1
|
Malekpour M, Ebrahiminezhad A, Karimi Z, Saadi MI, Berenjian A. Current strategies for rutin nano-formulation; a promising bioactive compound with increased efficacy. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03156-y. [PMID: 40148481 DOI: 10.1007/s00449-025-03156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Rutin is an herbal polyphenolic compound recognized for its numerous therapeutic benefits, including antioxidant, anticancer, and antimicrobial properties. However, its application in biomedical fields encounters significant challenges, such as low solubility, poor absorption, low bioavailability, short half-life, and rapid metabolism. In recent years, advancements in nanotechnology have presented promising solutions to these limitations. Consequently, various nano-formulation strategies have been developed to enhance rutin's solubility, absorption, and overall efficacy. These strategies can be broadly categorized into two approaches. The first involves transforming rutin into nanocrystals without the use of any secondary compounds. The second approach entails nano-formulating rutin with other compounds, including proteins, polysaccharides, lipids, polymers, and metals. This study offers a review of these approaches and their applications in biomedical sciences, focusing on their categories, preparation methods, and biomedical properties. Initially, the pharmacological potential of rutin, its application in recent clinical trials, and its mechanisms of action are outlined. Next, it explores how nano-carriers can enhance rutin's bioavailability. Subsequently, the types of nanostructures employed are categorized, along with a discussion of their fabrication methods and benefits. In some instances, certain drawbacks are also reported. The data provided can guide the selection of optimal strategies for rutin nano-formulation, based on the intended biomedical application.
Collapse
Affiliation(s)
- Maryam Malekpour
- Department of Medical Biotechnology, and Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zeinab Karimi
- Department of Medical Biotechnology, and Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | | | - Aydin Berenjian
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
2
|
Huang YH, Huang CY. Anti-Skin Aging Potential, Antibacterial Activity, Inhibition of Single-Stranded DNA-Binding Protein, and Cytotoxic Effects of Acetone-Extracted Passiflora edulis (Tainung No. 1) Rind Extract on Oral Carcinoma Cells. PLANTS (BASEL, SWITZERLAND) 2024; 13:2194. [PMID: 39204630 PMCID: PMC11359509 DOI: 10.3390/plants13162194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The passion fruit, Passiflora edulis, recognized for its rich nutritional properties, has long been used for its varied ethnobotanical applications. This study investigates the therapeutic potential of P. edulis var. Tainung No. 1 rind extracts by examining their polyphenolic content (TPC), total flavonoid content (TFC), anti-skin aging activities against key enzymes such as elastase, tyrosinase, and hyaluronidase, and their ability to inhibit bacterial growth, single-stranded DNA-binding protein (SSB), and their cytotoxic effects on oral carcinoma cells. The acetone extract from the rind exhibited the highest levels of TPC, TFC, anti-SSB, and antibacterial activities. The antibacterial effectiveness of the acetone-extracted rind was ranked as follows: Escherichia coli > Pseudomonas aeruginosa > Staphylococcus aureus. A titration curve for SSB inhibition showed an IC50 value of 313.2 μg/mL, indicating the potency of the acetone extract in inhibiting SSB. It also significantly reduced the activity of enzymes associated with skin aging, particularly tyrosinase, with a 54.5% inhibition at a concentration of 100 μg/mL. Gas chromatography-mass spectrometry (GC-MS) analysis tentatively identified several major bioactive compounds in the acetone extract, including stigmast-5-en-3-ol, vitamin E, palmitic acid, stigmasterol, linoleic acid, campesterol, and octadecanoic acid. Molecular docking studies suggested some of these compounds as potential inhibitors of tyrosinase and SSB. Furthermore, the extract demonstrated anticancer potential against Ca9-22 oral carcinoma cells by inhibiting cell survival, migration, and proliferation and inducing apoptosis. These results underscore the potential of P. edulis (Tainung No. 1) rind as a promising candidate for anti-skin aging, antibacterial, and anticancer applications, meriting further therapeutic investigation.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
3
|
