1
|
Dev W, Sultana F, Li H, Hu D, Peng Z, He S, Zhang H, Waqas M, Geng X, Du X. Molecular mechanisms of cold stress response in cotton: Transcriptional reprogramming and genetic strategies for tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112390. [PMID: 39827949 DOI: 10.1016/j.plantsci.2025.112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Cold stress has a huge impact on the growth and development of cotton, presenting a significant challenge to its productivity. Comprehending the complex molecular mechanisms that control the reaction to CS is necessary for developing tactics to improve cold tolerance in cotton. This review paper explores how cotton responds to cold stress by regulating gene expression, focusing on both activating and repressing specific genes. We investigate the essential roles that transcription factors and regulatory elements have in responding to cold stress and controlling gene expression to counteract the negative impacts of low temperatures. Through a comprehensive examination of new publications, we clarify the intricacies of transcriptional reprogramming induced by cold stress, emphasizing the connections between different regulatory elements and signaling pathways. Additionally, we investigate the consecutive effects of cold stress on cotton yield, highlighting the physiological and developmental disturbances resulting from extended periods of low temperatures. The knowledge obtained from this assessment allows for a more profound comprehension of the molecular mechanisms that regulate cold stress responses, suggesting potential paths for future research to enhance cold tolerance in cotton by utilizing targeted genetic modifications and biotechnological interventions.
Collapse
Affiliation(s)
- Washu Dev
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fahmida Sultana
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hongge Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 57202, China
| | - Daowu Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 57202, China
| | - Zhen Peng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Haobo Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Muhammad Waqas
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoli Geng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiongming Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 57202, China.
| |
Collapse
|
2
|
Lin Z, Wang Z, Zhang Y, Tan S, Masangano M, Kang M, Cao X, Huang P, Gao Y, Pei X, Ren X, He K, Liang Y, Ji G, Tian Z, Wang X, Ma X. Gene expression modules during the emergence stage of upland cotton under low-temperature stress and identification of the GhSPX9 cold-tolerance gene. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109320. [PMID: 39579718 DOI: 10.1016/j.plaphy.2024.109320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Cotton originates from tropical and subtropical regions, and low temperatures are one of the main stress factors restricting its growth, particularly during the seedling stage. However, the mechanism of cold resistance is complex, and the research on gene expression modules under low temperatures during the seedling emergence stage of cotton remains unexplored, and identified vital cold-tolerant genes remain scarce. Here, we revealed the dynamic changes of differentially expressed genes during seed germination under cold stress through transcriptome analysis, with 5140 genes stably differentiating across more than five time points, among which 2826 genes are up-regulated, and 2314 genes are down-regulated. The weighted gene co-expression network analysis (WGCNA) of transcriptome profiles revealed three major cold-responsive modules and identified 98 essential node genes potentially involved in cold response. Genome-wide association analysis further confirmed that the hub gene GhSPX9 is crucial for cold tolerance. Virus-induced gene silencing in cotton demonstrated that GhSPX9 is a positive regulator of cold tolerance in cotton, with interference in its expression significantly enhancing sensitivity to cold stress in germination and seedlings. These results can be applied to identify cold tolerance loci and genes in cotton, promoting research into cold tolerance mechanisms.
Collapse
Affiliation(s)
- Ziwei Lin
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhenyu Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuzhi Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Songjuan Tan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Mayamiko Masangano
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Meng Kang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyu Cao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Peijun Huang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yu Gao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiang Ren
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kunlun He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yu Liang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Gaoxiang Ji
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zunzhe Tian
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
3
|
Liu S, Liu R, Chen P, Chu B, Gao S, Yan L, Gou Y, Tian T, Wen S, Zhao C, Sun S. Genome-wide identification and expression analysis of the U-box gene family related to biotic and abiotic stresses in Coffea canephora L. BMC Genomics 2024; 25:916. [PMID: 39354340 PMCID: PMC11443674 DOI: 10.1186/s12864-024-10745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
Plant U-box genes play an important role in the regulation of plant hormone signal transduction, stress tolerance, and pathogen resistance; however, their functions in coffee (Coffea canephora L.) remain largely unexplored. In this study, we identified 47 CcPUB genes in the C. canephora L. genome, clustering them into nine groups via phylogenetic tree. The CcPUB genes were unevenly distributed across the 11 chromosomes of C. canephora L., with the majority (11) on chromosome 2 and none on chromosome 8. The cis-acting elements analysis showed that CcPUB genes were involved in abiotic and biotic stresses, phytohormone responsive, and plant growth and development. RNA-seq data revealed diverse expression patterns of CcPUB genes across leaves, stems, and fruits tissues. qRT-PCR analyses under dehydration, low temperature, SA, and Colletotrichum stresses showed significant up-regulation of CcPUB2, CcPUB24, CcPUB34, and CcPUB40 in leaves. Furthermore, subcellular localization showed CcPUB2 and CcPUB34 were located in the plasma membrane and nucleus, and CcPUB24 and CcPUB40 were located in the nucleus. This study provides valuable insights into the roles of PUB genes in stress responses and phytohormone signaling in C. canephora L., and provided basis for functional characterization of PUB genes in C. canephora L.
