1
|
Parvez AK, Jubyda FT, Karmakar J, Jahan A, Akter NE, Ayaz M, Kabir T, Akter S, Huq MA. Antimicrobial potential of biopolymers against foodborne pathogens: An updated review. Microb Pathog 2025; 204:107583. [PMID: 40228749 DOI: 10.1016/j.micpath.2025.107583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Biopolymers are natural polymers produced by the cells of living organisms such as plants, animals, microbes, etc. As these natural molecules possess antimicrobial activities against pathogens, they can be a suitable candidate for antimicrobials combating drug-resistant microorganisms including food-borne pathogens. Plant-derived biopolymers such as cellulose, starch, pullulans; microbes-derived chitosan, poly-L-lysine; animal-derived collagen, gelatin, spongin, etc. are proven to possess antimicrobial properties. They exert their antimicrobial activity against food-borne pathogens namely Salmonella typhi, Vibrio cholerae, Bacillus cereus, Clostridium perfringens, E. coli, Campylobacter jejuni, Staphylococcus aureus, etc. As antimicrobial resistance becomes a global phenomenon and threatens the effective prevention and treatment of infections caused by pathogens, biopolymers could be a promising candidate/substitute for conventional antimicrobials available in markets. Biopolymers can have detrimental effects on microbial cells such as disruption of the cell walls and cell membranes; damage to the DNA caused by strand breakage, unwinding, or cross-linking resulting in impeded DNA transcription and replication; lowering the amount of energy required for metabolic processes by compromising the proton motive force. Biopolymers also interfere with the quorum sensing mechanism and biofilm formation of microbes and modulate the host immune system by downregulating mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways resulting in the decreased production of pro-inflammatory cytokines. Furthermore, conjugating these biopolymers with other antimicrobial agents could be a promising approach to control multidrug-resistant foodborne pathogens. This review provides an overview of the various sources of biopolymers with special reference to their antimicrobial applications, especially against foodborne pathogens, and highlights their antimicrobial mechanisms.
Collapse
Affiliation(s)
| | - Fatema Tuz Jubyda
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Joyoshrie Karmakar
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Airen Jahan
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Nayeem-E Akter
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Mohammed Ayaz
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Tabassum Kabir
- M Abdur Rahim Medical College Hospital, Dinajpur, Bangladesh
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Md Amdadul Huq
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
2
|
Alanazi AA, Saber WIA, AlDamen MA, Elattar KM. Sustainable green synthesis of high-performance Fe 2O 3@CeO 2-pullulan nanocomposite for efficient dye removal, and antifungal applications. Int J Biol Macromol 2025; 308:142533. [PMID: 40157685 DOI: 10.1016/j.ijbiomac.2025.142533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/23/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
The escalating global environmental and microbial pollution necessitates the development of sustainable and efficient solutions, prompting the exploration of advanced nanomaterials. The current study reports the green synthesis of Fe2O3@CeO2 NPs using rosemary extract. Pullulan was incorporated as a mediating agent, resulting in Fe2O3@CeO2-pullulan NPs with improved dispersion and stability. The synthesized NPs were characterized using FTIR, UV-visible spectroscopy, zeta potential analysis, DLS, HR-TEM, SEM, and XRD. The phytochemical content in both NPs types contributed to antioxidant activity. Rosemary extract displayed the strongest antioxidant activity followed by Fe2O3@CeO2-pullulan NPs. Employing the artificial neural network successfully modeled and optimized the removal of MB, with a significant influence of both types of NPs. Both types of NPs demonstrated substantial activity against Candida albicans, with Fe2O3@CeO2-pullulan exhibiting a larger inhibition zone (35.67 ± 1.96 mm) compared to Fe2O3@CeO2 (33.33 ± 0.87 mm) and approved through FTIR and HR-TEM investigation. These findings suggest potential applications of the current NPs in various fields, including environmental remediation, and healthcare. Future research should elucidate the underlying mechanisms and explore specific other applications to maximize the benefits of the findings.
Collapse
Affiliation(s)
- Abdulaziz A Alanazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - WesamEldin I A Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt.
| | - Murad A AlDamen
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan.
| | - Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt.
| |
Collapse
|
3
|
Sepe F, Valentino A, Marcolongo L, Petillo O, Calarco A, Margarucci S, Peluso G, Conte R. Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Molecules: From Tissue Regeneration to Infection Control. Gels 2025; 11:198. [PMID: 40136903 PMCID: PMC11942403 DOI: 10.3390/gels11030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Polysaccharide-based hydrogels have emerged as indispensable materials in tissue engineering and wound healing, offering a unique combination of biocompatibility, biodegradability, and structural versatility. Indeed, their three-dimensional polymeric network and high water content closely resemble the natural extracellular matrix, creating a microenvironment for cell growth, differentiation, and tissue regeneration. Moreover, their intrinsic biodegradability, tunable chemical structure, non-toxicity, and minimal immunogenicity make them optimal candidates for prolonged drug delivery systems. Notwithstanding numerous advantages, these polysaccharide-based hydrogels are confronted with setbacks such as variability in material qualities depending on their source, susceptibility to microbial contamination, unregulated water absorption, inadequate mechanical strength, and unpredictable degradation patterns which limit their efficacy in real-world applications. This review summarizes recent advancements in the application of polysaccharide-based hydrogels, including cellulose, starch, pectin, zein, dextran, pullulan and hyaluronic acid as innovative solutions in wound healing, drug delivery, tissue engineering, and regenerative medicine. Future research should concentrate on optimizing hydrogel formulations to enhance their effectiveness in regenerative medicine and antimicrobial therapy.