Su HH, Lin ES, Huang YH, Lien Y, Huang CY. Inhibition of SARS-CoV-2 Nsp9 ssDNA-Binding Activity and Cytotoxic Effects on H838, H1975, and A549 Human Non-Small Cell Lung Cancer Cells: Exploring the Potential of Nepenthes miranda Leaf Extract for Pulmonary Disease Treatment. Int J Mol Sci 2024; 25:6120. [PMID: 38892307 PMCID: PMC11173125 DOI: 10.3390/ijms25116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Carnivorous pitcher plants from the genus Nepenthes are renowned for their ethnobotanical uses. This research explores the therapeutic potential of Nepenthes miranda leaf extract against nonstructural protein 9 (Nsp9) of SARS-CoV-2 and in treating human non-small cell lung carcinoma (NSCLC) cell lines. Nsp9, essential for SARS-CoV-2 RNA replication, was expressed and purified, and its interaction with ssDNA was assessed. Initial tests with myricetin and oridonin, known for targeting ssDNA-binding proteins and Nsp9, respectively, did not inhibit the ssDNA-binding activity of Nsp9. Subsequent screenings of various N. miranda extracts identified those using acetone, methanol, and ethanol as particularly effective in disrupting Nsp9's ssDNA-binding activity, as evidenced by electrophoretic mobility shift assays. Molecular docking studies highlighted stigmast-5-en-3-ol and lupenone, major components in the leaf extract of N. miranda, as potential inhibitors. The cytotoxic properties of N. miranda leaf extract were examined across NSCLC lines H1975, A549, and H838, focusing on cell survival, apoptosis, and migration. Results showed a dose-dependent cytotoxic effect in the following order: H1975 > A549 > H838 cells, indicating specificity. Enhanced anticancer effects were observed when the extract was combined with afatinib, suggesting synergistic interactions. Flow cytometry indicated that N. miranda leaf extract could induce G2 cell cycle arrest in H1975 cells, potentially inhibiting cancer cell proliferation. Gas chromatography-mass spectrometry (GC-MS) enabled the tentative identification of the 19 most abundant compounds in the leaf extract of N. miranda. These outcomes underscore the dual utility of N. miranda leaf extract in potentially managing SARS-CoV-2 infection through Nsp9 inhibition and offering anticancer benefits against lung carcinoma. These results significantly broaden the potential medical applications of N. miranda leaf extract, suggesting its use not only in traditional remedies but also as a prospective treatment for pulmonary diseases. Overall, our findings position the leaf extract of N. miranda as a promising source of natural compounds for anticancer therapeutics and antiviral therapies, warranting further investigation into its molecular mechanisms and potential clinical applications.
Collapse
Affiliation(s)
- Hsin-Hui Su
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 717, Taiwan
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Yi Lien
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
4
|
Lee CY, Chen YC, Huang YH, Lien Y, Huang CY. Cytotoxicity and Multi-Enzyme Inhibition of Nepenthes miranda Stem Extract on H838 Human Non-Small Cell Lung Cancer Cells and RPA32, Elastase, Tyrosinase, and Hyaluronidase Proteins. PLANTS (BASEL, SWITZERLAND) 2024; 13:797. [PMID: 38592804 PMCID: PMC10974603 DOI: 10.3390/plants13060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
The carnivorous pitcher plants of the genus Nepenthes have long been known for their ethnobotanical applications. In this study, we prepared various extracts from the pitcher, stem, and leaf of Nepenthes miranda using 100% ethanol and assessed their inhibitory effects on key enzymes related to skin aging, including elastase, tyrosinase, and hyaluronidase. The cytotoxicity of the stem extract of N. miranda on H838 human lung carcinoma cells were also characterized by effects on cell survival, migration, proliferation, apoptosis induction, and DNA damage. The cytotoxic efficacy of the extract was enhanced when combined with the chemotherapeutic agent 5-fluorouracil (5-FU), indicating a synergistic effect. Flow cytometry analysis suggested that the stem extract might suppress H838 cell proliferation by inducing G2 cell cycle arrest, thereby inhibiting carcinoma cell proliferation. Gas chromatography-mass spectrometry (GC-MS) enabled the tentative identification of the 15 most abundant compounds in the stem extract of N. miranda. Notably, the extract showed a potent inhibition of the human RPA32 protein (huRPA32), critical for DNA replication, suggesting a novel mechanism for its anticancer action. Molecular docking studies further substantiated the interaction between the extract and huRPA32, highlighting bioactive compounds, especially the two most abundant constituents, stigmast-5-en-3-ol and plumbagin, as potential inhibitors of huRPA32's DNA-binding activity, offering promising avenues for cancer therapy. Overall, our findings position the stem extract of N. miranda as a promising source of natural compounds for anticancer therapeutics and anti-skin-aging treatments, warranting further investigation into its molecular mechanisms and potential clinical applications.
