their diverse physiological functions and applications in health advancement. These LDEVs modulate host cell signaling pathways through the delivery of bioactive molecules, including nucleic acids and proteins. The immunomodulatory properties of LDEVs are important, as they have been shown to regulate the balance between pro-inflammatory and anti-inflammatory responses in various diseases. These LDEVs play a crucial role in maintaining gut homeostasis by modulating the composition and function of the gut microbiota, which has implications for health conditions, including inflammatory bowel diseases, metabolic disorders, and neurological disorders. Furthermore, LDEVs hold potential to deliver therapeutic payloads to specific tissues or organs. Engineered LDEVs can be loaded with therapeutic agents such as antimicrobial peptides or nucleic acid-based therapies to treat various diseases. By leveraging the unique properties of LDEVs, researchers can develop innovative strategies for disease prevention, treatment, and overall well-being. Thus, this review aims to provide a comprehensive overview of the therapeutic benefits of LDEVs and their implications for promoting overall well-being.
Collapse
Affiliation(s)
- Pooja Yadav
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| | - Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| | - Diwas Pradhan
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Praveen Kumar Mehta
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Munna Lal Yadav
- Discovery Research Division, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
- Department of Zoology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| |
Collapse
|
3
|
Li Y, Cheng Y, Cai Y, Duan Z, Xu H, Huang Y, Ma X, Xin X, Yin L. Novel Small-Molecule Treatment and Emerging Biological Therapy for Psoriasis. Biomedicines 2025; 13:781. [PMID: 40299379 PMCID: PMC12025338 DOI: 10.3390/biomedicines13040781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 04/30/2025] Open
Abstract
Psoriasis is an immune-related disorder that is marked by abnormal thickening of the skin, the rapid multiplication of keratinocytes, and complex interactions between immune cells and the affected areas. Although psoriasis cannot currently be cured, drugs can alleviate symptoms by regulating immune homeostasis and preventing comorbidities. There are many types of drugs to treat psoriasis: small-molecule drugs, including corticosteroids; retinoids; vitamin D analogs; and immunosuppressants, such as glucocorticoid ointment, tretinoin cream, methotrexate tablets, etc. Macromolecular biological drugs, such as Certolizumab, Secukinumab, Guselkumab, etc., include monoclonal antibodies that target various inflammatory signaling pathways. Compared with traditional small-molecule drugs, biological therapies offer better targeting and lower systemic side effects, but their high costs and invasive administration modes constrict their widespread use. Spesolimab is the latest biological agent used to target the interleukin-36 receptor (IL-36R) to be approved for market use, which significantly reduces the risk of general pustular psoriasis (GPP) flare by 84%. Additionally, there are several biological agents used to target the interleukin-23/T helper 17 cell pathway that have already entered Phase II and III clinical trials. At present, the first-line therapeutic strategy for mild psoriasis is topical administration. Systemic therapy and phototherapy are preferred for treating moderate to severe types. However, the current therapeutic drugs for psoriasis cannot completely meet the clinical needs. More advanced drug delivery systems with optimized target effects and better bioavailability are required. Nanocarriers are emerging for the delivery of proteins, nucleic acids, and cell-based therapies. In this review, we analyze the current status of psoriasis therapeutics and discuss novel delivery systems for diverse psoriasis drugs, as well as emerging cell-based therapies. We also summarize the therapeutic effectiveness of different delivery strategies.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.L.); (Y.C.); (Y.C.); (Z.D.); (H.X.); (Y.H.)
| | - Yiheng Cheng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.L.); (Y.C.); (Y.C.); (Z.D.); (H.X.); (Y.H.)
| | - Yuchen Cai
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.L.); (Y.C.); (Y.C.); (Z.D.); (H.X.); (Y.H.)
| | - Zhenduo Duan
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.L.); (Y.C.); (Y.C.); (Z.D.); (H.X.); (Y.H.)
| | - Hong Xu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.L.); (Y.C.); (Y.C.); (Z.D.); (H.X.); (Y.H.)
| | - Yunan Huang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.L.); (Y.C.); (Y.C.); (Z.D.); (H.X.); (Y.H.)
