1
|
Zhang Q, Jiao J, Wang X, Zhang L. The role of fibroblast in chronic rhinosinusitis with nasal polyps: a key player in the inflammatory process. Expert Rev Clin Immunol 2025; 21:169-179. [PMID: 39378160 DOI: 10.1080/1744666x.2024.2414774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/31/2024] [Accepted: 10/07/2024] [Indexed: 10/10/2024]
Abstract
INTRODUCTION Fibroblasts are the primary supporting cells in connective tissue and have long been thought to contribute to chronic rhinosinusitis with nasal polyps (CRSwNP) by producing extracellular matrix (ECM), leading to fibrosis and tissue remodeling. However, recent studies have highlighted the critical role of nasal polyp-derived fibroblasts (NPDFs) in triggering and intensifying the inflammatory response in CRSwNP. AREAS COVERED This review undertook a comprehensive literature search across the PubMed database, Web of Science since 2000, offering an in-depth summary of the pivotal role of NPDFs in tissue remodeling and inflammatory responses in CRSwNP. Additionally, single-cell RNA sequencing data provides a deeper exploration of the heterogeneity and functional mechanisms of fibroblasts in CRSwNP. Consequently, these insights point to fibroblasts as promising therapeutic targets for effectively treating CRSwNP. EXPERT OPINION Current data underscore the essential role of fibroblasts in the pathogenesis of CRSwNP. Fully elucidating the specific mechanisms by which fibroblasts contribute to the disease process is crucial for developing targeted therapies. Furthermore, advancements in single-cell RNA sequencing pave the way for selectively targeting and depleting pathological fibroblast subpopulations. Despite these advancements, the clinical development of fibroblast-targeted therapies in CRSwNP remains challenging.
Collapse
Affiliation(s)
- Qinqin Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Jian Jiao
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Lee HJ, Kim DK. Retinoic Acid Treatment Mitigates PM2.5-Induced Type 2 Inflammation: Insights into Modulation of Innate Immune Responses. Int J Mol Sci 2024; 25:3856. [PMID: 38612663 PMCID: PMC11011870 DOI: 10.3390/ijms25073856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Some studies have demonstrated the effects of particulate matter (PM) on chronic rhinosinusitis with nasal polyps (CRSwNP) development, as well as the therapeutic role of retinoic acid (RA) in nasal polypogenesis. However, the immunologic effect of PM in innate lymphoid cells (ILCs) and the exact mechanism of the therapeutic effect of RA remain unclear. Therefore, the present study investigated the effects of fine-dust-induced inflammation in CRSwNP and the mechanisms of the therapeutic effect of RA. PM2.5 exposure exacerbated pathological damage in the nasal mucosa of mice with nasal polyps (NP) via upregulation of type 2 inflammation. Additionally, PM2.5 exposure increased the expression of type 2 cytokines and epithelial-cell-derived cytokines (IL-33 and IL-25) significantly, as well as the ILC populations in human-NP-derived epithelial cells (HNECs). Moreover, RA supplementation significantly increased the expression of ILCreg in Lin-CD45+CD127+ cells, which in turn increased the levels of the anti-inflammatory cytokine IL-10. The findings suggest that PM2.5 exposures could aggravate the CRSwNP type 2 inflammation, and RA treatment may ameliorate fine-dust-induced inflammation by modulating the innate immune response.
