1
|
Graceffo E, Opitz R, Megges M, Krude H, Schuelke M. RNA Sequencing Reveals a Strong Predominance of THRA Splicing Isoform 2 in the Developing and Adult Human Brain. Int J Mol Sci 2024; 25:9883. [PMID: 39337374 PMCID: PMC11432079 DOI: 10.3390/ijms25189883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Thyroid hormone receptor alpha (THRα) is a nuclear hormone receptor that binds triiodothyronine (T3) and acts as an important transcription factor in development, metabolism, and reproduction. In mammals, THRα has two major splicing isoforms, THRα1 and THRα2. The better-characterized isoform, THRα1, is a transcriptional stimulator of genes involved in cell metabolism and growth. The less-well-characterized isoform, THRα2, lacks the ligand-binding domain (LBD) and is thought to act as an inhibitor of THRα1 activity. The ratio of THRα1 to THRα2 splicing isoforms is therefore critical for transcriptional regulation in different tissues and during development. However, the expression patterns of both isoforms have not been studied in healthy human tissues or in the developing brain. Given the lack of commercially available isoform-specific antibodies, we addressed this question by analyzing four bulk RNA-sequencing datasets and two scRNA-sequencing datasets to determine the RNA expression levels of human THRA1 and THRA2 transcripts in healthy adult tissues and in the developing brain. We demonstrate how 10X Chromium scRNA-seq datasets can be used to perform splicing-sensitive analyses of isoforms that differ at the 3'-end. In all datasets, we found a strong predominance of THRA2 transcripts at all examined stages of human brain development and in the central nervous system of healthy human adults.
Collapse
Affiliation(s)
- Eugenio Graceffo
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Neuropediatrics, 13353 Berlin, Germany;
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
| | - Robert Opitz
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Institute of Experimental Pediatric Endocrinology, 13353 Berlin, Germany; (R.O.); (H.K.)
| | - Matthias Megges
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Pediatric Endocrinology, 13353 Berlin, Germany;
| | - Heiko Krude
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Institute of Experimental Pediatric Endocrinology, 13353 Berlin, Germany; (R.O.); (H.K.)
| | - Markus Schuelke
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Neuropediatrics, 13353 Berlin, Germany;
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neurocure Clinical Research Center, 10117 Berlin, Germany
| |
Collapse
|
2
|
Wang Y, Wu N, Li J, Liang J, Zhou D, Cao Q, Li X, Jiang N. The interplay between autophagy and ferroptosis presents a novel conceptual therapeutic framework for neuroendocrine prostate cancer. Pharmacol Res 2024; 203:107162. [PMID: 38554788 DOI: 10.1016/j.phrs.2024.107162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
In American men, the incidence of prostate cancer (PC) is the highest among all types of cancer, making it the second leading cause of mortality associated with cancer. For advanced or metastatic PC, antiandrogen therapies are standard treatment options. The administration of these treatments unfortunately carries the potential risk of inducing neuroendocrine prostate cancer (NEPC). Neuroendocrine differentiation (NED) serves as a crucial indicator of prostate cancer development, encompassing various factors such as phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), Yes-associated protein 1 (YAP1), AMP-activated protein kinase (AMPK), miRNA. The processes of autophagy and ferroptosis (an iron-dependent form of programmed cell death) play pivotal roles in the regulation of various types of cancers. Clinical trials and preclinical investigations have been conducted on many signaling pathways during the development of NEPC, with the deepening of research, autophagy and ferroptosis appear to be the potential target for regulating NEPC. Due to the dual nature of autophagy and ferroptosis in cancer, gaining a deeper understanding of the developmental programs associated with achieving autophagy and ferroptosis may enhance risk stratification and treatment efficacy for patients with NEPC.