| | - Xiaonan Ma
- The Public Laboratory Platform of China Pharmaceutical University, Nanjing 210009, China;
| | - Xiaofei Xin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.L.); (Y.C.); (Y.C.); (Z.D.); (H.X.); (Y.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.L.); (Y.C.); (Y.C.); (Z.D.); (H.X.); (Y.H.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Zhou H, Tan X, Chen G, Liu X, Feng A, Liu Z, Liu W. Extracellular Vesicles of Commensal Skin Microbiota Alleviate Cutaneous Inflammation in Atopic Dermatitis Mouse Model by Re-Establishing Skin Homeostasis. J Invest Dermatol 2025; 145:312-322.e9. [PMID: 36907322 DOI: 10.1016/j.jid.2023.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 03/12/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory cutaneous disorder in which the skin is affected by microbial dysbiosis. The role of commensal skin microbiota in AD is of great interest. Extracellular vesicles (EVs) are important regulators of skin homeostasis and pathology. The mechanism of preventing AD pathogenesis through commensal skin microbiota-derived EVs remains poorly understood. In this study, we investigated the role of commensal skin bacterium Staphylococcus epidermidis-derived EVs (SE-EVs). We showed that SE-EVs significantly decreased the expression of proinflammatory genes (TNFα, IL1β, IL6, IL8, and iNOS) through lipoteichoic acid and increased the proliferation and migration of calcipotriene (MC903)-treated HaCaT keratinocytes. Furthermore, SE-EVs increased the expression of human β-defensins 2 and 3 in MC903-treated HaCaT cells through toll-like receptor 2, enhancing resistance to S. aureus growth. In addition, topical SE-EV application remarkably attenuated inflammatory cell infiltration (CD4+ T cells and Gr1+ cells), T helper 2 cytokine gene expression (Il4, Il13, and Tlsp), and IgE levels in MC903-induced AD-like dermatitis mice. Intriguingly, SE-EVs induced IL-17A+ CD8+ T-cell accumulation in the epidermis, which may represent heterologous protection. Taken together, our findings showed that SE-EVs reduced AD-like skin inflammation in mice and may potentially be a bioactive nanocarrier for the treatment of AD.
Collapse
Affiliation(s)
- Hong Zhou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Tan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guozhong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aiping Feng
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Nicolaou A, Kendall AC. Bioactive lipids in the skin barrier mediate its functionality in health and disease. Pharmacol Ther 2024; 260:108681. [PMID: 38897295 DOI: 10.1016/j.pharmthera.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Our skin protects us from external threats including ultraviolet radiation, pathogens and chemicals, and prevents excessive trans-epidermal water loss. These varied activities are reliant on a vast array of lipids, many of which are unique to skin, and that support physical, microbiological and immunological barriers. The cutaneous physical barrier is dependent on a specific lipid matrix that surrounds terminally-differentiated keratinocytes in the stratum corneum. Sebum- and keratinocyte-derived lipids cover the skin's surface and support and regulate the skin microbiota. Meanwhile, lipids signal between resident and infiltrating cutaneous immune cells, driving inflammation and its resolution in response to pathogens and other threats. Lipids of particular importance include ceramides, which are crucial for stratum corneum lipid matrix formation and therefore physical barrier functionality, fatty acids, which contribute to the acidic pH of the skin surface and regulate the microbiota, as well as the stratum corneum lipid matrix, and bioactive metabolites of these fatty acids, involved in cell signalling, inflammation, and numerous other cutaneous processes. These diverse and complex lipids maintain homeostasis in healthy skin, and are implicated in many cutaneous diseases, as well as unrelated systemic conditions with skin manifestations, and processes such as ageing. Lipids also contribute to the gut-skin axis, signalling between the two barrier sites. Therefore, skin lipids provide a valuable resource for exploration of healthy cutaneous processes, local and systemic disease development and progression, and accessible biomarker discovery for systemic disease, as well as an opportunity to fully understand the relationship between the host and the skin microbiota. Investigation of skin lipids could provide diagnostic and prognostic biomarkers, and help identify new targets for interventions. Development and improvement of existing in vitro and in silico approaches to explore the cutaneous lipidome, as well as advances in skin lipidomics technologies, will facilitate ongoing progress in skin lipid research.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
6
|
Iuliano M, Grimaldi L, Rosa P, Scibetta S, Bernardini N, Proietti I, Tolino E, Skroza N, Potenza C, Mangino G, Romeo G. Extracellular vescicles in psoriasis: from pathogenesis to possible roles in therapy. Front Immunol 2024; 15:1360618. [PMID: 38827737 PMCID: PMC11140073 DOI: 10.3389/fimmu.2024.1360618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/07/2024] [Indexed: 06/04/2024] Open
Abstract
Psoriasis is a chronic inflammatory disease affecting skin and joints characterized by a chronically altered immune and inflammatory response. Several factors occur from the onset to the development of this disease due to different types of cells spatially and temporally localized in the affected area, such as, keratinocytes, macrophages, neutrophils and T helper lymphocytes. This scenario leads to the chronic release of high levels of inflammatory mediators (i.e., IL-17, IL-23, IL-22, TNF-α, S100 proteins, Defensins) and lastly parakeratosis and thickening of the stratum spinosum. Extracellular vesicles (EVs) are small double membraned biological nanoparticles that are secreted by all cell types and classified, based on dimension and biogenesis, into exosomes, microvesicles and apoptotic bodies. Their role as vessels for long range molecular signals renders them key elements in the pathogenesis of psoriasis, as well as innovative platforms for potential biomarker discovery and delivery of fine-tuned anti-inflammatory therapies. In this review, the role of EVs in the pathogenesis of psoriasis and the modulation of cellular microenvironment has been summarized. The biotechnological implementation of EVs for therapy and research for new biomarkers has been also discussed.