Collapse
Affiliation(s)
- Fabrizia Sepe
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
| | - Anna Valentino
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Loredana Marcolongo
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
| | - Orsolina Petillo
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Sabrina Margarucci
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
4
|
Kumari J, Kumawat R, Prasanna R, Jothieswari D, Debnath R, Ikbal AMA, Palit P, Rawat R, Gopikrishna K, Tiwari ON. Microbial exopolysaccharides: Classification, biosynthetic pathway, industrial extraction and commercial production to unveil its bioprospection: A comprehensive review. Int J Biol Macromol 2025; 297:139917. [PMID: 39824430 DOI: 10.1016/j.ijbiomac.2025.139917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Polysaccharides, found universally in all living-species, exhibit diverse biochemical structures and play crucial roles in microorganisms, animals, and plants to defend against pathogens, environmental stress and climate-changing. Microbial exopolysaccharides are essential for cell adhesion and stress resilience and using them has notable advantages over synthetic polysaccharides. Exopolysaccharides have versatile structures and physicochemical properties, used in food systems, therapeutics, cosmetics, agriculture, and polymer industries. Immense economic and infrastructural constraints hinder its widespread commercial use, necessitating a deeper understanding of metabolic-pathways amidst changing environmental climate that influences the biomass composition of EPS-producing wild-microbes. Green and sustainable extraction of EPS from microbes followed by commercial product development has still not been exploited comprehensively. Yield of EPS production vary from 0.1 to 3 g/g of cell weight, influenced by fermentation conditions. Economic barriers, including substrate and processing costs, limit commercial viability. Key biosynthetic pathways involve glycosyltransferases enzymes, whose regulatory network gaps and substrate specificity remain areas for optimization. Addressing these could enhance yields and lower production costs. Review illustrates various microbial-exopolysaccharides, influencing factors of production, and offer valuable insights on the bioplastic, biofuel, agri-bioproduct, and biomedicine. But their bioprospecting potential is yet to be exhaustively explored, along with their pros and cons nor documented comprehensively in scientific literature.
Collapse
Affiliation(s)
- Juhi Kumari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Roopam Kumawat
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Radha Prasanna
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - D Jothieswari
- Sri Venkateswara College of Pharmacy, Chittoor 517 127, Andhra Pradesh, India
| | | | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India
| | - Rajni Rawat
- DST, Science for Equity, Empowerment & Development (SEED) Division, New Delhi 110016, India
| | - K Gopikrishna
- DST, Science for Equity, Empowerment & Development (SEED) Division, New Delhi 110016, India
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
5
|
Sceglovs A, Skadins I, Chitto M, Kroica J, Salma-Ancane K. Failure or future? Exploring alternative antibacterials: a comparative analysis of antibiotics and naturally derived biopolymers. Front Microbiol 2025; 16:1526250. [PMID: 39963493 PMCID: PMC11830819 DOI: 10.3389/fmicb.2025.1526250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
The global crisis of antimicrobial resistance (AMR) is escalating due to the misuse and overuse of antibiotics, the slow development of new therapies, and the rise of multidrug-resistant (MDR) infections. Traditional antibiotic treatments face limitations, including the development of resistance, disruption of the microbiota, adverse side effects, and environmental impact, emphasizing the urgent need for innovative alternative antibacterial strategies. This review critically examines naturally derived biopolymers with intrinsic (essential feature) antibacterial properties as a sustainable, next-generation alternative to traditional antibiotics. These biopolymers may address bacterial resistance uniquely by disrupting bacterial membranes rather than cellular functions, potentially reducing microbiota interference. Through a comparative analysis of the mechanisms and applications of antibiotics and antibacterial naturally derived biopolymers, this review highlights the potential of such biopolymers to address AMR while supporting human and environmental health.
Collapse
Affiliation(s)
- Artemijs Sceglovs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Ingus Skadins
- Department of Biology and Microbiology, Riga Stradins University, Riga, Latvia
| | | | - Juta Kroica
- Department of Biology and Microbiology, Riga Stradins University, Riga, Latvia
| | - Kristine Salma-Ancane
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
6
|
Yang G, Mo H, Liu B, Wu Y, Liu G, Hu Y, Jiao X, Guo K, Wei X, Fang Y, Pan M, Hao L. Pullulan fermented by Aureobasidium melanogenum TZ-FC3 for the preparation of self-healing, adhesive, injectable and antibacterial pullulan/PVA/borax hydrogel. Int J Biol Macromol 2025; 286:138544. [PMID: 39657886 DOI: 10.1016/j.ijbiomac.2024.138544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/20/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Natural polymer hydrogels, such as pullulan-based hydrogels, offer significant advantages over synthetic materials due to their thermal stability, film-forming capacity, solubility, adhesiveness, and antioxidant properties. In this study, the strain Aureobasidium melanogenum TZ-FC3, which produces a high level of pullulan, was successfully isolated from the mangrove ecosystems of Guangdong Province, China. 66.01 ± 1.10 g/L pullulan without melanin was produced by the TZ-FC3 strain within 120 h at flask level. Pullulan fermented by A. melanogenum TZ-FC3 was added to enhance the hydrogen bond network within the pullulan/PVA/borax hydrogels (P-2, P-3 and P-4 hydrogels) to improve mechanical strength and crosslinking density of PVA/borax hydrogel (P-1 hydrogel). Compared to the P-1 hydrogel, the P-2 hydrogel exhibited a 65.4 % increase in tensile strain, a remarkable 694.03 % increase in tensile strength and improved the degree of internal crosslinking. Additionally, the pullulan/PVA/borax hydrogels demonstrated excellent self-healing properties, adhesion, injectability, and antibacterial activity. The preparation process of pullulan/PVA/borax hydrogels is straightforward and effective, suggesting broad industrial applicability and underscoring their potential as next-generation materials for advanced healthcare solutions.
Collapse
Affiliation(s)
- Guang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Ocean Food and Biological Engineering, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Hongjuan Mo
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Ocean Food and Biological Engineering, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Bingjie Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Ocean Food and Biological Engineering, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yiwen Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Ocean Food and Biological Engineering, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guiqin Liu
- Zhejiang Institute of Quality Sciences, Hangzhou 310018, China
| | - Yadong Hu
- Jiangsu Innovation Center of Marine Bioresources, Jiangsu Coast Development Investment Co., Ltd., Jiangsu Coast Development Group Co., Ltd., Nanjing 210019, China
| | - Xue Jiao
- Jiangsu Innovation Center of Marine Bioresources, Jiangsu Coast Development Investment Co., Ltd., Jiangsu Coast Development Group Co., Ltd., Nanjing 210019, China
| | - Kexin Guo
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Ocean Food and Biological Engineering, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xin Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Ocean Food and Biological Engineering, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Ocean Food and Biological Engineering, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingxuan Pan
- Jiangsu Innovation Center of Marine Bioresources, Jiangsu Coast Development Investment Co., Ltd., Jiangsu Coast Development Group Co., Ltd., Nanjing 210019, China.