Collapse
Affiliation(s)
- Ching-Yi Lee
- Department of Internal Medicine, Tao Yuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
| | - Yu-Cheng Chen
- Department of Internal Medicine, Tao Yuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Yi Lien
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
5
|
Su HH, Huang YH, Lien Y, Yang PC, Huang CY. Crystal Structure of DNA Replication Protein SsbA Complexed with the Anticancer Drug 5-Fluorouracil. Int J Mol Sci 2023; 24:14899. [PMID: 37834349 PMCID: PMC10573954 DOI: 10.3390/ijms241914899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play a crucial role in DNA metabolism by binding and stabilizing single-stranded DNA (ssDNA) intermediates. Through their multifaceted roles in DNA replication, recombination, repair, replication restart, and other cellular processes, SSB emerges as a central player in maintaining genomic integrity. These attributes collectively position SSBs as essential guardians of genomic integrity, establishing interactions with an array of distinct proteins. Unlike Escherichia coli, which contains only one type of SSB, some bacteria have two paralogous SSBs, referred to as SsbA and SsbB. In this study, we identified Staphylococcus aureus SsbA (SaSsbA) as a fresh addition to the roster of the anticancer drug 5-fluorouracil (5-FU) binding proteins, thereby expanding the ambit of the 5-FU interactome to encompass this DNA replication protein. To investigate the binding mode, we solved the complexed crystal structure with 5-FU at 2.3 Å (PDB ID 7YM1). The structure of glycerol-bound SaSsbA was also determined at 1.8 Å (PDB ID 8GW5). The interaction between 5-FU and SaSsbA was found to involve R18, P21, V52, F54, Q78, R80, E94, and V96. Based on the collective results from mutational and structural analyses, it became evident that SaSsbA's mode of binding with 5-FU diverges from that of SaSsbB. This complexed structure also holds the potential to furnish valuable comprehension regarding how 5-FU might bind to and impede analogous proteins in humans, particularly within cancer-related signaling pathways. Leveraging the information furnished by the glycerol and 5-FU binding sites, the complexed structures of SaSsbA bring to the forefront the potential viability of several interactive residues as potential targets for therapeutic interventions aimed at curtailing SaSsbA activity. Acknowledging the capacity of microbiota to influence the host's response to 5-FU, there emerges a pressing need for further research to revisit the roles that bacterial and human SSBs play in the realm of anticancer therapy.