Collapse
Affiliation(s)
- Marco Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome – Polo Pontino, Latina, Italy
| | - Lorenzo Grimaldi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome – Polo Pontino, Latina, Italy
| | - Paolo Rosa
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome – Polo Pontino, Latina, Italy
- ICOT, Istituto Chirurgico Ortopedico Traumatologico, Latina, Italy
| | - Sofia Scibetta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome – Polo Pontino, Latina, Italy
| | | | - Ilaria Proietti
- Dermatology Unit “Daniele Innocenzi”, “A. Fiorini” Hospital, Terracina, Italy
| | - Ersilia Tolino
- Dermatology Unit “Daniele Innocenzi”, “A. Fiorini” Hospital, Terracina, Italy
| | - Nevena Skroza
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome – Polo Pontino, Latina, Italy
- Dermatology Unit “Daniele Innocenzi”, “A. Fiorini” Hospital, Terracina, Italy
| | - Concetta Potenza
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome – Polo Pontino, Latina, Italy
- Dermatology Unit “Daniele Innocenzi”, “A. Fiorini” Hospital, Terracina, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome – Polo Pontino, Latina, Italy
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome – Polo Pontino, Latina, Italy
| |
Collapse
|
7
|
Hernandez-Nicols BF, Robledo-Pulido JJ, Alvarado-Navarro A. Etiopathogenesis of Psoriasis: Integration of Proposed Theories. Immunol Invest 2024; 53:348-415. [PMID: 38240030 DOI: 10.1080/08820139.2024.2302823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Psoriasis is a chronic inflammatory disease characterized by squamous and erythematous plaques on the skin and the involvement of the immune system. Global prevalence for psoriasis has been reported around 1-3% with a higher incidence in adults and similar proportions between men and women. The risk factors associated with psoriasis are both extrinsic and intrinsic, out of which a polygenic predisposition is a highlight out of the latter. Psoriasis etiology is not yet fully described, but several hypothesis have been proposed: 1) the autoimmunity hypothesis is based on the over-expression of antimicrobial peptides such as LL-37, the proteins ADAMTSL5, K17, and hsp27, or lipids synthesized by the PLA2G4D enzyme, all of which may serve as autoantigens to promote the differentiation of autoreactive lymphocytes T and unleash a chronic inflammatory response; 2) dysbiosis of skin microbiota hypothesis in psoriasis has gained relevance due to the observations of a loss of diversity and the participation of pathogenic bacteria such as Streptococcus spp. or Staphylococcus spp. the fungi Malassezia spp. or Candida spp. and the virus HPV, HCV, or HIV in psoriatic plaques; 3) the oxidative stress hypothesis, the most recent one, describes that the cell injury and the release of proinflammatory mediators and antimicrobial peptides that leads to activate of the Th1/Th17 axis observed in psoriasis is caused by a higher release of reactive oxygen species and the imbalance between oxidant and antioxidant mechanisms. This review aims to describe the mechanisms involved in the three hypotheses on the etiopathogeneses of psoriasis.