| | - Liang Hao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Ocean Food and Biological Engineering, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
7
|
Wang X, Komasa S, Tahara Y, Inui S, Matsumoto M, Maekawa K. Novel Injectable Collagen/Glycerol/Pullulan Gel Promotes Osteogenic Differentiation of Mesenchymal Stem Cells and the Repair of Rat Cranial Defects. Gels 2024; 10:775. [PMID: 39727533 DOI: 10.3390/gels10120775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Bone tissue engineering is a technique that simulates the bone tissue microenvironment by utilizing cells, tissue scaffolds, and growth factors. The collagen hydrogel is a three-dimensional network bionic material that has properties and structures comparable to those of the extracellular matrix (ECM), making it an ideal scaffold and drug delivery system for tissue engineering. The clinical applications of this material are restricted due to its low mechanical strength. In this investigation, a collagen-based gel (atelocollagen/glycerol/pullulan [Col/Gly/Pul] gel) that is moldable and injectable with high adhesive qualities was created by employing a straightforward technique that involved the introduction of Gly and Pul. This study aimed to characterize the internal morphology and chemical composition of the Col/Gly/Pul gel, as well as to verify its osteogenic properties through in vivo and in vitro experiments. When compared to a standard pure Col hydrogel, this material is more adaptable to the complexity of the local environment of bone defects and the apposition of irregularly shaped flaws due to its greater mechanical strength, injectability, and moldability. Overall, the Col/Gly/Pul gel is an implant that shows great potential for the treatment of complex bone defects and the enhancement of bone regeneration.
Collapse
Affiliation(s)
- Xin Wang
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata-shi 573-1121, Osaka, Japan
| | - Satoshi Komasa
- Department of Oral Health Sciences, Osaka Dental University, 1-4-4, Makino-honmachi, Hirakata-shi 573-1144, Osaka, Japan
| | - Yoshiro Tahara
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe 610-0321, Kyoto, Japan
| | - Shihoko Inui
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata-shi 573-1121, Osaka, Japan
| | - Michiaki Matsumoto
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe 610-0321, Kyoto, Japan
| | - Kenji Maekawa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata-shi 573-1121, Osaka, Japan
| |
Collapse
|
8
|
Alanazi AA, Saber WIA, AlDamen MA, Elattar KM. Green synthesis, characterization, and multifunctional applications of Ag@CeO 2 and Ag@CeO 2-pullulan nanocomposites for dye degradation, antioxidant, and antifungal activities. Int J Biol Macromol 2024; 280:135862. [PMID: 39322159 DOI: 10.1016/j.ijbiomac.2024.135862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The synthesis and characterization of novel nanocomposites with unique properties have garnered significant interest. Ag@CeO2 nanocomposite and its pullulan counterparts were prepared using a green approach involving rosemary extract. Characterization techniques, including Fourier Transform Infrared Spectroscopy, UV-visible spectroscopy, zeta potential, Dynamic Light Scattering, High-Resolution Transmission Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, Scanning Electron Microscopy, and X-ray Diffraction, confirmed the formation of Ag@CeO2 nanoparticles (NPs). Pullulan led to increased particle size and improved homogeneity. Employing the Artificial Neural Networks (ANN) model to optimize methylene blue removal by Ag@CeO2 NPs and Ag@CeO2-pullulan NPs demonstrated predictive capabilities up to 97.53 % of MB removal (R2 = 0.9991). The antioxidant test demonstrated that rosemary extract exhibited the highest activity (IC50 = 0.011 mg/mL), then Ag@CeO2 NPs (IC50 = 0.039 mg/mL), and Ag@CeO2-pullulan NPs (IC50 = 0.041 mg/mL). Both Ag@CeO2 NPs and Ag@CeO2-pullulan NPs inhibited Candida albicans growth, with the latter exhibiting enhanced efficacy (MIC = 468.27, MFC = 936.53, and IC50 = 129.60 μg/mL). The study successfully synthesized novel Ag@CeO2-based nanocomposites coupled with pullulan with promising applications in dye removal, and antimicrobial therapy. The incorporation of pullulan improved the properties of the nanocomposites, enhancing their potential for practical use in environmental and biomedical applications.
Collapse
Affiliation(s)
- Abdulaziz A Alanazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - WesamEldin I A Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt.
| | - Murad A AlDamen
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan.
| | - Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt.
| |
Collapse
|
9
|
Bal-Öztürk A, Torkay G, İdil N, Akar RO, Özbaş Z, Özkahraman B. Propolis-loaded photocurable methacrylated pullulan films: Evaluation of mechanical, antibacterial, biocompatibility, wound healing and pro-angiogenic abilities. Int J Biol Macromol 2024; 282:137071. [PMID: 39486734 DOI: 10.1016/j.ijbiomac.2024.137071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
The ultimate goal of this study was to establish the groundwork for the development of high-mechanical pullulan based films for wound healing applications. For this purpose, pullulan (PUL) was successfully methacrylated with different methacrylic anhydride amounts and used for the fabrication of photocurable wound dressing films (PULMA). The mechanical properties of the films, evaluated by changing the methacrylation degree and polymer concentration for better mechanical performance, indicated the best results in terms of elastic modulus (2.55 ± 0.15 MPa), tensile strength (2.48 ± 0.12 MPa), and elongation at break (848 ± 111 %). Additionally, the incorporation of PRO into wound dressing films has demonstrated strong antibacterial activity against Escherichia coli and Staphylococcus aureus, and it has also improved the release profile. The obtained films have scavenging properties against 2,2-diphenyl-1-picrylhydrazyl (DPPH). The wound dressing films were not cytotoxic to NIH/3T3 cells, a fibroblast cell line, according to the cytotoxicity assay. The in vitro scratch test showed that PRO incorporated films induced cell migration, suggesting that they have the potential to close wounds and promote healing. According to the image analysis conducted following the in ovo chorioallantoic membrane (CAM) test, PRO inclusion boosted different angiogenesis parameters stemming from the films. Clear evidence has been found that PRO loaded into high mechanical performance PUL based films can be suitable for advanced wound dressing applications.