Collapse
Affiliation(s)
- Youzhi Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ning Wu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Junbo Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jiaming Liang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Diansheng Zhou
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Qian Cao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Institution of Urology, Peking University, Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China.
| | - Ning Jiang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
3
|
Bernal A, Bechler AJ, Mohan K, Rizzino A, Mathew G. The Current Therapeutic Landscape for Metastatic Prostate Cancer. Pharmaceuticals (Basel) 2024; 17:351. [PMID: 38543137 PMCID: PMC10974045 DOI: 10.3390/ph17030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
In 2024, there will be an estimated 1,466,718 cases of prostate cancer (PC) diagnosed globally, of which 299,010 cases are estimated to be from the US. The typical clinical approach for PC involves routine screening, diagnosis, and standard lines of treatment. However, not all patients respond to therapy and are subsequently diagnosed with treatment emergent neuroendocrine prostate cancer (NEPC). There are currently no approved treatments for this form of aggressive PC. In this review, a compilation of the clinical trials regimen to treat late-stage NEPC using novel targets and/or a combination approach is presented. The novel targets assessed include DLL3, EZH2, B7-H3, Aurora-kinase-A (AURKA), receptor tyrosine kinases, PD-L1, and PD-1. Among these, the trials administering drugs Alisertib or Cabozantinib, which target AURKA or receptor tyrosine kinases, respectively, appear to have promising results. The least effective trials appear to be ones that target the immune checkpoint pathways PD-1/PD-L1. Many promising clinical trials are currently in progress. Consequently, the landscape of successful treatment regimens for NEPC is extremely limited. These trial results and the literature on the topic emphasize the need for new preventative measures, diagnostics, disease specific biomarkers, and a thorough clinical understanding of NEPC.
Collapse
Affiliation(s)
- Anastasia Bernal
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68106, USA; (A.B.); (A.J.B.); (K.M.); (A.R.)
| | - Alivia Jane Bechler
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68106, USA; (A.B.); (A.J.B.); (K.M.); (A.R.)
| | - Kabhilan Mohan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68106, USA; (A.B.); (A.J.B.); (K.M.); (A.R.)
| | - Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68106, USA; (A.B.); (A.J.B.); (K.M.); (A.R.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Grinu Mathew
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68106, USA; (A.B.); (A.J.B.); (K.M.); (A.R.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68106, USA
| |
Collapse
|
4
|
Yao Y, Chen X, Wang X, Li H, Zhu Y, Li X, Xiao Z, Zi T, Qin X, Zhao Y, Yang T, Wang L, Wu G, Fang X, Wu D. Glycolysis related lncRNA SNHG3 / miR-139-5p / PKM2 axis promotes castration-resistant prostate cancer (CRPC) development and enzalutamide resistance. Int J Biol Macromol 2024; 260:129635. [PMID: 38266860 DOI: 10.1016/j.ijbiomac.2024.129635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Although androgen deprivation therapy (ADT) by the anti-androgen drug enzalutamide (Enz) may improve the survival level of patients with castration-resistant prostate cancer (CRPC), most patients may eventually fail due to the acquired resistance. The reprogramming of glucose metabolism is one type of the paramount hallmarks of cancers. PKM2 (Pyruvate kinase isozyme typeM2) is a speed-limiting enzyme in the glycolytic mechanism, and has high expression in a variety of cancers. Emerging evidence has unveiled that microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have impact on tumor development and therapeutic efficacy by regulating PKM2 expression. Herein, we found that lncRNA SNHG3, a highly expressed lncRNA in CRPC via bioinformatics analysis, promoted the invasive ability and the Enz resistance of the PCa cells. KEGG pathway enrichment analysis indicated that glucose metabolic process was tightly correlated with lncRNA SNHG3 level, suggesting lncRNA SNHG3 may affect glucose metabolism. Indeed, glucose uptake and lactate content determinations confirmed that lncRNA SNHG3 promoted the process of glycolysis. Mechanistic dissection demonstrated that lncRNA SNHG3 facilitated the advance of CRPC by adjusting the expression of PKM2. Further explorations unraveled the role of lncRNA SNHG3 as a 'sponge' of miR-139-5p and released its binding with PKM2 mRNA, leading to PKM2 up-regulation. Together, Our studies suggest that lncRNA SNHG3 / miR-139-5p / PKM2 pathway promotes the development of CRPC via regulating glycolysis process and provides valuable insight into a novel therapeutic approach for the disordered disease.