Collapse
Affiliation(s)
- Hyun-Joo Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea;
| | - Dong-Kyu Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea;
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| |
Collapse
|
3
|
Scussiatto HO, Wroblewski KE, Pagel KL, Schumm LP, McClintock MK, Ramanathan M, Suh HH, Pinto JM. Air pollution exposure is associated with rhinitis in older US adults via specific immune mechanisms. Int Forum Allergy Rhinol 2024; 14:68-77. [PMID: 37357822 DOI: 10.1002/alr.23225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Pathophysiology of rhinitis in older adults is largely unknown. We tested whether air pollution is associated with this condition and how immune mechanisms may play a role in this relationship. METHODS We analyzed cross-sectional data from the National Social Life, Health, and Aging Project, a nationally representative study of older adults born between 1920 and 1947. Particulate matter ≤2.5 μm (PM2.5 ) air pollution exposure estimates were generated using validated spatiotemporal models. Presence of rhinitis was defined based on medication use (≥1: intranasal medications: steroids, antihistamines, lubricants, and/or decongestants, and/or oral medications: antihistamines and/or decongestants). K-means cluster analysis (Jaccard method) was used to group 13 peripheral blood cytokines into 3 clusters to facilitate functional determination. We fitted multivariate logistic regressions to correlate PM2.5 exposure with presence of rhinitis, controlling for confounders, and then determined the role of cytokines in this relationship. RESULTS Long- (but not short-) term exposure to PM2.5 was associated with presence of rhinitis: 3-year exposure window, odds ratio (OR) = 1.32, 95% confidence interval (CI): 0.98, 1.80, per 1 standard deviation (SD) PM2.5 increase. Inclusion of cytokine cluster in the model led to a modestly stronger effect of PM2.5 exposure on rhinitis (OR = 1.37; 95% CI: 1.00, 1.87; 3-year exposure window). The particular immune profile responsible for this result was composed of elevated IL-3, IL-12, and IFN-γ (OR = 4.86, 95% CI: 1.10, 21.58, immune profile-PM2.5 exposure interaction term). CONCLUSION We show for the first time that IL-3, IL-12, and IFN-γ explain in part the relationship between PM2.5 exposure and rhinitis in older US adults. If confirmed, these immune pathways may be used as therapeutic targets.
Collapse
Affiliation(s)
| | - Kristen E Wroblewski
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, USA
| | - Kristina L Pagel
- Department of Social and Behavioral Sciences, Colorado Mesa University, Grand Junction, Colorado, USA
| | - L Phillip Schumm
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, USA
| | - Martha K McClintock
- Department of Comparative Human Development, The University of Chicago, Chicago, Illinois, USA
| | - Murray Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Helen H Suh
- Department of Civil and Environmental Engineering, Tufts University, Boston, Massachusetts, USA
| | - Jayant M Pinto
- Section of Otolaryngology-Head and Neck Surgery, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Lee J, Kwon J, Jo YJ, Yoon SB, Hyeon JH, Park BJ, You HJ, Youn C, Kim Y, Choi HW, Kim JS. Particulate matter 10 induces oxidative stress and apoptosis in rhesus macaques skin fibroblast. PeerJ 2023; 11:e16589. [PMID: 38130933 PMCID: PMC10734408 DOI: 10.7717/peerj.16589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Background Particulate matter (PM) is a major air pollutant that affects human health worldwide. PM can pass through the skin barrier, thus causing skin diseases such as heat rash, allergic reaction, infection, or inflammation. However, only a few studies have been conducted on the cytotoxic effects of PM exposure on large-scale animals. Therefore, herein, we investigated whether and how PM affects rhesus macaque skin fibroblasts. Methods Rhesus macaque skin fibroblasts were treated with various concentrations of PM10 (1, 5, 10, 50, and 100 μg/mL) and incubated for 24, 48, and 72 h. Then, cell viability assay, TUNEL assay, and qRT-PCR were performed on the treated cells. Further, the reactive oxygen species, glutathione, and cathepsin B levels were determined. The MTT assay revealed that PM10 (>50 μg/mL) proportionately reduced the cell proliferation rate. Results PM10 treatment increased TUNEL-positive cell numbers, following the pro-apoptosis-associated genes (CASP3 and BAX) and tumor suppressor gene TP53 were significantly upregulated. PM10 treatment induced reactive oxidative stress. Cathepsin B intensity was increased, whereas GSH intensity was decreased. The mRNA expression levels of antioxidant enzyme-related genes (CAT, GPX1 and GPX3) were significantly upregulated. Furthermore, PM10 reduced the mitochondrial membrane potential. The mRNA expression of mitochondrial complex genes, such as NDUFA1, NDUFA2, NDUFAC2, NDUFS4, and ATP5H were also significantly upregulated. In conclusion, these results showed that PM10 triggers apoptosis and mitochondrial damage, thus inducing ROS accumulation. These findings provide potential information on the cytotoxic effects of PM10 treatment and help to understand the mechanism of air pollution-induced skin diseases.
