1
|
Qian AS, Kluck GEG, Yu P, Gonzalez L, Balint E, Trigatti BL. Apolipoprotein A1 deficiency increases macrophage apoptosis and necrotic core development in atherosclerotic plaques in a Bim-dependent manner. J Lipid Res 2025; 66:100782. [PMID: 40120762 DOI: 10.1016/j.jlr.2025.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
In advanced atherosclerotic lesions, macrophage apoptosis contributes to plaque progression and the formation of necrotic cores, rendering plaques vulnerable to rupture. The proapoptotic protein B-cell lymphoma 2 [Bcl-2] interacting mediator of cell death (Bim) plays a crucial role in mediating apoptosis in macrophages under prolonged endoplasmic reticulum stress. HDL has been shown to suppress macrophage apoptosis induced by endoplasmic reticulum stressors. To investigate the impact of apolipoprotein A1 (ApoA1) deficiency, associated with reduced HDL levels, on necrotic core growth and plaque apoptosis, we introduced ApoA1 deficiency into low-density lipoprotein receptor (LDLR) knockout mice and fed them a high-fat diet for 10 weeks. ApoA1-deficient Ldlr KO mice developed advanced plaques characterized by large necrotic cores, increased apoptosis, and elevated Bim expression in macrophages within the plaques. To assess whether deletion of Bim could mitigate this development, mice underwent bone marrow transplantation with bone marrow from either Bim-deficient mice or from mice with a deletion of myeloid-derived Bim driven by LyzM-cre. Inhibiting Bim in all bone marrow-derived cells led to leukocytosis, reductions in plasma cholesterol and triglyceride levels, and decreased plaque apoptosis, necrotic core, and plaque sizes in ApoA1 and Ldlr double-KO mice but not in Ldlr KO mice. Likewise, conditional deletion of Bim in the myeloid compartment of ApoA1 and Ldlr double-KO mice also reduced apoptosis, necrotic core sizes, and plaque sizes, without inducing leukocytosis or lowering plasma cholesterol levels. These findings suggest that ApoA1 deficiency triggers apoptosis in myeloid cells through a Bim-dependent pathway, significantly contributing to the development of necrotic cores and the progression of atherosclerotic plaques.
Collapse
Affiliation(s)
- Alexander S Qian
- Thrombosis and Atherosclerosis Research Institute, Centre for Metabolism, Obesity and Diabetes Research, and Department of Biochemistry and Biomedical Sciences, McMaster University and, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - George E G Kluck
- Thrombosis and Atherosclerosis Research Institute, Centre for Metabolism, Obesity and Diabetes Research, and Department of Biochemistry and Biomedical Sciences, McMaster University and, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Pei Yu
- Thrombosis and Atherosclerosis Research Institute, Centre for Metabolism, Obesity and Diabetes Research, and Department of Biochemistry and Biomedical Sciences, McMaster University and, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Leticia Gonzalez
- Thrombosis and Atherosclerosis Research Institute, Centre for Metabolism, Obesity and Diabetes Research, and Department of Biochemistry and Biomedical Sciences, McMaster University and, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Elizabeth Balint
- Thrombosis and Atherosclerosis Research Institute, Centre for Metabolism, Obesity and Diabetes Research, and Department of Biochemistry and Biomedical Sciences, McMaster University and, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Bernardo L Trigatti
- Thrombosis and Atherosclerosis Research Institute, Centre for Metabolism, Obesity and Diabetes Research, and Department of Biochemistry and Biomedical Sciences, McMaster University and, Hamilton Health Sciences, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Ceccato J, Gualtiero G, Piazza M, Carraro S, Buso H, Felice C, Rattazzi M, Scarpa R, Vianello F, Cinetto F. Shaping Rare Granulomatous Diseases in the Lab: How New Models Are Changing the Game. Cells 2025; 14:293. [PMID: 39996765 PMCID: PMC11853845 DOI: 10.3390/cells14040293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
In vitro models serve as valuable tools for understanding the complex cellular and molecular interactions involved in granuloma formation, providing a controlled environment to explore the underlying mechanisms of their development and function. Various models have been developed to replicate granulomatous diseases, even though they may lack the sophistication needed to fully capture the variability present in clinical spectra and environmental influences. Traditional cultures of PBMCs have been widely used to generate granuloma models, enabling the study of aggregation responses to various stimuli. However, growing cells on a two-dimensional (2D) plastic surface as a monolayer can lead to altered cellular responses and the modulation of signaling pathways, which may not accurately represent in vivo conditions. In response to these limitations, the past decade has seen significant advancements in the development of three-dimensional (3D) in vitro models, which more effectively mimic in vivo conditions and provide better insights into cell-cell and cell-microenvironment interactions. Meanwhile, the use of in vivo animal models in biomedical research must adhere to the principle of the three Rs (replacement, reduction, and refinement) while ensuring that the models faithfully replicate human-specific processes. This review summarizes and compares the main models developed to investigate granulomas, focusing on their contribution to advancing our understanding of granuloma biology. We also discuss the strengths and limitations of each model, offering insights into their biological relevance and practical applications.