Collapse
Affiliation(s)
- Yicong Yao
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Xi Chen
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Xin'an Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Haopeng Li
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Yaru Zhu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Xilei Li
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Zhihui Xiao
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Tong Zi
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Xin Qin
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Yan Zhao
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Tao Yang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Licheng Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Gang Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Xia Fang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, China.
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| |
Collapse
|
5
|
Hussein MA, Valinezhad K, Adel E, Munirathinam G. MALAT-1 Is a Key Regulator of Epithelial-Mesenchymal Transition in Cancer: A Potential Therapeutic Target for Metastasis. Cancers (Basel) 2024; 16:234. [PMID: 38201661 PMCID: PMC10778055 DOI: 10.3390/cancers16010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript-1 (MALAT-1) is a long intergenic non-coding RNA (lncRNA) located on chr11q13. It is overexpressed in several cancers and controls gene expression through chromatin modification, transcriptional regulation, and post-transcriptional regulation. Importantly, MALAT-1 stimulates cell proliferation, migration, and metastasis and serves a vital role in driving the epithelial-to-mesenchymal transition (EMT), subsequently acquiring cancer stem cell-like properties and developing drug resistance. MALAT-1 modulates EMT by interacting with various intracellular signaling pathways, notably the phosphoinositide 3-kinase (PI3K)/Akt and Wnt/β-catenin pathways. It also behaves like a sponge for microRNAs, preventing their interaction with target genes and promoting EMT. In addition, we have used bioinformatics online tools to highlight the disparities in the expression of MALAT-1 between normal and cancer samples using data from The Cancer Genome Atlas (TCGA). Furthermore, the intricate interplay of MALAT-1 with several essential targets of cancer progression and metastasis renders it a good candidate for therapeutic interventions. Several innovative approaches have been exploited to target MALAT-1, such as short hairpin RNAs (shRNAs), antisense oligonucleotides (ASOs), and natural products. This review emphasizes the interplay between MALAT-1 and EMT in modulating cancer metastasis, stemness, and chemoresistance in different cancers.
Collapse
Affiliation(s)
- Mohamed Ali Hussein
- Department of Pharmaceutical Services, Children’s Cancer Hospital Egypt, Cairo 57357, Egypt;
- Department of Biology, School of Sciences and Engineering, American University in Cairo, New Cairo 11835, Egypt;
| | - Kamyab Valinezhad
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA;
| | - Eman Adel
- Department of Biology, School of Sciences and Engineering, American University in Cairo, New Cairo 11835, Egypt;
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA;
| |
Collapse
|
6
|
Fazaeli H, Sheikholeslami A, Ghasemian F, Amini E, Sheykhhasan M. The Emerging Role of LncRNA FENDRR in Multiple Cancers: A Review. Curr Mol Med 2023; 23:606-629. [PMID: 35579154 DOI: 10.2174/1566524022666220509122505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
Long noncoding RNAs (lncRNAs) are prominent as crucial regulators of tumor establishment and are repeatedly dysregulated in multiple cancers. Therefore, lncRNAs have been identified to play an essential function in carcinogenesis and progression of cancer at genetic and epigenetic levels. FENDRR (fetal-lethal noncoding developmental regulatory RNA) as a LncRNA is a hallmark of various malignancies. FENDRR is crucial for multiple organs' development, such as the lung and heart. The effects of FENDRR under signaling pathways in different cancers have been identified. In addition, it has been verified that FENDRR can affect the development and progression of various cancers. In addition, FENDRR expression has been associated with epigenetic regulation of target genes participating in tumor immunity. Furthermore, FENDRR downregulation was observed in various types of cancers, including colorectal cancer, gastric cancer, pancreatic cancer, cholangiocarcinoma, liver cancer, gallbladder cancer, lung cancer, breast cancer, endometrial cancer, prostate cancer, chronic myeloid leukemia, osteosarcoma, and cutaneous malignant melanoma cells. Here, we review the biological functions and molecular mechanisms of FENDRR in several cancers, and we will discuss its potential as a cancer biomarker and as a probable option for cancer treatment.