Collapse
Affiliation(s)
- Jiin Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
- Department of Animal Science, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jeongwoo Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Yu-Jin Jo
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Seung-Bin Yoon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Jae-Hwan Hyeon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Beom-Jin Park
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Hyeong-Ju You
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Changsic Youn
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Yejin Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| | - Hyun Woo Choi
- Department of Animal Science, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongup-si, Republic of Korea
| |
Collapse
|
5
|
Yazici D, Ogulur I, Pat Y, Babayev H, Barletta E, Ardicli S, Bel Imam M, Huang M, Koch J, Li M, Maurer D, Radzikowska U, Satitsuksanoa P, Schneider SR, Sun N, Traidl S, Wallimann A, Wawrocki S, Zhakparov D, Fehr D, Ziadlou R, Mitamura Y, Brüggen MC, van de Veen W, Sokolowska M, Baerenfaller K, Nadeau K, Akdis M, Akdis CA. The epithelial barrier: The gateway to allergic, autoimmune, and metabolic diseases and chronic neuropsychiatric conditions. Semin Immunol 2023; 70:101846. [PMID: 37801907 DOI: 10.1016/j.smim.2023.101846] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Since the 1960 s, our health has been compromised by exposure to over 350,000 newly introduced toxic substances, contributing to the current pandemic in allergic, autoimmune and metabolic diseases. The "Epithelial Barrier Theory" postulates that these diseases are exacerbated by persistent periepithelial inflammation (epithelitis) triggered by exposure to a wide range of epithelial barrier-damaging substances as well as genetic susceptibility. The epithelial barrier serves as the body's primary physical, chemical, and immunological barrier against external stimuli. A leaky epithelial barrier facilitates the translocation of the microbiome from the surface of the afflicted tissues to interepithelial and even deeper subepithelial locations. In turn, opportunistic bacterial colonization, microbiota dysbiosis, local inflammation and impaired tissue regeneration and remodelling follow. Migration of inflammatory cells to susceptible tissues contributes to damage and inflammation, initiating and aggravating many chronic inflammatory diseases. The objective of this review is to highlight and evaluate recent studies on epithelial physiology and its role in the pathogenesis of chronic diseases in light of the epithelial barrier theory.
Collapse
Affiliation(s)
- Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Elena Barletta
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Jana Koch
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Debbie Maurer
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | | | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Na Sun
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Stephan Traidl
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Alexandra Wallimann
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sebastian Wawrocki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Damir Zhakparov
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Danielle Fehr
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Reihane Ziadlou
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marie-Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Katja Baerenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Swiss Institute of Bioinformatics (SIB), Davos, Switzerland
| | - Kari Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland.
| |
Collapse
|
6
|
Kim JS, Lee DC. Association Between Particulate Matter Exposure and Chronic Rhinosinusitis. JOURNAL OF RHINOLOGY 2023; 30:57-61. [PMID: 39664877 PMCID: PMC11524351 DOI: 10.18787/jr.2023.00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 04/05/2023] [Indexed: 12/13/2024] Open
Abstract
Chronic rhinosinusitis (CRS) is a relatively common inflammatory disease of the nasal and paranasal sinus mucosa. Several epidemiological studies have established an association between particulate matter (PM) and CRS. Based on those data, PM has emerged as an important environmental factor in the development of CRS. Recent research has investigated the mechanisms and treatment options for CRS caused by PM through cellular experimentation. Therefore, the authors would like to explain the definition of PM, present research investigating the relationship between PM and CRS, and summarize the involved mechanisms reported to date.
Collapse
Affiliation(s)
- Ji-Sun Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Chang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
7
|
Palacios-García J, Porras-González C, Moreno-Luna R, Maza-Solano J, Polo-Padillo J, Muñoz-Bravo JL, Sánchez-Gómez S. Role of Fibroblasts in Chronic Inflammatory Signalling in Chronic Rhinosinusitis with Nasal Polyps-A Systematic Review. J Clin Med 2023; 12:3280. [PMID: 37176721 PMCID: PMC10179235 DOI: 10.3390/jcm12093280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is an inflammatory disease of the nose and paranasal sinuses characterized by the presence of nasal polyps. The symptoms produced by the presence of nasal polyps such as nasal obstruction, nasal discharge, facial pain, headache, and loss of smell cause a worsening in the quality of life of patients. The source of the nasal polyps remains unclear, although it seems to be due to a chronic inflammation process in the sinonasal mucosa. Fibroblasts, the main cells in connective tissue, are intimately involved in the inflammation processes of various diseases; to this end, we carried out a systematic review to evaluate their inflammatory role in nasal polyps. Thus, we evaluated the main cytokines produced by nasal polyp-derived fibroblasts (NPDF) to assess their involvement in the production of nasal polyps and their involvement in different inflammatory pathways. The results of the review highlight the inflammatory role of NPDF through the secretion of various cytokines involved in the T1, T2, and T3 inflammatory pathways, as well as the ability of NPDF to be stimulated by a multitude of substances. With these findings, the fibroblast is positioned as a new potential therapeutic target in the treatment of CRSwNP.