Collapse
Affiliation(s)
- Brenda Fernanda Hernandez-Nicols
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Juan José Robledo-Pulido
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Anabell Alvarado-Navarro
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
8
|
Sangiorgio G, Nicitra E, Bivona D, Bonomo C, Bonacci P, Santagati M, Musso N, Bongiorno D, Stefani S. Interactions of Gram-Positive Bacterial Membrane Vesicles and Hosts: Updates and Future Directions. Int J Mol Sci 2024; 25:2904. [PMID: 38474151 DOI: 10.3390/ijms25052904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayers derived from cell membranes, released by both eukaryotic cells and bacteria into the extracellular environment. During production, EVs carry proteins, nucleic acids, and various compounds, which are then released. While Gram-positive bacteria were traditionally thought incapable of producing EVs due to their thick peptidoglycan cell walls, recent studies on membrane vesicles (MVs) in Gram-positive bacteria have revealed their significant role in bacterial physiology and disease progression. This review explores the current understanding of MVs in Gram-positive bacteria, including the characterization of their content and functions, as well as their interactions with host and bacterial cells. It offers a fresh perspective to enhance our comprehension of Gram-positive bacterial EVs.
Collapse
Affiliation(s)
- Giuseppe Sangiorgio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Emanuele Nicitra
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Dalida Bivona
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Carmelo Bonomo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Paolo Bonacci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Maria Santagati
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| |
Collapse
|
9
|
Liu BD, Akbar R, Oliverio A, Thapa K, Wang X, Fan GC. BACTERIAL EXTRACELLULAR VESICLES IN THE REGULATION OF INFLAMMATORY RESPONSE AND HOST-MICROBE INTERACTIONS. Shock 2024; 61:175-188. [PMID: 37878470 PMCID: PMC10921997 DOI: 10.1097/shk.0000000000002252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
ABSTRACT Extracellular vesicles (EVs) are a new revelation in cross-kingdom communication, with increasing evidence showing the diverse roles of bacterial EVs (BEVs) in mammalian cells and host-microbe interactions. Bacterial EVs include outer membrane vesicles released by gram-negative bacteria and membrane vesicles generated from gram-positive bacteria. Recently, BEVs have drawn attention for their potential as biomarkers and therapeutic tools because they are nano-sized and can deliver bacterial cargo into host cells. Importantly, exposure to BEVs significantly affects various physiological and pathological responses in mammalian cells. Herein, we provide a comprehensive overview of the various effects of BEVs on host cells (i.e., immune cells, endothelial cells, and epithelial cells) and inflammatory/infectious diseases. First, the biogenesis and purification methods of BEVs are summarized. Next, the mechanisms and pathways identified by BEVs that stimulate either proinflammatory or anti-inflammatory responses are highlighted. In addition, we discuss the mechanisms by which BEVs regulate host-microbe interactions and their effects on the immune system. Finally, this review focuses on the contribution of BEVs to the pathogenesis of sepsis/septic shock and their therapeutic potential for the treatment of sepsis.
Collapse
Affiliation(s)
- Benjamin D. Liu
- Department of Chemistry and Biochemistry, The Ohio State University College of Arts and Sciences, Columbus, OH, 43210, USA
| | - Rubab Akbar
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Anna Oliverio
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kajol Thapa
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
10
|
Si W, Li M, Wang K, Li J, Xu M, Zhou X, Bai J, Qu Z, Song G, Wu X, Guo Y, Hu H, Fu D, Yang Z, Wu M, Yan D, Song X, Tian Z. Staphylococcus warneri strain XSB102 exacerbates psoriasis and promotes keratinocyte proliferation in imiquimod-induced psoriasis-like dermatitis mice. Arch Microbiol 2023; 206:3. [PMID: 37991548 DOI: 10.1007/s00203-023-03726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
Psoriasis is one of the common chronic inflammatory skin diseases worldwide. The skin microbiota plays a role in psoriasis through regulating skin homeostasis. However, the studies on the interactions between symbiotic microbial strains and psoriasis are limited. In this study, Staphylococcus strain XSB102 was isolated from the skin of human, which was identified as Staphylococcus warneri using VITEK2 Compact. To reveal the roles of Staphylococcus warneri on psoriasis, XSB102 were applied on the back of imiquimod-induced psoriasis-like dermatitis mice. The results indicated that it exacerbated the psoriasis and significantly increased the thickening of the epidermis. Furthermore, in vitro experiments confirmed that inactivated strain XSB102 could promote the proliferation of human epidermal keratinocytes (HaCaT) cell. However, real-time quantitative PCR and immunofluorescence results suggested that the expression of inflammatory factors such as IL-17a, IL-6, and so on were not significantly increased, while extracellular matrix related factors such as Col6a3 and TGIF2 were significantly increased after XSB102 administration. This study indicates that Staphylococcus warneri XSB102 can exacerbate psoriasis and promote keratinocyte proliferation independently of inflammatory factors, which paves the way for further exploration of the relationship between skin microbiota and psoriasis.