Collapse
Affiliation(s)
- Hoda Fazaeli
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | - Azar Sheikholeslami
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | - Fatemeh Ghasemian
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Elaheh Amini
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohsen Sheykhhasan
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Emerging RNA-Based Therapeutic and Diagnostic Options: Recent Advances and Future Challenges in Genitourinary Cancers. Int J Mol Sci 2023; 24:ijms24054601. [PMID: 36902032 PMCID: PMC10003365 DOI: 10.3390/ijms24054601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Renal cell carcinoma, bladder cancer, and prostate cancer are the most widespread genitourinary tumors. Their treatment and diagnosis have significantly evolved over recent years, due to an increasing understanding of oncogenic factors and the molecular mechanisms involved. Using sophisticated genome sequencing technologies, the non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have all been implicated in the occurrence and progression of genitourinary cancers. Interestingly, DNA, protein, and RNA interactions with lncRNAs and other biological macromolecules drive some of these cancer phenotypes. Studies on the molecular mechanisms of lncRNAs have identified new functional markers that could be potentially useful as biomarkers for effective diagnosis and/or as targets for therapeutic intervention. This review focuses on the mechanisms underlying abnormal lncRNA expression in genitourinary tumors and discusses their role in diagnostics, prognosis, and treatment.
Collapse
|
8
|
Zhang X, Zhang Q, Li T, Liu L, Miao Y. LINC00312 Inhibits Lung Cancer Progression through the miR-3175/SEMA6A Axis. Crit Rev Eukaryot Gene Expr 2023; 33:41-53. [PMID: 36734856 DOI: 10.1615/critreveukaryotgeneexpr.2022044042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study aims to clarify molecular mechanisms and tumor-associated functions of LINC00312 in lung cancer. GEO database was used to acquire lung cancer-related expression microarrays. Then, relevant databases were applied to predict the downstream miRNA for LINC00312 and the target mRNA for the potential miRNA, with their associations deeply confirmed through dual-luciferase and RIP assays. The expression levels of epithelial-mesenchymal transition -related proteins (N-cadherin, Vimentin, MMP-2, and MMP-9) were examined by Western blot. The proliferation, migration, and invasion were evaluated through in vitro experiments including CCK-8 and Transwell assays and further validated by nude mouse xenograft tumor experiment. LINC00312, serving as a tumor suppressor, was down-regulated in lung cancer cells. RIP assay proved that miR-3175 bound LINC00312 and SEMA6A. The dual-luciferase assay showed that miR-3175 specifically targeted SEMA6A, suppressing the expression of SEMA6A. Overexpressing LINC00312 remarkably inhibited the binding between miR-3175 and SEMA6A. Overexpressing miR-3175 or silencing SEMA6A could hamper the effects of LINC00312 on lung cancer cells. LINC00312 inhibits lung cancer occurrence and progression via the miR-3175/SEMA6A axis.
Collapse
Affiliation(s)
- Xiangli Zhang
- Department of Respiratory and Critical Care, Shaanxi Provincial People's Hospital, Xi'an City 710068, China
| | - Qian Zhang
- Department of Pediatric Ward, Shaanxi Provincial People's Hospital, Xi'an City 710068, China
| | - Ting Li
- Department of Traditional Chinese Medicine, Shaanxi Provincial People's Hospital, Xi'an City 710068, China
| | - Lu Liu
- Department of Respiratory and Critical Care, Shaanxi Provincial People's Hospital, Xi'an City 710068, China
| | - Yi Miao
- Department of Respiratory and Critical Care, Shaanxi Provincial People's Hospital, Xi'an City 710068, China
| |
Collapse
|
9
|
Kemble J, Kwon ED, Karnes RJ. Addressing the need for more therapeutic options in neuroendocrine prostate cancer. Expert Rev Anticancer Ther 2023; 23:177-185. [PMID: 36698089 DOI: 10.1080/14737140.2023.2173174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Neuroendocrine prostate cancer (NEPC) is an aggressive form of prostate cancer frequently seen after prolonged treatment of castration resistant prostate cancer (CRPC). NEPC has become increasingly prevalent over the last 20 years, with a poor prognosis caused by a late diagnosis and limited treatment options. Recent advances in PET/CT imaging and targeted radioimmunotherapy are promising, but more research into additional treatment options is needed. AREAS COVERED The aim of this review is to analyze the current imaging and treatment options for NEPC, and to highlight future potential treatment strategies. A Pubmed search for 'Neuroendocrine Prostate Cancer' was performed and relevant articles were reviewed. EXPERT OPINION The recent FDA approval and success of 177 PSMA Lutetium in CRPC is promising, as 177 Lutetium could potentially be paired with a NEPC specific biomarker for targeted therapy. Recent laboratory studies pairing DLL3, which is overexpressed in NEPC, with 177 Lutetium and new PET agents have showed good efficacy in identifying and treating NEPC. The success of future development of NEPC therapies may depend on the availability of 177 Lutetium, as current supplies are limited. Further research into additional imaging and treatment options for NEPC is warranted.
