1
|
Abbaali I, Truong D, Wetzel DM, Morrissette NS. Toxoplasma replication is inhibited by MMV676477 without development of resistance. Cytoskeleton (Hoboken) 2025; 82:5-11. [PMID: 38757481 PMCID: PMC11568068 DOI: 10.1002/cm.21876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/20/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Protozoan parasites cause life-threatening infections in both humans and animals, including agriculturally significant livestock. Available treatments are typically narrow spectrum and are complicated by drug toxicity and the development of resistant parasites. Protozoan tubulin is an attractive target for the development of broad-spectrum antimitotic agents. The Medicines for Malaria Pathogen Box compound MMV676477 was previously shown to inhibit replication of kinetoplastid parasites, such as Leishmania amazonensis and Trypanosoma brucei, and the apicomplexan parasite Plasmodium falciparum by selectively stabilizing protozoan microtubules. In this report, we show that MMV676477 inhibits intracellular growth of the human apicomplexan pathogen Toxoplasma gondii with an EC50 value of ~50 nM. MMV676477 does not stabilize vertebrate microtubules or cause other toxic effects in human fibroblasts. The availability of tools for genetic studies makes Toxoplasma a useful model for studies of the cytoskeleton. We conducted a forward genetics screen for MMV676477 resistance, anticipating that missense mutations would delineate the binding site on protozoan tubulin. Unfortunately, we were unable to use genetics to dissect target interactions because no resistant parasites emerged. This outcome suggests that future drugs based on the MMV676477 scaffold would be less likely to be undermined by the emergence of drug resistance.
Collapse
Affiliation(s)
- Izra Abbaali
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Danny Truong
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Dawn M. Wetzel
- Department of Pediatrics and BiochemistryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Naomi S. Morrissette
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
2
|
Chao-Pellicer J, Arberas-Jiménez I, Sifaoui I, Piñero JE, Lorenzo-Morales J. Exploring therapeutic approaches against Naegleria fowleri infections through the COVID box. Int J Parasitol Drugs Drug Resist 2024; 25:100545. [PMID: 38718717 PMCID: PMC11091526 DOI: 10.1016/j.ijpddr.2024.100545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 08/10/2024]
Abstract
Naegleria fowleri, known as the brain-eating amoeba, is the pathogen that causes the primary amoebic meningoencephalitis (PAM), a severe neurodegenerative disease with a fatality rate exceeding 95%. Moreover, PAM cases commonly involved previous activities in warm freshwater bodies that allow amoebae-containing water through the nasal passages. Hence, awareness among healthcare professionals and the general public are the key to contribute to a higher and faster number of diagnoses worldwide. Current treatment options for PAM, such as amphotericin B and miltefosine, are limited by potential cytotoxic effects. In this context, the repurposing of existing compounds has emerged as a promising strategy. In this study, the evaluation of the COVID Box which contains 160 compounds demonstrated significant in vitro amoebicidal activity against two type strains of N. fowleri. From these compounds, terconazole, clemastine, ABT-239 and PD-144418 showed a higher selectivity against the parasite compared to the remaining products. In addition, programmed cell death assays were conducted with these four compounds, unveiling compatible metabolic events in treated amoebae. These compounds exhibited chromatin condensation and alterations in cell membrane permeability, indicating their potential to induce programmed cell death. Assessment of mitochondrial membrane potential disruption and a significant reduction in ATP production emphasized the impact of these compounds on the mitochondria, with the identification of increased ROS production underscoring their potential as effective treatment options. This study emphasizes the potential of the mentioned COVID Box compounds against N. fowleri, providing a path for enhanced PAM therapies.
Collapse
Affiliation(s)
- Javier Chao-Pellicer
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203, San Cristóbal de La Laguna, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220, Madrid, Spain.
| | - Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203, San Cristóbal de La Laguna, Spain.
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203, San Cristóbal de La Laguna, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220, Madrid, Spain.
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203, San Cristóbal de La Laguna, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220, Madrid, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203, San Cristóbal de La Laguna, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220, Madrid, Spain.
| |
Collapse
|
3
|
Tell I Puig A, Soldati-Favre D. Roles of the tubulin-based cytoskeleton in the Toxoplasma gondii apical complex. Trends Parasitol 2024; 40:401-415. [PMID: 38531711 DOI: 10.1016/j.pt.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
Microtubules (MTs) play a vital role as key components of the eukaryotic cytoskeleton. The phylum Apicomplexa comprises eukaryotic unicellular parasitic organisms defined by the presence of an apical complex which consists of specialized secretory organelles and tubulin-based cytoskeletal elements. One apicomplexan parasite, Toxoplasma gondii, is an omnipresent opportunistic pathogen with significant medical and veterinary implications. To ensure successful infection and widespread dissemination, T. gondii heavily relies on the tubulin structures present in the apical complex. Recent advances in high-resolution imaging, coupled with reverse genetics, have offered deeper insights into the composition, functionality, and dynamics of these tubulin-based structures. The apicomplexan tubulins differ from those of their mammalian hosts, endowing them with unique attributes and susceptibility to specific classes of inhibitory compounds.
Collapse
Affiliation(s)
- Albert Tell I Puig
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Liu YR, Wang JQ, Li XF, Chen H, Xia Q, Li J. Identification and preliminary validation of synovial tissue-specific genes and their-mediated biological mechanisms in rheumatoid arthritis. Int Immunopharmacol 2023; 117:109997. [PMID: 36940554 DOI: 10.1016/j.intimp.2023.109997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease. It is well known that the formation of positive feedback between synovial hyperplasia and inflammatory infiltration is intimately associated with the occurrence and development of RA. However, the exact mechanisms still remain unknown, making the early diagnosis and therapy of RA difficult. This study was designed to identify prospective diagnostic and therapeutic biomarkers, as well as their-mediated biological mechanisms in RA. METHODS Three microarray datasets (GSE36700, GSE77298 and GSE153015) and two RNA-sequencing datasets (GSE89408 and GSE112656) of synovial tissues, as well as three other microarray datasets (GSE101193, GSE134087 and GSE94519) of peripheral blood were downloaded for integrated analysis. The differently expressed genes (DEGs) were identified by "limma" package of R software. Then, weight gene co-expression analysis and gene set enrichment analysis were performed to investigate synovial tissue-specific genes and their-mediated biological mechanisms in RA. The expression of candidate genes and their diagnostic value for RA were verified by quantitative real-time PCR and receiver operating characteristic (ROC) curve, respectively. Relevant biological mechanisms were explored through cell proliferation and colony formation assay. The suggestive anti-RA compounds were discovered by CMap analysis. RESULTS We identified a total of 266 DEGs, which were mainly enriched in cellular proliferation and migration, infection and inflammatory immune signaling pathways. Bioinformatics analysis and molecular validation revealed 5 synovial tissue-specific genes, which exhibited excellent diagnostic value for RA. The infiltration level of immune cells in RA synovial tissue was significantly higher than that in control individuals. Moreover, preliminary molecular experiments suggested that these characteristic genes may be responsible for the high proliferation potential of RA fibroblast-like synoviocytes (FLSs). Finally, 8 small molecular compounds with anti-RA potential were obtained. CONCLUSIONS We have proposed 5 potential diagnostic and therapeutic biomarkers (CDK1, TTK, HMMR, DLGAP5, and SKA3) in synovial tissues that may contribute to the pathogenesis of RA. These findings may shed light on the early diagnosis and therapy of RA.
Collapse
Affiliation(s)
- Ya-Ru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China.
| | - Jie-Quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230000, China; Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230000, China
| | - Xiao-Feng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hao Chen
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China.
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|