Collapse
Affiliation(s)
- Wenhao Si
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Department of Dermatology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Min Li
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Kuan Wang
- Department of Dermatology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jialin Li
- Department of Dermatology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Mengke Xu
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xiaoyue Zhou
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jie Bai
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Zhiyuan Qu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Guoyan Song
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xueya Wu
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yuqi Guo
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Hua Hu
- Department of Dermatology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Dandan Fu
- Department of Dermatology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Zishan Yang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Minna Wu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Dong Yan
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Xiangfeng Song
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Zhongwei Tian
- Department of Dermatology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
11
|
Akazawa H, Nozaki Y, Yamazawa H, Ishimura K, Ashida C, Okada A, Kinoshita K, Matsumura I. Blockade of IL-18Rα-mediated signaling pathway exacerbates neutrophil infiltration in imiquimod-induced psoriasis murine model. Front Med (Lausanne) 2023; 10:1293132. [PMID: 37964882 PMCID: PMC10641785 DOI: 10.3389/fmed.2023.1293132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Psoriasis is an immune-mediated inflammatory disease of the skin, which is characterized by epidermal hyperkeratosis and neutrophil infiltration. The interleukin (IL)-17/IL-23 pathway and associated cytokines play major roles in the pathogenesis and exacerbation of psoriasis. The IL-18/IL-18 receptor (R) α signaling pathway is important for Th1 cytokine production and differentiation of Th1 cells; however, its role in the pathogenesis of psoriasis remains unknown. In this study, we investigated the effect of the IL-18Rα-mediated signaling pathway in the pathogenesis of psoriasis in Il18ra-deficient mice (Il18ra-/-) and wild-type imiquimod (IMQ)-induced psoriatic dermatitis model mice. Blocking this pathway exacerbated IMQ-induced psoriatic skin inflammation. Il18ra deficiency led to significant increases in the levels of IL-1β, IL-6, IL-8, IL-17A, IL-23, and chemokine (C-X-C motif) ligand 2 in skin lesions. Gr1-positive cells highly infiltrated psoriatic skin lesions in Il18ra-/- mice compared to those in wild-type mice. Citrullinated histone H3-positive area was relatively broad in Il18ra-/- mice. These results suggest that IL-18Rα-mediated signaling pathways may inhibit psoriatic skin inflammation by regulating infiltration and activation of neutrophil and other innate immune cells.
Collapse
Affiliation(s)
- Hiroki Akazawa
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Yuji Nozaki
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Xu Y, Xie C, Liu Y, Qin X, Liu J. An update on our understanding of Gram-positive bacterial membrane vesicles: discovery, functions, and applications. Front Cell Infect Microbiol 2023; 13:1273813. [PMID: 37860067 PMCID: PMC10582989 DOI: 10.3389/fcimb.2023.1273813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized particles released from cells into the extracellular environment, and are separated from eukaryotic cells, bacteria, and other organisms with cellular structures. EVs alter cell communication by delivering their contents and performing various functions depending on their cargo and release into certain environments or other cells. The cell walls of Gram-positive bacteria have a thick peptidoglycan layer and were previously thought to be unable to produce EVs. However, recent studies have demonstrated that Gram-positive bacterial EVs are crucial for health and disease. In this review, we have summarized the formation, composition, and characteristics of the contents, resistance to external stress, participation in immune regulation, and other functions of Gram-positive bacterial EVs, as well as their application in clinical diagnosis and treatment, to provide a new perspective to further our understanding of Gram-positive bacterial EVs.