Collapse
Affiliation(s)
- Jayson Kemble
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | - Eugene D Kwon
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
10
|
Shi SJ, Han DH, Zhang JL, Li Y, Yang AG, Zhang R. VIM‑AS1 promotes proliferation and drives enzalutamide resistance in prostate cancer via IGF2BP2‑mediated HMGCS1 mRNA stabilization. Int J Oncol 2023; 62:34. [PMID: 36734275 PMCID: PMC9911078 DOI: 10.3892/ijo.2023.5482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
VIM‑AS1, a cancer‑specific long non‑coding RNA, has been recognized as a pivotal regulator in multiple types of cancer. However, the role of VIM‑AS1 in the proliferation and resistance to anti‑androgen therapy of LNCaP and C4‑2 prostate cancer cells remains to be determined. In the current study, gain‑and‑loss experiments were used to investigate the effects of VIM‑AS on the proliferation and anti‑androgen therapy of LNCaP and C4‑2 cells. RNA sequencing, RNA pulldown and RNA immunoprecipitation were used to elucidate the underlying mechanism of VIM‑AS1 driving prostate progression. It was demonstrated that VIM‑AS1 was upregulated in C4‑2 cells, an established castration‑resistant prostate cancer (CRPC) cell line, compared with in LNCaP cells, an established hormone‑sensitive prostate cancer cell line. The present study further demonstrated that VIM‑AS1 was positively associated with the clinical stage of prostate cancer. Functionally, overexpression of VIM‑AS1 decreased the sensitivity to enzalutamide treatment and enhanced the proliferation of LNCaP cells in vitro, whereas knockdown of VIM‑AS1 increased the sensitivity to enzalutamide treatment and reduced the proliferation of C4‑2 cells in vitro and in vivo. Mechanistically, 3‑hydroxy‑3‑methylglutaryl‑CoA synthase 1 (HMGCS1) was identified as one of the direct downstream targets of VIM‑AS1, and VIM‑AS1 promoted HMGCS1 expression by enhancing HMGCS1 mRNA stability through a VIM‑AS1/insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2)/HMGCS1 RNA‑protein complex. Rescue assays indicated that knockdown of HMGCS1 expression ameliorated the increase in proliferation and enzalutamide resistance of prostate cancer cells induced by VIM‑AS1 overexpression. Overall, the present study determined the roles and mechanism of the VIM‑AS1/IGF2BP2/HMGCS1 axis in regulating proliferation and enzalutamide sensitivity of prostate cancer cells and suggested that VIM‑AS1 may serve as a novel therapeutic target for the treatment of patients with CRPC.