Collapse
Affiliation(s)
- Jessica Ceccato
- Hematology and Clinical Immunology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (J.C.); (G.G.)
- Veneto Institute of Molecular Medicine (VIMM), 35128 Padua, Italy
| | - Giulia Gualtiero
- Hematology and Clinical Immunology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (J.C.); (G.G.)
- Veneto Institute of Molecular Medicine (VIMM), 35128 Padua, Italy
| | - Maria Piazza
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.P.); (H.B.); (C.F.); (M.R.); (R.S.); (F.C.)
| | - Samuela Carraro
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Helena Buso
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.P.); (H.B.); (C.F.); (M.R.); (R.S.); (F.C.)
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Carla Felice
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.P.); (H.B.); (C.F.); (M.R.); (R.S.); (F.C.)
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Marcello Rattazzi
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.P.); (H.B.); (C.F.); (M.R.); (R.S.); (F.C.)
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Riccardo Scarpa
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.P.); (H.B.); (C.F.); (M.R.); (R.S.); (F.C.)
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Fabrizio Vianello
- Hematology and Clinical Immunology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (J.C.); (G.G.)
- Veneto Institute of Molecular Medicine (VIMM), 35128 Padua, Italy
| | - Francesco Cinetto
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.P.); (H.B.); (C.F.); (M.R.); (R.S.); (F.C.)
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, 31100 Treviso, Italy;
| |
Collapse
|
3
|
Kotlyarov S, Kotlyarova A. Biological Functions and Clinical Significance of the ABCG1 Transporter. BIOLOGY 2024; 14:8. [PMID: 39857239 PMCID: PMC11760449 DOI: 10.3390/biology14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025]
Abstract
ATP-binding cassette (ABC) transporters are a large family of proteins that transport various substances across cell membranes using energy from ATP hydrolysis. ATP-binding cassette sub-family G member 1 (ABCG1) is a member of the ABCG subfamily of transporters and performs many important functions, such as the export of cholesterol and some other lipids across the membranes of various cells. Cholesterol transport is the mechanism that links metabolism and the innate immune system. Due to its lipid transport function, ABCG1 may contribute to the prevention of atherosclerosis and is involved in the functioning of the lung, pancreas, and other organs and systems. However, the full clinical significance of ABCG1 is still unknown and is a promising area for future research.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
4
|
Yazdi MK, Alavi MS, Roohbakhsh A. The role of ATP-binding cassette transporter G1 (ABCG1) in Alzheimer's disease: A review of the mechanisms. Basic Clin Pharmacol Toxicol 2024; 134:423-438. [PMID: 38275217 DOI: 10.1111/bcpt.13981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
The maintenance of cholesterol homeostasis is essential for central nervous system function. Consequently, factors that affect cholesterol homeostasis are linked to neurological disorders and pathologies. Among them, ATP-binding cassette transporter G1 (ABCG1) plays a significant role in atherosclerosis. However, its role in Alzheimer's disease (AD) is unclear. There is inconsistent information regarding ABCG1's role in AD. It can increase or decrease amyloid β (Aβ) levels in animals' brains. Clinical studies show that ABCG1 is involved in AD patients' impairment of cholesterol efflux capacity (CEC) in the cerebrospinal fluid (CSF). Lower Aβ levels in the CSF are correlated with ABCG1-mediated CEC dysfunction. ABCG1 modulates α-, β-, and γ-secretase activities in the plasma membrane and may affect Aβ production in the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) cell compartment. Despite contradictory findings regarding ABCG1's role in AD, this review shows that ABCG1 has a role in Aβ generation via modulation of membrane secretases. It is, however, necessary to investigate the underlying mechanism(s). ABCG1 may also contribute to AD pathology through its role in apoptosis and oxidative stress. As a result, ABCG1 plays a role in AD and is a candidate for drug development.