Collapse
Affiliation(s)
- Hsin-Hui Su
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 717, Taiwan
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Yi Lien
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Po-Chun Yang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
6
|
Lin ES, Huang YH, Chung JC, Su HH, Huang CY. The Inhibitory Effects and Cytotoxic Activities of the Stem Extract of Nepenthes miranda against Single-Stranded DNA-Binding Protein and Oral Carcinoma Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112188. [PMID: 37299167 DOI: 10.3390/plants12112188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
The carnivorous pitcher plants of the genus Nepenthes exhibit many ethnobotanical uses, including treatments of stomachache and fever. In this study, we prepared different extracts from the pitcher, stem, and leaf extracts of Nepenthes miranda obtained using 100% methanol and analyzed their inhibitory effects on recombinant single-stranded DNA-binding protein (SSB) from Klebsiella pneumoniae (KpSSB). SSB is essential for DNA replication and cell survival and thus an attractive target for potential antipathogen chemotherapy. Different extracts prepared from Sinningia bullata, a tuberous member of the flowering plant family Gesneriaceae, were also used to investigate anti-KpSSB properties. Among these extracts, the stem extract of N. miranda exhibited the highest anti-KpSSB activity with an IC50 value of 15.0 ± 1.8 μg/mL. The cytotoxic effects of the stem extract of N. miranda on the survival and apoptosis of the cancer cell lines Ca9-22 gingival carcinoma, CAL27 oral adenosquamous carcinoma, PC-9 pulmonary adenocarcinoma, B16F10 melanoma, and 4T1 mammary carcinoma cells were also demonstrated and compared. Based on collective data, the cytotoxic activities of the stem extract at a concentration of 20 μg/mL followed the order Ca9-22 > CAL27 > PC9 > 4T1 > B16F10 cells. The stem extract of N. miranda at a concentration of 40 μg/mL completely inhibited Ca9-22 cell migration and proliferation. In addition, incubation with this extract at a concentration of 20 μg/mL boosted the distribution of the G2 phase from 7.9% to 29.2% in the Ca9-22 cells; in other words, the stem extract might suppress Ca9-22 cell proliferation by inducing G2 cell cycle arrest. Through gas chromatography-mass spectrometry, the 16 most abundant compounds in the stem extract of N. miranda were tentatively identified. The 10 most abundant compounds in the stem extract of N. miranda were used for docking analysis, and their docking scores were compared. The binding capacity of these compounds was in the order sitosterol > hexadecanoic acid > oleic acid > plumbagin > 2-ethyl-3-methylnaphtho[2,3-b]thiophene-4,9-dione > methyl α-d-galactopyranoside > 3-methoxycatechol > catechol > pyrogallol > hydroxyhydroquinone; thus, sitosterol might exhibit the greatest inhibitory capacity against KpSSB among the selected compounds. Overall, these results may indicate the pharmacological potential of N. miranda for further therapeutic applications.
Collapse
Affiliation(s)
- En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Jo-Chi Chung
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Hsin-Hui Su
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 717, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
7
|
Fontana R, Caproni A, Sicurella M, Manfredini S, Baldisserotto A, Marconi P. Effects of Flavonoids and Phenols from Moringa oleifera Leaf Extracts on Biofilm Processes in Xanthomonas campestris pv. campestris. PLANTS (BASEL, SWITZERLAND) 2023; 12:1508. [PMID: 37050135 PMCID: PMC10096499 DOI: 10.3390/plants12071508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Xanthomonas campestris pv. campestris is the causal agent of black rot in crucifers, a plant disease with significant economic impact. Xanthomonadaceae is a large family of Gram-negative bacteria that cause symptoms by blocking water flow in plants by invading the xylem. To accomplish this, the main mechanism the bacteria use to adapt to environmental changes and colonize tissues is biofilm formation. In recent years, growing interest in natural antimicrobial compounds has led to the study of different phytocomplexes derived from plants. In this work, Moringa oleifera was selected, as its leaves are rich in phenols, essential oils, and vitamins that exert antibacterial activity. X. campestris pv. campestris biofilm, one of its major virulence factors, was studied. Biofilm formation and removal were analyzed on abiotic and biotic surfaces with and without M. oleifera leaf extracts. The data from the analysis show that Moringa oleifera leaf extracts and single phenols were able to inhibit biofilm growth on abiotic surfaces, but the activity of the whole phytocomplex was significantly higher compared to that of individual phenols. The effect of Moringa oleifera extracts on cabbage leaves in vivo was also found to be very important, as scanning electron microscopy showed that treatment with the extracts led to clear unblocking of the xylem, implying many advantages for use in black rot control.