Collapse
Affiliation(s)
- Sheng-Jia Shi
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Department of Andrology, Reproduction Center, Northwest Women's and Children's Hospital, Xian Jiaotong University Health Science Center, Xi'an, Shaanxi 710004, P.R. China,Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Dong-Hui Han
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Jing-Liang Zhang
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Yu Li
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Correspondence to: Professor Rui Zhang or Professor An-Gang Yang, State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, P.R. China, E-mail: , E-mail:
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Correspondence to: Professor Rui Zhang or Professor An-Gang Yang, State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, P.R. China, E-mail: , E-mail:
| |
Collapse
|
11
|
Lin Y, Tan H, Yu G, Zhan M, Xu B. Molecular Mechanisms of Noncoding RNA in the Occurrence of Castration-Resistant Prostate Cancer. Int J Mol Sci 2023; 24:ijms24021305. [PMID: 36674820 PMCID: PMC9860629 DOI: 10.3390/ijms24021305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Although several therapeutic options have been shown to improve survival of most patients with prostate cancer, progression to castration-refractory state continues to present challenges in clinics and scientific research. As a highly heterogeneous disease entity, the mechanisms of castration-resistant prostate cancer (CRPC) are complicated and arise from multiple factors. Among them, noncoding RNAs (ncRNAs), the untranslated part of the human transcriptome, are closely related to almost all biological regulation, including tumor metabolisms, epigenetic modifications and immune escape, which has encouraged scientists to investigate their role in CRPC. In clinical practice, ncRNAs, especially miRNAs and lncRNAs, may function as potential biomarkers for diagnosis and prognosis of CRPC. Therefore, understanding the molecular biology of CRPC will help boost a shift in the treatment of CRPC patients. In this review, we summarize the recent findings of miRNAs and lncRNAs, discuss their potential functional mechanisms and highlight their clinical application prospects in CRPC.
Collapse
Affiliation(s)
- Yu Lin
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| | - Bin Xu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| |
Collapse
|
12
|
Morais M, Machado V, Dias F, Figueiredo P, Palmeira C, Martins G, Fernandes R, Malheiro AR, Mikkonen KS, Teixeira AL, Medeiros R. Glucose-Functionalized Silver Nanoparticles as a Potential New Therapy Agent Targeting Hormone-Resistant Prostate Cancer cells. Int J Nanomedicine 2022; 17:4321-4337. [PMID: 36147546 PMCID: PMC9489222 DOI: 10.2147/ijn.s364862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Silver nanoparticles (AgNPs) have shown great potential as anticancer agents, namely in therapies’ resistant forms of cancer. The progression of prostate cancer (PCa) to resistant forms of the disease (castration-resistant PCa, CRPC) is associated with poor prognosis and life quality, with current limited therapeutic options. CRPC is characterized by a high glucose consumption, which poses as an opportunity to direct AgNPs to these cancer cells. Thus, this study explores the effect of glucose functionalization of AgNPs in PCa and CRPC cell lines (LNCaP, Du-145 and PC-3). Methods AgNPs were synthesized, further functionalized, and their physical and chemical composition was characterized both in water and in culture medium, through UV-visible spectrum, dynamic light scattering (DLS), transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). Their effect was assessed in the cell lines regarding AgNPs’ entering pathway, cellular proliferation capacity, ROS production, mitochondrial membrane depolarization, cell cycle analysis and apoptosis evaluation. Results AgNPs displayed an average size of 61nm and moderate monodispersity with a slight increase after functionalization, and a round shape. These characteristics remained stable when redispersed in culture medium. Both AgNPs and G-AgNPs were cytotoxic only to CRPC cells and not to hormone-sensitive ones and their effect was higher after functionalization showing the potential of glucose to favor AgNPs’ uptake by cancer cells. Entering through endocytosis and being encapsulated in lysosomes, the NPs increased the ROS, inducing mitochondrial damage, and arresting cell cycle in S Phase, therefore blocking proliferation, and inducing apoptosis. Conclusion The nanoparticles synthesized in the present study revealed good characteristics and stability for administration to cancer cells. Their uptake through endocytosis leads to promising cytotoxic effects towards CRPC cells, revealing the potential of G-AgNPs as a future therapeutic approach to improve the management of patients with PCa resistant to hormone therapy or metastatic disease.