Collapse
Affiliation(s)
- Ayça Bal-Öztürk
- Istinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010 Istanbul, Turkey; Istinye University, Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, 34010 Istanbul, Turkey; Istinye University, Stem Cell and Tissue Engineering Application and Research Center (ISUKOK), 34010 Istanbul, Turkey
| | - Gülşah Torkay
- Istinye University, Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, 34010 Istanbul, Turkey; Istinye University, Stem Cell and Tissue Engineering Application and Research Center (ISUKOK), 34010 Istanbul, Turkey
| | - Neslihan İdil
- Faculty of Science, Department of Biology, Hacettepe University, 06800 Ankara, Turkey
| | - Remzi Okan Akar
- Medical School of Istinye University, Department of Clinical Biochemistry, 34010 Istanbul, Turkey
| | - Zehra Özbaş
- Çankırı Karatekin University, Faculty of Engineering, Chemical Engineering Department, 18100 Çankırı, Turkey
| | - Bengi Özkahraman
- Hitit University, Faculty of Engineering, Polymer Materials Engineering Department, 19030 Corum, Turkey.
| |
Collapse
|
10
|
Tan KB, Zheng M, Lin J, Zhu Y, Zhan G, Chen J. Properties of Guar Gum/Pullulan/Loquat Leaf Extract Green Composite Packaging in Enhancing the Preservation of Chinese Water Chestnut Fresh-Cut Fruit. Foods 2024; 13:3295. [PMID: 39456358 PMCID: PMC11507296 DOI: 10.3390/foods13203295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Loquat leaf extract (LLE) was added to guar gum and pullulan as an environmentally friendly packaging film (GPE) to preserve Chinese water chestnuts (CWCs). The effect of the amount of LLE on the guar gum/pullulan composite film was investigated. The optimal amount of LLE was 4% (GPE4), with lower water vapor permeability (WVP) and greater mechanical strength, antioxidant, and comparable antibacterial performance than many pullulan-based films. Upon packing the CWCs for 4 days, the weight loss rate of GPE4 was only 1.80 ± 0.05%. For GPE4, the POD activity, the soluble solid content, and the vitamin C (Vc) content of the CWCs were 21.61%, 36.16%, and 26.22% higher than those of the control sample, respectively. More importantly, GPE4 was effective in preserving the quality of CWCs after 4 days of storage, better or at least comparable to non-biodegradable plastic wrapping (PE). Therefore, it can be concluded that GPE films hold significant promise as a sustainable alternative packaging material for preserving fruit-based foods like CWCs, potentially replacing PE in the future.
Collapse
Affiliation(s)
- Kok Bing Tan
- College of Chemical Engineering, Academy of Advanced Carbon Conversion Technology, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, China
| | - Meixia Zheng
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Junyan Lin
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Yujing Zhu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Guowu Zhan
- College of Chemical Engineering, Academy of Advanced Carbon Conversion Technology, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, China
| | - Jianfu Chen
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| |
Collapse
|
11
|
He Q, Ding X, Deng J, Zhang Y, Wang X, Zhan D, Okoro OV, Yan L, Shavandi A, Nie L. Fabrication of injectable, adhesive, self-healing, superabsorbent hydrogels based on quaternary ammonium chitosan and oxidized pullulan. Heliyon 2024; 10:e38577. [PMID: 39435091 PMCID: PMC11491910 DOI: 10.1016/j.heliyon.2024.e38577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Injectable hydrogels, which are polymeric materials that are characterized by their ability to be injected in a liquid form into cavities and subsequently undergo in situ solidification, have garnered significant attention. These materials are extensively used in a range of biomedical applications. This study synthesized several injectable composite hydrogels through the mild Schiff base reaction while imposing different concentrations of quaternary ammonium chitosan and oxidized pullulan. Subsequent characterizations revealed a consistent and coherent porous structure within the hydrogels with smooth inner walls. The hydrogels were also determined to possess good adhesion, mechanical properties, self-healing ability, and injectability. Furthermore, antimicrobial tests against Escherichia coli and Staphylococcus aureus demonstrated antibacterial properties, which improved with increasing concentrations of quaternary ammonium chitosan. Co-culturing with skin fibroblasts demonstrated that the injectable hydrogels exhibited favourable biocompatibility and the capacity to boost cellular activity, thus underscoring its potential for use in biomedical applications.
Collapse
Affiliation(s)
- Qian He
- Emergency Department, Wuhan No.7 Hospital, Wuchang District, 430061, Wuhan, China
| | - Xiaoyue Ding
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang, 464000, China
| | - Jun Deng
- Health Management and Physical Examination Department, Hubei Third People's Hospital, Jianghan University, Qiaokou district, 430030, Wuhan, China
| | - Yanze Zhang
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang, 464000, China
| | - Xiaoyi Wang
- Department of Nutrition, Hubei Third People's Hospital, Jianghan University, Qiaokou district, 430030, Wuhan, China
| | - Dan Zhan
- Health Management and Physical Examination Department, Hubei Third People's Hospital, Jianghan University, Qiaokou district, 430030, Wuhan, China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Lizhao Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Armin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang, 464000, China
| |
Collapse
|
12
|
Niziołek K, Słota D, Sobczak-Kupiec A. Polysaccharide-Based Composite Systems in Bone Tissue Engineering: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4220. [PMID: 39274610 PMCID: PMC11396420 DOI: 10.3390/ma17174220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/16/2024]
Abstract
In recent years, a growing demand for biomaterials has been observed, particularly for applications in bone regenerative medicine. Bone tissue engineering (BTE) aims to develop innovative materials and strategies for repairing and regenerating bone defects and injuries. Polysaccharides, due to their biocompatibility, biodegradability as well as bioactivity, have emerged as promising candidates for scaffolds or composite systems in BTE. Polymers combined with bioactive ceramics can support osteointegration. Calcium phosphate (CaP) ceramics can be a broad choice as an inorganic phase that stimulates the formation of new apatite layers. This review provides a comprehensive analysis of composite systems based on selected polysaccharides used in bone tissue engineering, highlighting their synthesis, properties and applications. Moreover, the applicability of the produced biocomposites has been analyzed, as well as new trends in modifying biomaterials and endowing them with new functionalizations. The effects of these composites on the mechanical properties, biocompatibility and osteoconductivity were critically analyzed. This article summarizes the latest manufacturing methods as well as new developments in polysaccharide-based biomaterials for bone and cartilage regeneration applications.