Collapse
Affiliation(s)
- Riccardo Fontana
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Anna Caproni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mariaconcetta Sicurella
- Department of Environmental Sciences and Prevention, University of Ferrara, 441211 Ferrara, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
- Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara 44121, Italy
| |
Collapse
|
8
|
Liu HW, Chiang WY, Huang YH, Huang CY. The Inhibitory Effects and Cytotoxic Activities of the Stem Extract of Sarracenia purpurea against Melanoma Cells and the SsbA Protein. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223164. [PMID: 36432892 PMCID: PMC9692666 DOI: 10.3390/plants11223164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 06/12/2023]
Abstract
The Staphylococcus aureus SsbA protein (SaSsbA) is a single-stranded DNA-binding protein (SSB) that is categorically required for DNA replication and cell survival, and it is thus an attractive target for potential antipathogen chemotherapy. In this study, we prepared the stem extract of Sarracenia purpurea obtained from 100% acetone to investigate its inhibitory effect against SaSsbA. In addition, the cytotoxic effects of this extract on the survival, apoptosis, proliferation, and migration of B16F10 melanoma cells were also examined. Initially, myricetin, quercetin, kaempferol, dihydroquercetin, dihydrokaempferol, rutin, catechin, β-amyrin, oridonin, thioflavin T, primuline, and thioflavin S were used as possible inhibitors against SaSsbA. Of these compounds, dihydrokaempferol and oridonin were capable of inhibiting the ssDNA-binding activity of SaSsbA with respective IC50 values of 750 ± 62 and 2607 ± 242 μM. Given the poor inhibition abilities of dihydrokaempferol and oridonin, we screened the extracts of S. purpurea, Nepenthes miranda, and Plinia cauliflora for SaSsbA inhibitors. The stem extract of S. purpurea exhibited high anti-SaSsbA activity, with an IC50 value of 4.0 ± 0.3 μg/mL. The most abundant compounds in the stem extract of S. purpurea were identified using gas chromatography−mass spectrometry. The top five most abundant contents in this extract were driman-8,11-diol, deoxysericealactone, stigmast-5-en-3-ol, apocynin, and α-amyrin. Using the MOE-Dock tool, the binding modes of these compounds, as well as dihydrokaempferol and oridonin, to SaSsbA were elucidated, and their binding energies were also calculated. Based on the S scores, the binding capacity of these compounds was in the following order: deoxysericealactone > dihydrokaempferol > apocynin > driman-8,11-diol > stigmast-5-en-3-ol > oridonin > α-amyrin. Incubation of B16F10 cells with the stem extract of S. purpurea at a concentration of 100 μg/mL caused deaths at the rate of 76%, reduced migration by 95%, suppressed proliferation and colony formation by 99%, and induced apoptosis, which was observed in 96% of the B16F10 cells. Overall, the collective data in this study indicate the pharmacological potential of the stem extract of S. purpurea for further medical applications.