Collapse
Affiliation(s)
- Mariana Morais
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, 4050-513, Portugal
| | - Vera Machado
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal
| | - Patrícia Figueiredo
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, FI-00014, Finland
| | - Carlos Palmeira
- Department of Immunology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, 4200-072, Portugal.,Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal.,Biomedical Research Center (CEBIMED, Faculty of Health Sciences, Fernando Pessoa University (UFP), Porto, 4249-004, Portugal
| | - Gabriela Martins
- Department of Immunology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, 4200-072, Portugal.,Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal
| | - Rui Fernandes
- HEMS-Histology and Electron Microscopy, i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, 4200-135, Portugal.,IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Ana Rita Malheiro
- HEMS-Histology and Electron Microscopy, i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, 4200-135, Portugal.,IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, FI-00014, Finland.,Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, FI-00014, Finland
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, 4050-513, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Research Center-LAB2, Porto, 4200-072, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, 4050-513, Portugal.,Biomedical Research Center (CEBIMED, Faculty of Health Sciences, Fernando Pessoa University (UFP), Porto, 4249-004, Portugal.,Research Department, LPCC- Portuguese League Against Cancer (NRNorte), Porto, Portugal.,Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, University of Porto, Porto, 4200-319, Portugal
| |
Collapse
|
13
|
Advances in the Current Understanding of the Mechanisms Governing the Acquisition of Castration-Resistant Prostate Cancer. Cancers (Basel) 2022; 14:cancers14153744. [PMID: 35954408 PMCID: PMC9367587 DOI: 10.3390/cancers14153744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Despite aggressive treatment and androgen-deprivation therapy, most prostate cancer patients ultimately develop castration-resistant prostate cancer (CRPC), which is associated with high mortality rates. However, the mechanisms governing the development of CRPC are poorly understood, and androgen receptor (AR) signaling has been shown to be important in CRPC through AR gene mutations, gene overexpression, co-regulatory factors, AR shear variants, and androgen resynthesis. A growing number of non-AR pathways have also been shown to influence the CRPC progression, including the Wnt and Hh pathways. Moreover, non-coding RNAs have been identified as important regulators of the CRPC pathogenesis. The present review provides an overview of the relevant literature pertaining to the mechanisms governing the molecular acquisition of castration resistance in prostate cancer, providing a foundation for future, targeted therapeutic efforts.
Collapse
|
14
|
Giordo R, Wehbe Z, Posadino AM, Erre GL, Eid AH, Mangoni AA, Pintus G. Disease-Associated Regulation of Non-Coding RNAs by Resveratrol: Molecular Insights and Therapeutic Applications. Front Cell Dev Biol 2022; 10:894305. [PMID: 35912113 PMCID: PMC9326031 DOI: 10.3389/fcell.2022.894305] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
There have been significant advances, particularly over the last 20 years, in the identification of non-coding RNAs (ncRNAs) and their pathophysiological role in a wide range of disease states, particularly cancer and other chronic conditions characterized by excess inflammation and oxidative stress such as atherosclerosis, diabetes, obesity, multiple sclerosis, osteoporosis, liver and lung fibrosis. Such discoveries have potential therapeutic implications as a better understanding of the molecular mechanisms underpinning the effects of ncRNAs on critical homeostatic control mechanisms and biochemical pathways might lead to the identification of novel druggable targets. In this context, increasing evidence suggests that several natural compounds can target ncRNAs at different levels and, consequently, influence processes involved in the onset and progression of disease states. The natural phenol resveratrol has been extensively studied for therapeutic purposes in view of its established anti-inflammatory and antioxidant effects, particularly in disease states such as cancer and cardiovascular disease that are associated with human aging. However, increasing in vitro and in vivo evidence also suggests that resveratrol can directly target various ncRNAs and that this mediates, at least in part, its potential therapeutic effects. This review critically appraises the available evidence regarding the resveratrol-mediated modulation of different ncRNAs in a wide range of disease states characterized by a pro-inflammatory state and oxidative stress, the potential therapeutic applications, and future research directions.