Collapse
Affiliation(s)
- Karina Niziołek
- Cracow University of Technology, CUT Doctoral School, Faculty of Materials Engineering and Physics, Department of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Dagmara Słota
- Cracow University of Technology, CUT Doctoral School, Faculty of Materials Engineering and Physics, Department of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Agnieszka Sobczak-Kupiec
- Cracow University of Technology, Faculty of Materials Engineering and Physics, Department of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
13
|
Bai R, Chen J, Hao Y, Dong Y, Ren K, Gao T, Zhang S, Xu F, Zhao H. ARTP mutagenesis of Aureobasidium pullulans RM1603 for high pullulan production and transcriptome analysis of mutants. Arch Microbiol 2024; 206:375. [PMID: 39141138 DOI: 10.1007/s00203-024-04094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Pullulan is a microbial exopolysaccharide produced by Aureobasidium spp. with excellent physical and chemical properties, resulting in great application value. In this study, a novel strain RM1603 of Aureobasidium pullulans with high pullulan production of 51.0 ± 1.0 g·L- 1 isolated from rhizosphere soil was subjected to atmospheric and room temperature plasma (ARTP) mutagenesis, followed by selection of mutants to obtain pullulan high-producing strains. Finally, two mutants Mu0816 and Mu1519 were obtained, with polysaccharide productions of 58.7 ± 0.8 and 60.0 ± 0.8 g∙L- 1 after 72-h fermentation, representing 15.1 and 17.6% increases compared with the original strain, respectively. Transcriptome analysis of the two mutants and the original strain revealed that the high expression of α/β-hydrolase (ABHD), α-amylase (AMY1), and sugar porter family MFS transporters (SPF-MFS) in the mutants may be related to the synthesis and secretion of pullulan. These results demonstrated the effectiveness of ARTP mutagenesis in A. pullulans, providing a basis for the investigation of genes related to pullulan synthesis and secretion.
Collapse
Affiliation(s)
- Ruoxuan Bai
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiale Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yaqiao Hao
- Anshan Health School, Anshan, 114013, China
| | - Yiheng Dong
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Keyao Ren
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ting Gao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shuting Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fangxu Xu
- Liaoning Province Key Laboratory of Cordyceps Militaris with Functional Value, Experimental Teaching Center, Shenyang Normal University, Shenyang, 110034, China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
14
|
Yu Y, Yang M, Zhao H, Zhang C, Liu K, Liu J, Li C, Cai B, Guan F, Yao M. Natural blackcurrant extract contained gelatin hydrogel with photothermal and antioxidant properties for infected burn wound healing. Mater Today Bio 2024; 26:101113. [PMID: 38933414 PMCID: PMC11201118 DOI: 10.1016/j.mtbio.2024.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Burns represent a prevalent global health concern and are particularly susceptible to bacterial infections. Severe infections may lead to serious complications, posing a life-threatening risk. Near-infrared (NIR)-assisted photothermal antibacterial combined with antioxidant hydrogel has shown significant potential in the healing of infected wounds. However, existing photothermal agents are typically metal-based, complicated to synthesize, or pose biosafety hazards. In this study, we utilized plant-derived blackcurrant extract (B) as a natural source for both photothermal and antioxidant properties. By incorporating B into a G-O hydrogel crosslinked through Schiff base reaction between gelatin (G) and oxidized pullulan (O), the resulting G-O-B hydrogel exhibited good injectability and biocompatibility along with robust photothermal and antioxidant activities. Upon NIR irradiation, the controlled temperature (around 45-50 °C) generated by the G-O-B hydrogel resulted in rapid (10 min) and efficient killing of Staphylococcus aureus (99 %), Escherichia coli (98 %), and Pseudomonas aeruginosa (82 %). Furthermore, the G-O-B0.5 hydrogel containing 0.5 % blackcurrant extract promoted collagen deposition, angiogenesis, and accelerated burn wound closure conclusively, demonstrating that this well-designed and extract-contained hydrogel dressing holds immense potential for enhancing the healing process of bacterial-infected burn wounds.
Collapse
Affiliation(s)
- Yachao Yu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Mengyu Yang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Hua Zhao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Kaiyue Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Jingmei Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Chenghao Li
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Bingjie Cai
- Department of Dermatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| |
Collapse
|
15
|
Eldadamony NM, Ghoniem AA, Al-Askar AA, Attia AA, El-Hersh MS, Elattar KM, Alrdahi H, Saber WIA. Optimization of pullulan production by Aureobasidium pullulans using semi-solid-state fermentation and artificial neural networks: Characterization and antibacterial activity of pullulan impregnated with Ag-TiO 2 nanocomposite. Int J Biol Macromol 2024; 269:132109. [PMID: 38714281 DOI: 10.1016/j.ijbiomac.2024.132109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
This study presents a novel and efficient approach for pullulan production using artificial neural networks (ANNs) to optimize semi-solid-state fermentation (S-SSF) on faba bean biomass (FBB). This method achieved a record-breaking pullulan yield of 36.81 mg/g within 10.82 days, significantly exceeding previous results. Furthermore, the study goes beyond yield optimization by characterizing the purified pullulan, revealing its unique properties including thermal stability, amorphous structure, and antioxidant activity. Energy-dispersive X-ray spectroscopy and scanning electron microscopy confirmed its chemical composition and distinct morphology. This research introduces a groundbreaking combination of ANNs and comprehensive characterization, paving the way for sustainable and cost-effective pullulan production on FBB under S-SSF conditions. Additionally, the study demonstrates the successful integration of pullulan with Ag@TiO2 nanoparticles during synthesis using Fusarium oxysporum. This novel approach significantly enhances the stability and efficacy of the nanoparticles by modifying their surface properties, leading to remarkably improved antibacterial activity against various human pathogens. These findings showcase the low-cost production medium, and extensive potential of pullulan not only for its intrinsic properties but also for its ability to significantly improve the performance of nanomaterials. This breakthrough opens doors to diverse applications in various fields.
Collapse
Affiliation(s)
- Noha M Eldadamony
- Seed Pathology Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt.
| | - Abeer A Ghoniem
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Abdulaziz A Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Attia A Attia
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, Egypt
| | - Mohammed S El-Hersh
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt.
| | - Haifa Alrdahi
- School of Computer Science, Faculty of Science and Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
| | - WesamEldin I A Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt.
| |
Collapse
|
16
|
Song H, Nan L, Wang J, Cai Y, Sun P, Liu J, Liu C, Fang L. A polyethylene glycol-grafted pullulan polysaccharide adhesive improves drug loading capacity and release efficiency. Int J Biol Macromol 2024; 265:130958. [PMID: 38503369 DOI: 10.1016/j.ijbiomac.2024.130958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
In this study, polyethylene glycol was grafted onto pullulan polysaccharides, resulting in the development of a novel adhesive termed PLUPE, offering superior drug loading capacity and rapid release efficiency. The efficacy of PLUPE was rigorously evaluated through various tests, including the tack test, shear strength test, 180° peel strength test, and human skin adhesion test. The results demonstrated that PLUPE exhibited a static shear strength that was 4.6 to 9.3 times higher than conventional PSAs, ensuring secure adhesion for over 3 days on human skin. A comprehensive analysis, encompassing electrical potential evaluation, calculation of interaction parameters, and FT-IR spectra, elucidated why improved the miscibility between the drug and PSAs, that the significant enhancement of intermolecular hydrogen bonding in the PLUPE structure. ATR-FTIR, rheological, and thermodynamic analyses further revealed that the hydrogen bonding network in PLUPE primarily interacted with polar groups in the skin. This interaction augmented the fluidity and free volume of PSA molecules, thereby promoting efficient drug release. The results confirmed the safety profile of PLUPE through skin irritation tests and MTT assays, bolstering its viability for application in TDDS patches. In conclusion, PLUPE represented a groundbreaking adhesive solution for TDDS patches, successfully overcoming longstanding challenges associated with PSAs.