Collapse
Affiliation(s)
- Hong-Wen Liu
- Department of Rheumatology and Immunology, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung 928, Taiwan
| | - Wei-Yu Chiang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Yen-Hua Huang
- Department of Rheumatology and Immunology, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung 928, Taiwan
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
9
|
Lin ES, Huang CY. Cytotoxic Activities and the Allantoinase Inhibitory Effect of the Leaf Extract of the Carnivorous Pitcher Plant Nepenthes miranda. PLANTS (BASEL, SWITZERLAND) 2022; 11:2265. [PMID: 36079647 PMCID: PMC9460348 DOI: 10.3390/plants11172265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 05/14/2023]
Abstract
Nepenthes are carnivorous pitcher plants that have several ethnobotanical uses, such as curing stomachache and fever. Here, we prepared different extracts from the stem, leaf, and pitcher of Nepenthes miranda to further investigate their pharmacological potential. The leaf extract of N. miranda obtained by 100% acetone (N. miranda-leaf-acetone) was used in this study to analyze the cytotoxic activities, antioxidation capacity, antibacterial activity, and allantoinase (ALLase) inhibitory effect of this plant. The cytotoxic effects of N. miranda-leaf-acetone on the survival, apoptosis, and migration of the cancer cell lines PC-9 pulmonary adenocarcinoma, B16F10 melanoma, and 4T1 mammary carcinoma cells were demonstrated. Based on collective data, the cytotoxic activities of N. miranda-leaf-acetone followed the order: B16F10 > 4T1 > PC-9 cells. In addition, the cytotoxic activities of N. miranda-leaf-acetone were synergistically enhanced when co-acting with the clinical anticancer drug 5-fluorouracil. N. miranda-leaf-acetone could also inhibit the activity of ALLase, a key enzyme in the catabolism pathway for purine degradation. Through gas chromatography−mass spectrometry, the 16 most abundant ingredients in N. miranda-leaf-acetone were identified. The top six compounds in N. miranda-leaf-acetone, namely, plumbagin, lupenone, palmitic acid, stigmast-5-en-3-ol, neophytadiene, and citraconic anhydride, were docked to ALLase, and their docking scores were compared. The docking results suggested plumbagin and stigmast-5-en-3-ol as potential inhibitors of ALLase. Overall, these results may indicate the pharmacological potential of N. miranda for further medical applications.
Collapse
Affiliation(s)
- En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
10
|
Huang YH, Chiang WY, Chen PJ, Lin ES, Huang CY. Anticancer and Antioxidant Activities of the Root Extract of the Carnivorous Pitcher Plant Sarracenia purpurea. PLANTS (BASEL, SWITZERLAND) 2022; 11:1668. [PMID: 35807620 PMCID: PMC9269354 DOI: 10.3390/plants11131668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 05/27/2023]
Abstract
The carnivorous pitcher plant Sarracenia purpurea exhibits many ethnobotanical uses, including the treatments of type 2 diabetes and tuberculosis-like symptoms. In this study, we prepared different extracts from the leaves (pitchers), stems, and roots of S. purpurea and investigated their antioxidant and anticancer properties. To evaluate the extraction efficiency, we individually used different solvents, namely methanol, ethanol, acetone, and distilled water, for S. purpurea extract preparations. The root extract of S. purpurea, obtained by 100% acetone (S. purpurea-root-acetone), had the highest anticancer activities, antioxidation capacity (the DPPH activity with IC50 of 89.3 ± 2.2 μg/mL), antibacterial activities, total phenolic content (33.4 ± 0.7 mg GAE/g), and total flavonoid content (107.9 ± 2.2 mg QUE/g). The most abundant compounds in S. purpurea-root-acetone were identified using gas chromatography-mass spectrometry; 7,8-Dihydro-α-ionone was the major compound present in S. purpurea-root-acetone. In addition, the co-cytotoxicity of S. purpurea-root-acetone (combined with the clinical anticancer drug 5-fluorouracil (5-FU) on the survival, apoptosis, proliferation, and migration of the 4T1 mammary carcinoma) was examined. The combination of 5-FU with S. purpurea-root-acetone could be highly efficient for anti-4T1 cells. We also found that S. purpurea-root-acetone could inhibit the enzymatic activity of human dihydroorotase (huDHOase), an attractive target for potential anticancer chemotherapy. The sic most abundant compounds in S. purpurea-root-acetone were tested using an in silico analysis via MOE-Dock software for their binding affinities. The top-ranked docking conformations were observed for 7,8-dihydro-α-ionone and stigmast-5-en-3-ol, suggesting the inhibition potential against huDHOase. Overall, the collective data in this study may indicate the pharmacological potentials of S. purpurea-root-acetone for possible medical applications.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan; (Y.-H.H.); (W.-Y.C.); (P.-J.C.)
| | - Wei-Yu Chiang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan; (Y.-H.H.); (W.-Y.C.); (P.-J.C.)
| | - Pin-Jui Chen
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan; (Y.-H.H.); (W.-Y.C.); (P.-J.C.)