Collapse
Affiliation(s)
- Mohsen Karbasi Yazdi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Kwak D, Bradley PB, Subbotina N, Ling S, Teitz-Tennenbaum S, Osterholzer JJ, Sisson TH, Kim KK. CD36/Lyn kinase interactions within macrophages promotes pulmonary fibrosis in response to oxidized phospholipid. Respir Res 2023; 24:314. [PMID: 38098035 PMCID: PMC10722854 DOI: 10.1186/s12931-023-02629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
Recent data from human studies and animal models have established roles for type II alveolar epithelial cell (AEC2) injury/apoptosis and monocyte/macrophage accumulation and activation in progressive lung fibrosis. Although the link between these processes is not well defined, we have previously shown that CD36-mediated uptake of apoptotic AEC2s by lung macrophages is sufficient to drive fibrosis. Importantly, apoptotic AEC2s are rich in oxidized phospholipids (oxPL), and amongst its multiple functions, CD36 serves as a scavenger receptor for oxPL. Recent studies have established a role for oxPLs in alveolar scarring, and we hypothesized that uptake and accrual of oxPL by CD36 would cause a macrophage phenotypic change that promotes fibrosis. To test this hypothesis, we treated wild-type and CD36-null mice with the oxPL derivative oxidized phosphocholine (POVPC) and found that CD36-null mice were protected from oxPL-induced scarring. Compared to WT mice, fewer macrophages accumulated in the lungs of CD36-null animals, and the macrophages exhibited a decreased accumulation of intracellular oxidized lipid. Importantly, the attenuated accrual of oxPL in CD36-null macrophages was associated with diminished expression of the profibrotic mediator, TGFβ. Finally, the pathway linking oxPL uptake and TGFβ expression was found to require CD36-mediated activation of Lyn kinase. Together, these observations elucidate a causal pathway that connects AEC2 injury with lung macrophage activation via CD36-mediated uptake of oxPL and suggest several potential therapeutic targets.
Collapse
Affiliation(s)
- Doyun Kwak
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Patrick B Bradley
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Natalia Subbotina
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Song Ling
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Seagal Teitz-Tennenbaum
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
- Pulmonary Section, Department of Medicine, VA Ann Arbor Health System, Ann Arbor, MI, 48105, USA
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
- Pulmonary Section, Department of Medicine, VA Ann Arbor Health System, Ann Arbor, MI, 48105, USA
| | - Thomas H Sisson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
6
|
Fan J, To KKW, Chen ZS, Fu L. ABC transporters affects tumor immune microenvironment to regulate cancer immunotherapy and multidrug resistance. Drug Resist Updat 2023; 66:100905. [PMID: 36463807 DOI: 10.1016/j.drup.2022.100905] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
Multidrug resistance (MDR) is the phenomenon in which cancer cells simultaneously develop resistance to a broad spectrum of structurally and mechanistically unrelated drugs. MDR severely hinders the effective treatment of cancer and is the major cause of chemotherapy failure. ATP-binding cassette (ABC) transporters are extensively expressed in various body tissues, and actively transport endogenous and exogenous substrates through biological membranes. Overexpression of ABC transporters is frequently observed in MDR cancer cells, which promotes efflux of chemotherapeutic drugs and reduces their intracellular accumulation. Increasing evidence suggests that ABC transporters regulate tumor immune microenvironment (TIME) by transporting various cytokines, thus controlling anti-tumor immunity and sensitivity to anticancer drugs. On the other hand, the expression of various ABC transporters is regulated by cytokines and other immune signaling molecules. Targeted inhibition of ABC transporter expression or function can enhance the efficacy of immune checkpoint inhibitors by promoting anticancer immune microenvironment. This review provides an update on the recent research progress in this field.