Collapse
Affiliation(s)
- Haoyuan Song
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Longyi Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, 6Ministry of Education, College of Pharmacy, Yanbian University, 977 7Gongyuan Road, Yanji 133002, China
| | - Jiaqi Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yu Cai
- Key Laboratory of Natural Medicines of the Changbai Mountain, 6Ministry of Education, College of Pharmacy, Yanbian University, 977 7Gongyuan Road, Yanji 133002, China
| | - Peng Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jie Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
17
|
Priya S, Choudhari M, Tomar Y, Desai VM, Innani S, Dubey SK, Singhvi G. Exploring polysaccharide-based bio-adhesive topical film as a potential platform for wound dressing application: A review. Carbohydr Polym 2024; 327:121655. [PMID: 38171676 DOI: 10.1016/j.carbpol.2023.121655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Wound dressings act as a physical barrier between the wound site and the external environment, preventing additional harm; choosing suitable wound dressings is essential for the healing process. Polysaccharide biopolymers have demonstrated encouraging findings and therapeutic prospects in recent decades about wound therapy. Additionally, polysaccharides have bioactive qualities like anti-inflammatory, antibacterial, and antioxidant capabilities that can help the process of healing. Due to their excellent tissue adhesion, swelling, water absorption, bactericidal, and immune-regulating properties, polysaccharide-based bio-adhesive films have recently been investigated as intriguing alternatives in wound management. These films also mimic the structure of the skin and stimulate the regeneration of the skin. This review presented several design standards and functions of suitable bio-adhesive films for the healing of wounds. Additionally, the most recent developments in the use of bio-adhesive films as wound dressings based on polysaccharides, including hyaluronic acid, chondroitin sulfate, dextran, alginate, chitosan, cellulose, konjac glucomannan, gellan gum, xanthan gum, pectin, guar gum, heparin, arabinogalactans, carrageen, and tragacanth gum, are thoroughly discussed. Lastly, to create a road map for the function of polysaccharide-based bio-adhesive films in advanced wound care, their clinical performances and future challenges in making bio-adhesive films by three-dimensional bioprinting are summarized.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Manisha Choudhari
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Yashika Tomar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Srinath Innani
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | | | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
18
|
Rashid A, Qayum A, Liang Q, Kang L, Ekumah JN, Han X, Ren X, Ma H. Exploring the potential of pullulan-based films and coatings for effective food preservation: A comprehensive analysis of properties, activation strategies and applications. Int J Biol Macromol 2024; 260:129479. [PMID: 38237831 DOI: 10.1016/j.ijbiomac.2024.129479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/09/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Pullulan is naturally occurring polysaccharide exhibited potential applications for food preservation has gained increasing attention over the last half-century. Recent studies focused on efficient preservation and targeted inhibition using active composite ingredients and advanced technologies. This has led to the emergence of pullulan-based biofilm preservation. This review extensively studied the characteristics of pullulan-based films and coatings, including their mechanical strength, water vapor permeability, thermal stability, and potential as a microbial agent. Furthermore, the distinct characteristics of pullulan, production methods, and activation strategies, such as pullulan derivatization, various compounded ingredients (plant extracts, microorganisms, and animal additives), and other technologies (e.g., ultrasound), are thoroughly studied for the functional property enhancement of pullulan-based films and coatings, ensuring optimal preservation conditions for diverse food products. Additionally, we explore hypotheses that further illuminate pullulan's potential as an eco-friendly bioactive material for food packaging applications. In addition, this review evaluates various methods to improve the efficiency of the film-forming mechanism, such as improving the direct coating process, bioactive packaging films, and implementing layer-by-layer coatings. Finally, current analyses put forward suggestions for future advancement in pullulan-based bioactive films, with the aim of expanding their range of potential applications.