Collapse
Affiliation(s)
- José Palacios-García
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Virgen Macarena, Doctor Fedriani 3, 41009 Seville, Spain
| | - Cristina Porras-González
- Institute of Biomedicine of Seville (IBiS), Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Doctor Fedriani 3, 41009 Seville, Spain
| | - Ramón Moreno-Luna
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Virgen Macarena, Doctor Fedriani 3, 41009 Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - Juan Maza-Solano
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Virgen Macarena, Doctor Fedriani 3, 41009 Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - Juan Polo-Padillo
- Department of Preventive Medicine and Public Health, University Hospital Virgen Macarena, Doctor Fedriani 3, 41009 Seville, Spain
| | - José Luis Muñoz-Bravo
- Clinical Analysis Service, General University Hospital of Elche, Foundation for the Promotion of Health and Biomedical Research in the Valencia Region (FISABIO), Av. De Catalunya 21, 46020 Valencia, Spain
| | - Serafín Sánchez-Gómez
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Virgen Macarena, Doctor Fedriani 3, 41009 Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| |
Collapse
|
8
|
Huang WY, Heo W, Jeong I, Kim MJ, Han BK, Shin EC, Kim YJ. Ameliorative Effect of Citrus junos Tanaka Waste (By-Product) Water Extract on Particulate Matter 10-Induced Lung Damage. Nutrients 2022; 14:nu14112270. [PMID: 35684069 PMCID: PMC9183116 DOI: 10.3390/nu14112270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
Citrus junos Tanaka (CJ)-related products are well-accepted by consumers worldwide; thus, they generate huge amounts of waste (peel, pulp, and seed) through CJ processing. Although some CJ by-products (CJBs) are recycled, their use is limited owing to the limited understanding of their nutritional and economic value. The exposure to particulate matter (PM) increases the risk of respiratory diseases. In this study, we investigated the ameliorative effects of CJB extracts (100, 200 mg/kg/day, 7 days) on PM10-induced (10 mg/kg, intranasal, 6 h) lung damage in BALB/c mice. Cell type-specific signaling pathways are examined using the A549 (PM10, 200 μg/mL, 6 h) and RAW264.7 (LPS, 100 ng/mL, 6 h) cell lines. The CJB extracts significantly attenuated PM10-induced pulmonary damage and inflammatory cell infiltration in a mouse model. The essential protein markers in inflammatory signaling pathways, such as AKT, ERK, JNK, and NF-κB for PM10-induced phosphorylation, were dramatically reduced by CJB extract treatment in both the mouse and cell models. Furthermore, the CJB extracts reduced the production of reactive oxygen species and nitric oxide in a dose-dependent manner in the cells. Comprehensively, the CJB extracts were effective in reducing PM10-induced lung injuries by suppressing pulmonary inflammation, potentially due to their anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Wen-Yan Huang
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea; (W.-Y.H.); (I.J.); (M.-J.K.); (B.-K.H.)
- BK21 FOUR Research Education Team for Omics-Based Bio-Health in Food Industry, Korea University, Sejong 30019, Korea
| | - Wan Heo
- Department of Food Science and Engineering, Seowon University, Cheongju 28647, Korea;
| | - Inhye Jeong
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea; (W.-Y.H.); (I.J.); (M.-J.K.); (B.-K.H.)
- BK21 FOUR Research Education Team for Omics-Based Bio-Health in Food Industry, Korea University, Sejong 30019, Korea
| | - Mi-Jeong Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea; (W.-Y.H.); (I.J.); (M.-J.K.); (B.-K.H.)
| | - Bok-Kyung Han
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea; (W.-Y.H.); (I.J.); (M.-J.K.); (B.-K.H.)
| | - Eui-Cheol Shin
- Department of Food Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Young-Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea; (W.-Y.H.); (I.J.); (M.-J.K.); (B.-K.H.)
- BK21 FOUR Research Education Team for Omics-Based Bio-Health in Food Industry, Korea University, Sejong 30019, Korea
- Correspondence: ; Tel.: +82-44-860-1040
| |
Collapse
|