Collapse
Affiliation(s)
| | | | | | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| |
Collapse
|
13
|
Chen X, Chen Y, Stanton C, Ross RP, Zhao J, Chen W, Yang B. Dose-Response Efficacy and Mechanisms of Orally Administered Bifidobacterium breve CCFM683 on IMQ-Induced Psoriasis in Mice. Nutrients 2023; 15:nu15081952. [PMID: 37111171 PMCID: PMC10143451 DOI: 10.3390/nu15081952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to investigate the dose-response effect of Bifidobacterium breve CCFM683 on relieving psoriasis and its underlying patterns. Specifically, the expression of keratin 16, keratin 17, and involucrin were substantially decreased by administration of 109 CFU and 1010 CFU per day. Moreover, interleukin (IL)-17 and TNF-α levels were substantially decreased by 109 and 1010 CFU/day. Furthermore, the gut microbiota in mice treated with 109 or 1010 CFU/day was rebalanced by improving the diversity, regulating microbe interactions, increasing Lachnoclostridium, and decreasing Oscillibacter. Moreover, the concentrations of colonic bile acids were positively correlated with the effectiveness of the strain in relieving psoriasis. The gavage dose should be more than 108.42 CFU/day to improve psoriasis according to the dose-effect curve. In conclusion, CCFM683 supplementation alleviated psoriasis in a dose-dependent manner by recovering microbiota, promoting bile acid production, regulating the FXR/NF-κB pathway, diminishing proinflammatory cytokines, regulating keratinocytes, and maintaining the epidermal barrier function. These results may help guide probiotic product development and clinical trials in psoriasis.
Collapse
Affiliation(s)
- Xinqi Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
| | - Yang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214126, China
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Reynolds Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214126, China
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214126, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214126, China
| |
Collapse
|
14
|
Born LJ, Khachemoune A. Extracellular vesicles: a comprehensive review of their roles as biomarkers and potential therapeutics in psoriasis and psoriatic arthritis. Clin Exp Dermatol 2023; 48:310-318. [PMID: 36708030 DOI: 10.1093/ced/llac108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 01/22/2023]
Abstract
Psoriasis is a chronic immune-mediated condition that affects the skin and joints, with current treatments still unable to offer a cure and long-term use of treatments posing health risks. Understanding the pathogenesis of the disease has helped identify new targets that have allowed for the expansion of the therapeutic arsenal. Extracellular vesicles (EVs) have recently emerged as pathophysiological mediators of psoriasis, and there have been increasing reports of EVs as potential biomarkers and therapeutics. Given their innate role as natural vehicles for cell-to-cell communication, EVs have vast potential in their ability to determine disease status based on EV-specific cargo as well as act as therapeutics because of their anti-inflammatory properties and potential for enhancement. In this review we summarize the role of EVs in the pathogenesis of psoriasis and discuss EVs as both diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- Louis J Born
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amor Khachemoune
- Department of Dermatology, Veterans Affairs Medical Center, New York, NY, USA
- State University of New, York, New York, NY, USA
| |
Collapse
|
15
|
Bryniarski K, Nazimek K. Advances in the Current Understanding of the Role of Extracellular Vesicles in Allergy, Autoimmunity and Immune Regulation. Int J Mol Sci 2022; 23:ijms232214311. [PMID: 36430786 PMCID: PMC9695904 DOI: 10.3390/ijms232214311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Cells release extracellular vesicles (EVs), such as exosomes and microvesicles, both under physiological and pathological conditions, making EV-dependent signaling cascades a very precise system of intercellular communication [...].
Collapse
|
16
|
IgY Antibodies as Biotherapeutics in Biomedicine. Antibodies (Basel) 2022; 11:antib11040062. [PMID: 36278615 PMCID: PMC9590010 DOI: 10.3390/antib11040062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Since the discovery of antibodies by Emil Von Behring and Shibasaburo Kitasato during the 19th century, their potential for use as biotechnological reagents has been exploited in different fields, such as basic and applied research, diagnosis, and the treatment of multiple diseases. Antibodies are relatively easy to obtain from any species with an adaptive immune system, but birds are animals characterized by relatively easy care and maintenance. In addition, the antibodies they produce can be purified from the egg yolk, allowing a system for obtaining them without performing invasive practices, which favors the three “rs” of animal care in experimentation, i.e., replacing, reducing, and refining. In this work, we carry out a brief descriptive review of the most outstanding characteristics of so-called “IgY technology” and the use of IgY antibodies from birds for basic experimentation, diagnosis, and treatment of human beings and animals.
Collapse
|