Collapse
Affiliation(s)
- Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xu Han
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| |
Collapse
|
19
|
Ashique S, Mishra N, Mohanto S, Gowda BJ, Kumar S, Raikar AS, Masand P, Garg A, Goswami P, Kahwa I. Overview of processed excipients in ocular drug delivery: Opportunities so far and bottlenecks. Heliyon 2024; 10:e23810. [PMID: 38226207 PMCID: PMC10788286 DOI: 10.1016/j.heliyon.2023.e23810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Ocular drug delivery presents a unique set of challenges owing to the complex anatomy and physiology of the eye. Processed excipients have emerged as crucial components in overcoming these challenges and improving the efficacy and safety of ocular drug delivery systems. This comprehensive overview examines the opportunities that processed excipients offer in enhancing drug delivery to the eye. By analyzing the current landscape, this review highlights the successful applications of processed excipients, such as micro- and nano-formulations, sustained-release systems, and targeted delivery strategies. Furthermore, this article delves into the bottlenecks that have impeded the widespread adoption of these excipients, including formulation stability, biocompatibility, regulatory constraints, and cost-effectiveness. Through a critical evaluation of existing research and industry practices, this review aims to provide insights into the potential avenues for innovation and development in ocular drug delivery, with a focus on addressing the existing challenges associated with processed excipients. This synthesis contributes to a deeper understanding of the promising role of processed excipients in improving ocular drug delivery systems and encourages further research and development in this rapidly evolving field.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - B.H. Jaswanth Gowda
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| | - Shubneesh Kumar
- Department of Pharmaceutics, Bharat Institute of Technology, School of Pharmacy, Meerut 250103, UP, India
| | - Amisha S. Raikar
- Department of Pharmaceutics, PES Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403401, India
| | - Priya Masand
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, (MIET), NH-58, Delhi-Roorkee Highway, Meerut, Uttar Pradesh 250005, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Priyanka Goswami
- Department of Pharmacognosy, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar 382355, Gujarat, India
- Maharashtra Educational Society's H.K. College of Pharmacy, Mumbai: 400102.India
| | - Ivan Kahwa
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
- Pharm-Bio Technology and Traditional Medicine Centre, Mbarara University of Science and Technology, P. O Box 1410, Mbarara, Uganda
| |
Collapse
|
20
|
Wypij M, Rai M, Zemljič LF, Bračič M, Hribernik S, Golińska P. Pullulan-based films impregnated with silver nanoparticles from the Fusarium culmorum strain JTW1 for potential applications in the food industry and medicine. Front Bioeng Biotechnol 2023; 11:1241739. [PMID: 37609118 PMCID: PMC10441246 DOI: 10.3389/fbioe.2023.1241739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction: Biopolymers, such as pullulan, a natural exopolysaccharide from Aureobasidium pullulans, and their nanocomposites are commonly used in the food, pharmaceutical, and medical industries due to their unique physical and chemical properties. Methods: Pullulan was synthesized by the A. pullulans ATCC 201253 strain. Nanocomposite films based on biosynthesized pullulan were prepared and loaded with different concentrations of silver nanoparticles (AgNPs) synthesized by the Fusarium culmorum strain JTW1. AgNPs were characterized by transmission electron microscopy, Zeta potential measurements, and Fourier-transform infrared spectroscopy. In turn, the produced films were subjected to physico-chemical analyses such as goniometry, UV shielding capacity, attenuated total reflection-Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy, and their mechanical and degradation properties were assessed. The antibacterial assays of the nanoparticles and the nanocomposite films against both food-borne and reference pathogens, including Listeria monocytogenes, Salmonella infantis, Salmonella enterica, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, were performed using standard methods. Results: AgNPs were small (mean 15.1 nm), spherical, and displayed good stability, being coated with protein biomolecules. When used in higher concentrations as an additive to pullulan films, they resulted in reduced hydrophilicity and light transmission for both UV-B and UV-A lights. Moreover, the produced films exhibited a smooth surface. Therefore, it can be concluded that the addition of biogenic AgNPs did not change the morphology and texture of the films compared to the control film. The nanoparticles and nanocomposite films demonstrated remarkable antibacterial activity against both food-borne and reference bacteria. The highest activity of the prepared films was observed against L. monocytogenes. Discussion: The obtained results suggest that the novel nanocomposite films prepared from biosynthesized pullulan and AgNPs can be considered for use in the development of medical products and food packaging. Moreover, this is the first report on pullulan-based nanocomposites with mycogenic AgNPs for such applications.
Collapse
Affiliation(s)
- Magdalena Wypij
- Department of Microbiology, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Mahendra Rai
- Department of Microbiology, Nicolaus Copernicus University in Torun, Torun, Poland
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati, India
| | | | - Matej Bračič
- Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Silvo Hribernik
- Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Patrycja Golińska
- Department of Microbiology, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
21
|
Elangwe CN, Morozkina SN, Olekhnovich RO, Polyakova VO, Krasichkov A, Yablonskiy PK, Uspenskaya MV. Pullulan-Based Hydrogels in Wound Healing and Skin Tissue Engineering Applications: A Review. Int J Mol Sci 2023; 24:ijms24054962. [PMID: 36902394 PMCID: PMC10003054 DOI: 10.3390/ijms24054962] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Wound healing is a complex process of overlapping phases with the primary aim of the creation of new tissues and restoring their anatomical functions. Wound dressings are fabricated to protect the wound and accelerate the healing process. Biomaterials used to design dressing of wounds could be natural or synthetic as well as the combination of both materials. Polysaccharide polymers have been used to fabricate wound dressings. The applications of biopolymers, such as chitin, gelatin, pullulan, and chitosan, have greatly expanded in the biomedical field due to their non-toxic, antibacterial, biocompatible, hemostatic, and nonimmunogenic properties. Most of these polymers have been used in the form of foams, films, sponges, and fibers in drug carrier devices, skin tissue scaffolds, and wound dressings. Currently, special focus has been directed towards the fabrication of wound dressings based on synthesized hydrogels using natural polymers. The high-water retention capacity of hydrogels makes them potent candidates for wound dressings as they provide a moist environment in the wound and remove excess wound fluid, thereby accelerating wound healing. The incorporation of pullulan with different, naturally occurring polymers, such as chitosan, in wound dressings is currently attracting much attention due to the antimicrobial, antioxidant and nonimmunogenic properties. Despite the valuable properties of pullulan, it also has some limitations, such as poor mechanical properties and high cost. However, these properties are improved by blending it with different polymers. Additionally, more investigations are required to obtain pullulan derivatives with suitable properties in high quality wound dressings and tissue engineering applications. This review summarizes the properties and wound dressing applications of naturally occurring pullulan, then examines it in combination with other biocompatible polymers, such chitosan and gelatin, and discusses the facile approaches for oxidative modification of pullulan.
Collapse
Affiliation(s)
- Collins N. Elangwe
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia
- Correspondence:
| | - Svetlana N. Morozkina
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia
- Saint Petersburg Research Institute of Phthisiopulmonology, Ligovsky Prospekt 2-4, 191036 Saint-Petersburg, Russia
| | - Roman O. Olekhnovich
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia
| | - Victoria O. Polyakova
- Saint Petersburg Research Institute of Phthisiopulmonology, Ligovsky Prospekt 2-4, 191036 Saint-Petersburg, Russia
| | - Alexander Krasichkov
- Department of Radio Engineering Systems, Electrotechnical University “LETI”, Prof. Popova Street 5F, 197022 Saint-Petersburg, Russia
| | - Piotr K. Yablonskiy
- Saint Petersburg Research Institute of Phthisiopulmonology, Ligovsky Prospekt 2-4, 191036 Saint-Petersburg, Russia
| | - Mayya V. Uspenskaya
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia
| |
Collapse
|
22
|
Popescu M, Ungureanu C. Biosensors in Food and Healthcare Industries: Bio-Coatings Based on Biogenic Nanoparticles and Biopolymers. COATINGS 2023; 13:486. [DOI: 10.3390/coatings13030486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Biosensors use biological materials, such as enzymes, antibodies, or DNA, to detect specific analytes. These devices have numerous applications in the health and food industries, such as disease diagnosis, food safety monitoring, and environmental monitoring. However, the production of biosensors can result in the generation of chemical waste, which is an environmental concern for the developed world. To address this issue, researchers have been exploring eco-friendly alternatives for immobilising biomolecules on biosensors. One solution uses bio-coatings derived from nanoparticles synthesised via green chemistry and biopolymers. These materials offer several advantages over traditional chemical coatings, such as improved sensitivity, stability, and biocompatibility. In conclusion, the use of bio-coatings derived from green-chemistry synthesised nanoparticles and biopolymers is a promising solution to the problem of chemical waste generated from the production of biosensors. This review provides an overview of these materials and their applications in the health and food industries, highlighting their potential to improve the performance and sustainability of biosensors.