Collapse
Affiliation(s)
- Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Zena Wehbe
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, University of London, London, United Kingdom
| | | | - Gian Luca Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, Sassari, Italy
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, Q.U. Health. Qatar University, Doha, Qatar
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Adelaide, SA, Australia
- *Correspondence: Arduino A. Mangoni, ; Gianfranco Pintus,
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Arduino A. Mangoni, ; Gianfranco Pintus,
| |
Collapse
|
15
|
Nevedomskaya E, Haendler B. From Omics to Multi-Omics Approaches for In-Depth Analysis of the Molecular Mechanisms of Prostate Cancer. Int J Mol Sci 2022; 23:6281. [PMID: 35682963 PMCID: PMC9181488 DOI: 10.3390/ijms23116281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer arises following alterations at different cellular levels, including genetic and epigenetic modifications, transcription and translation dysregulation, as well as metabolic variations. High-throughput omics technologies that allow one to identify and quantify processes involved in these changes are now available and have been instrumental in generating a wealth of steadily increasing data from patient tumors, liquid biopsies, and from tumor models. Extensive investigation and integration of these data have led to new biological insights into the origin and development of multiple cancer types and helped to unravel the molecular networks underlying this complex pathology. The comprehensive and quantitative analysis of a molecule class in a biological sample is named omics and large-scale omics studies addressing different prostate cancer stages have been performed in recent years. Prostate tumors represent the second leading cancer type and a prevalent cause of cancer death in men worldwide. It is a very heterogenous disease so that evaluating inter- and intra-tumor differences will be essential for a precise insight into disease development and plasticity, but also for the development of personalized therapies. There is ample evidence for the key role of the androgen receptor, a steroid hormone-activated transcription factor, in driving early and late stages of the disease, and this led to the development and approval of drugs addressing diverse targets along this pathway. Early genomic and transcriptomic studies have allowed one to determine the genes involved in prostate cancer and regulated by androgen signaling or other tumor-relevant signaling pathways. More recently, they have been supplemented by epigenomic, cistromic, proteomic and metabolomic analyses, thus, increasing our knowledge on the intricate mechanisms involved, the various levels of regulation and their interplay. The comprehensive investigation of these omics approaches and their integration into multi-omics analyses have led to a much deeper understanding of the molecular pathways involved in prostate cancer progression, and in response and resistance to therapies. This brings the hope that novel vulnerabilities will be identified, that existing therapies will be more beneficial by targeting the patient population likely to respond best, and that bespoke treatments with increased efficacy will be available soon.
Collapse
Affiliation(s)
| | - Bernard Haendler
- Research and Early Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany;
| |
Collapse
|
16
|
Huang J, Lin B, Li B. Anti-Androgen Receptor Therapies in Prostate Cancer: A Brief Update and Perspective. Front Oncol 2022; 12:865350. [PMID: 35372068 PMCID: PMC8965587 DOI: 10.3389/fonc.2022.865350] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer is a major health issue in western countries and is the second leading cause of cancer death in American men. Prostate cancer depends on the androgen receptor (AR), a transcriptional factor critical for prostate cancer growth and progression. Castration by surgery or medical treatment reduces androgen levels, resulting in prostatic atrophy and prostate cancer regression. Thus, metastatic prostate cancers are initially managed with androgen deprivation therapy. Unfortunately, prostate cancers rapidly relapse after castration therapy and progress to a disease stage called castration-resistant prostate cancer (CRPC). Currently, clinical treatment for CRPCs is focused on suppressing AR activity with antagonists like Enzalutamide or by reducing androgen production with Abiraterone. In clinical practice, these treatments fail to yield a curative benefit in CRPC patients in part due to AR gene mutations or splicing variations, resulting in AR reactivation. It is conceivable that eliminating the AR protein in prostate cancer cells is a promising solution to provide a potential curative outcome. Multiple strategies have emerged, and several potent agents that reduce AR protein levels were reported to eliminate xenograft tumor growth in preclinical models via distinct mechanisms, including proteasome-mediated degradation, heat-shock protein inhibition, AR splicing suppression, blockage of AR nuclear localization, AR N-terminal suppression. A few small chemical compounds are undergoing clinical trials combined with existing AR antagonists. AR protein elimination by enhanced protein or mRNA degradation is a realistic solution for avoiding AR reactivation during androgen deprivation therapy in prostate cancers.
Collapse
Affiliation(s)
- Jian Huang
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Biyun Lin
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|