Collapse
Affiliation(s)
- Jingyi Fan
- State Key Laboratory of Oncology in South China;Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing 100038, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China;Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
7
|
Kotlyarov S, Kotlyarova A. The Importance of the Plasma Membrane in Atherogenesis. MEMBRANES 2022; 12:1036. [PMID: 36363591 PMCID: PMC9698587 DOI: 10.3390/membranes12111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Atherosclerotic cardiovascular diseases are an important medical problem due to their high prevalence, impact on quality of life and prognosis. The pathogenesis of atherosclerosis is an urgent medical and social problem, the solution of which may improve the quality of diagnosis and treatment of patients. Atherosclerosis is a complex chain of events, which proceeds over many years and in which many cells in the bloodstream and the vascular wall are involved. A growing body of evidence suggests that there are complex, closely linked molecular mechanisms that occur in the plasma membranes of cells involved in atherogenesis. Lipid transport, innate immune system receptor function, and hemodynamic regulation are linked to plasma membranes and their biophysical properties. A better understanding of these interrelationships will improve diagnostic quality and treatment efficacy.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
8
|
Esobi I, Olanrewaju O, Echesabal-Chen J, Stamatikos A. Utilizing the LoxP-Stop-LoxP System to Control Transgenic ABC-Transporter Expression In Vitro. Biomolecules 2022; 12:679. [PMID: 35625607 PMCID: PMC9138957 DOI: 10.3390/biom12050679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/20/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
ABCA1 and ABCG1 are two ABC-transporters well-recognized to promote the efflux of cholesterol to apoAI and HDL, respectively. As these two ABC-transporters are critical to cholesterol metabolism, several studies have assessed the impact of ABCA1 and ABCG1 expression on cellular cholesterol homeostasis through ABC-transporter ablation or overexpressing ABCA1/ABCG1. However, for the latter, there are currently no well-established in vitro models to effectively induce long-term ABC-transporter expression in a variety of cultured cells. Therefore, we performed proof-of-principle in vitro studies to determine whether a LoxP-Stop-LoxP (LSL) system would provide Cre-inducible ABC-transporter expression. In our studies, we transfected HEK293 cells and the HEK293-derived cell line 293-Cre cells with ABCA1-LSL and ABCG1-LSL-based plasmids. Our results showed that while the ABCA1/ABCG1 protein expression was absent in the transfected HEK293 cells, the ABCA1 and ABCG1 protein expression was detected in the 293-Cre cells transfected with ABCA1-LSL and ABCG1-LSL, respectively. When we measured cholesterol efflux in transfected 293-Cre cells, we observed an enhanced apoAI-mediated cholesterol efflux in 293-Cre cells overexpressing ABCA1, and an HDL2-mediated cholesterol efflux in 293-Cre cells constitutively expressing ABCG1. We also observed an appreciable increase in HDL3-mediated cholesterol efflux in ABCA1-overexpressing 293-Cre cells, which suggests that ABCA1 is capable of effluxing cholesterol to small HDL particles. Our proof-of-concept experiments demonstrate that the LSL-system can be used to effectively regulate ABC-transporter expression in vitro, which, in turn, allows ABCA1/ABCG1-overexpression to be extensively studied at the cellular level.
Collapse
Affiliation(s)
| | | | | | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (I.E.); (O.O.); (J.E.-C.)
| |
Collapse
|