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan;
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan; (Y.-H.H.); (W.-Y.C.); (P.-J.C.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
11
|
Lin ES, Huang YH, Luo RH, Basharat Z, Huang CY. Crystal Structure of an SSB Protein from Salmonella enterica and Its Inhibition by Flavanonol Taxifolin. Int J Mol Sci 2022; 23:ijms23084399. [PMID: 35457218 PMCID: PMC9029707 DOI: 10.3390/ijms23084399] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
Single-stranded DNA (ssDNA)-binding proteins (SSBs) play a central role in cells by participating in DNA metabolism, including replication, repair, recombination, and replication fork restart. SSBs are essential for cell survival and thus an attractive target for potential anti-pathogen chemotherapy. In this study, we determined the crystal structure and examined the size of the ssDNA-binding site of an SSB from Salmonella enterica serovar Typhimurium LT2 (SeSSB), a ubiquitous opportunistic pathogen which is highly resistant to antibiotics. The crystal structure was solved at a resolution of 2.8 Å (PDB ID 7F25), indicating that the SeSSB monomer possesses an oligonucleotide/oligosaccharide-binding (OB) fold domain at its N-terminus and a flexible tail at its C-terminus. The core of the OB-fold in the SeSSB is made of a six-stranded β-barrel capped by an α-helix. The crystal structure of the SeSSB contained two monomers per asymmetric unit, which may indicate the formation of a dimer. However, the gel-filtration chromatography analysis showed that the SeSSB forms a tetramer in solution. Through an electrophoretic mobility shift analysis, we characterized the stoichiometry of the SeSSB complexed with a series of ssDNA dA homopolymers, and the size of the ssDNA-binding site was determined to be around 22 nt. We also found the flavanonol taxifolin, also known as dihydroquercetin, capable of inhibiting the ssDNA-binding activity of the SeSSB. Thus, this result extended the SSB interactome to include taxifolin, a natural product with a wide range of promising pharmacological activities.
Collapse
Affiliation(s)
- En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, No. 193, Sec.1, San min Rd., Taichung City 403, Taiwan;
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan; (Y.-H.H.); (R.-H.L.)
| | - Ren-Hong Luo
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan; (Y.-H.H.); (R.-H.L.)
| | - Zarrin Basharat
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan; (Y.-H.H.); (R.-H.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan
- Correspondence:
| |
Collapse
|
12
|
Nguyen TLA, Bhattacharya D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules 2022; 27:molecules27082494. [PMID: 35458691 PMCID: PMC9029217 DOI: 10.3390/molecules27082494] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Quercetin, an essential plant flavonoid, possesses a variety of pharmacological activities. Extensive literature investigates its antimicrobial activity and possible mechanism of action. Quercetin has been shown to inhibit the growth of different Gram-positive and Gram-negative bacteria as well as fungi and viruses. The mechanism of its antimicrobial action includes cell membrane damage, change of membrane permeability, inhibition of synthesis of nucleic acids and proteins, reduction of expression of virulence factors, mitochondrial dysfunction, and preventing biofilm formation. Quercetin has also been shown to inhibit the growth of various drug-resistant microorganisms, thereby suggesting its use as a potent antimicrobial agent against drug-resistant strains. Furthermore, certain structural modifications of quercetin have sometimes been shown to enhance its antimicrobial activity compared to that of the parent molecule. In this review, we have summarized the antimicrobial activity of quercetin with a special focus on its mechanistic principle. Therefore, this review will provide further insights into the scientific understanding of quercetin’s mechanism of action, and the implications for its use as a clinically relevant antimicrobial agent.
Collapse
|