Collapse
Affiliation(s)
- Melania Popescu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania
| | - Camelia Ungureanu
- General Chemistry Department, University “Politehnica” of Bucharest, Gheorghe Polizu Street, 1-7, 011061 Bucharest, Romania
| |
Collapse
|
23
|
Kučuk N, Primožič M, Knez Ž, Leitgeb M. Sustainable Biodegradable Biopolymer-Based Nanoparticles for Healthcare Applications. Int J Mol Sci 2023; 24:3188. [PMID: 36834596 PMCID: PMC9964453 DOI: 10.3390/ijms24043188] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Biopolymeric nanoparticles are gaining importance as nanocarriers for various biomedical applications, enabling long-term and controlled release at the target site. Since they are promising delivery systems for various therapeutic agents and offer advantageous properties such as biodegradability, biocompatibility, non-toxicity, and stability compared to various toxic metal nanoparticles, we decided to provide an overview on this topic. Therefore, the review focuses on the use of biopolymeric nanoparticles of animal, plant, algal, fungal, and bacterial origin as a sustainable material for potential use as drug delivery systems. A particular focus is on the encapsulation of many different therapeutic agents categorized as bioactive compounds, drugs, antibiotics, and other antimicrobial agents, extracts, and essential oils into protein- and polysaccharide-based nanocarriers. These show promising benefits for human health, especially for successful antimicrobial and anticancer activity. The review article, divided into protein-based and polysaccharide-based biopolymeric nanoparticles and further according to the origin of the biopolymer, enables the reader to select the appropriate biopolymeric nanoparticles more easily for the incorporation of the desired component. The latest research results from the last five years in the field of the successful production of biopolymeric nanoparticles loaded with various therapeutic agents for healthcare applications are included in this review.
Collapse
Affiliation(s)
- Nika Kučuk
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
24
|
Maia LS, de Bomfim ASC, de Oliveira DM, Pinhati FR, da Conceição MOT, Barud HS, Medeiros SA, Rosa DS, Mulinari DR. Tuning of renewable sponge‐like polyurethane physical‐chemical and morphological properties using the pullulan as a reactive filler. J Appl Polym Sci 2023. [DOI: 10.1002/app.53619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Lana S. Maia
- Department of Chemistry and Environmental State University of Rio de Janeiro (UERJ) Rio de Janeiro Brazil
| | - Anne Shayene C. de Bomfim
- Department of Materials and Technology School of Engineering and Science, São Paulo State University (UNESP) São Paulo Brazil
| | - Daniel M. de Oliveira
- Department of Materials and Technology School of Engineering and Science, São Paulo State University (UNESP) São Paulo Brazil
| | - Fernanda R. Pinhati
- Department of Chemistry and Environmental State University of Rio de Janeiro (UERJ) Rio de Janeiro Brazil
| | | | - Hernane S. Barud
- Department of Biotechnology Laboratory of Polymers and Biomaterials, University of Araraquara (UNIARA) Araraquara Brazil
| | - Simone A. Medeiros
- Chemical Engineering Department Engineering School of Lorena, University of São Paulo São Paulo Brazil
| | - Derval S. Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC) Santo André Brazil
| | - Daniella R. Mulinari
- Department of Mechanical and Energy State University of Rio de Janeiro (UERJ) Rio de Janeiro Brazil
| |
Collapse
|
25
|
Aleksanyan KV. Polysaccharides for Biodegradable Packaging Materials: Past, Present, and Future (Brief Review). Polymers (Basel) 2023; 15:451. [PMID: 36679331 PMCID: PMC9865279 DOI: 10.3390/polym15020451] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The ecological problems emerging due to accumulation of non-biodegradable plastics are becoming more and more urgent. This problem can be solved by the development of biodegradable materials which will replace the non-biodegradable ones. Among numerous approaches in this field, there is one proposing the use of polysaccharide-based materials. These polymers are biodegradable, non-toxic, and obtained from renewable resources. This review opens discussion about the application of polysaccharides for the creation of biodegradable packaging materials. There are numerous investigations developing new formulations using cross-linking of polymers, mixing with inorganic (metals, metal oxides, clays) and organic (dyes, essential oils, extracts) compounds. The main emphasis in the present work is made on development of the polymer blends consisting of cellulose, starch, chitin, chitosan, pectin, alginate, carrageenan with some synthetic polymers, polymers of natural origin, and essential oils.
Collapse
Affiliation(s)
- Kristine V. Aleksanyan
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow 119991, Russia; or
- Engineering Center, Plekhanov Russian University of Economics, Stremyannyi per. 36, Moscow 117997, Russia
| |
Collapse
|
26
|
|
27
|
Song T, Qian S, Lan T, Wu Y, Liu J, Zhang H. Recent Advances in Bio-Based Smart Active Packaging Materials. Foods 2022; 11:foods11152228. [PMID: 35892814 PMCID: PMC9331990 DOI: 10.3390/foods11152228] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023] Open
Abstract
The shortage of oil resources is currently a global problem. The use of renewable resources instead of non-renewable ones has become a hot topic of research in the eyes of scientists. In the food industry, there is a lot of interest in bio-based smart active packaging that meets the concept of sustainability and ensures safety. The packaging has antibacterial and antioxidant properties that extend the shelf life of food. Its ability to monitor the freshness of food in real time is also beneficial to consumers’ judgement of food safety. This paper summarises the main raw materials for the preparation of bio-based smart active packaging, including proteins, polysaccharides and composite materials. The current status of the preparation method of bio-based smart active packaging and its application in food preservation is summarised. The future development trend in the field of food packaging is foreseen, so as to provide a reference for the improvement of bio-based smart active packaging materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao Zhang
- Correspondence: ; Tel.: +86-43184533321
| |
Collapse
|