Collapse
Affiliation(s)
- Shichao Liu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning, Hainan, 571533, China
| | - Ruibing Liu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
| | - Pengyun Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Bo Chu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shengfeng Gao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning, Hainan, 571533, China
| | - Lin Yan
- Key Laboratory of Genetic Resource Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, Hainan, 571533, China
| | - Yafeng Gou
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning, Hainan, 571533, China
| | - Tian Tian
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
| | - Siwei Wen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China
| | - Chenchen Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Shiwei Sun
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, 571533, China.
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning, Hainan, 571533, China.
| |
Collapse
|
4
|
Wang Q, Wu J, Di G, Zhao Q, Gao C, Zhang D, Wang J, Shen Z, Han W. Identification of Cold Tolerance Transcriptional Regulatory Genes in Seedlings of Medicago sativa L. and Medicago falcata L. Int J Mol Sci 2024; 25:10345. [PMID: 39408674 PMCID: PMC11476818 DOI: 10.3390/ijms251910345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Alfalfa species Medicago sativa L. (MS) and Medicago falcata L. (MF), globally prominent perennial leguminous forages, hold substantial economic value. However, our comprehension of the molecular mechanisms governing their resistance to cold stress remains limited. To address this knowledge gap, we scrutinized and compared MS and MF cold-stress responses at the molecular level following 24 h and 120 h low-temperature exposure (4 °C). Our study revealed that MF had superior physiological resilience to cold stress compared with MS, and its morphology was healthier under cold stress, and its malondialdehyde content and superoxide dismutase activity increased, first, and then decreased, while the soluble sugar content continued to accumulate. Transcriptome analysis showed that after 120 h of exposure, there were different gene-expression patterns between MS and MF, including 1274 and 2983 genes that were continuously up-regulated, respectively, and a total of 923 genes were included, including star cold-resistant genes such as ICE1 and SIP1. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed numerous inter-species differences in sustained cold-stress responses. Notably, MS-exclusive genes included a single transcription factor (TF) gene and several genes associated with a single DNA repair-related pathway, whereas MF-exclusive genes comprised nine TF genes and genes associated with 14 pathways. Both species exhibited high-level expression of genes encoding TFs belonging to AP2-EREBP, ARR-B, and bHLH TF families, indicating their potential roles in sustaining cold resistance in alfalfa-related species. These findings provide insights into the molecular mechanisms governing cold-stress responses in MS and MF, which could inform breeding programs aimed at enhancing cold-stress resistance in alfalfa cultivars.
Collapse
Affiliation(s)
- Qi Wang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Jianzhong Wu
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| | - Guili Di
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Qian Zhao
- Cultivation and Farming Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Chao Gao
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| | - Dongmei Zhang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| | - Jianli Wang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| | - Zhongbao Shen
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| | - Weibo Han
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| |
Collapse
|
5
|
Feng ZQ, Li T, Li XY, Luo LX, Li Z, Liu CL, Ge SF, Zhu ZL, Li YY, Jiang H, Jiang YM. Enhancement of Apple Stress Resistance via Proline Elevation by Sugar Substitutes. Int J Mol Sci 2024; 25:9548. [PMID: 39273495 PMCID: PMC11395137 DOI: 10.3390/ijms25179548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Plants encounter numerous adversities during growth, necessitating the identification of common stress activators to bolster their resistance. However, the current understanding of these activators' mechanisms remains limited. This study identified three anti-stress activators applicable to apple trees, all of which elevate plant proline content to enhance resistance against various adversities. The results showed that the application of these sugar substitutes increased apple proline content by two to three times compared to the untreated group. Even at a lower concentration, these activators triggered plant stress resistance without compromising apple fruit quality. Therefore, these three sugar substitutes can be exogenously sprayed on apple trees to augment proline content and fortify stress resistance. Given their effectiveness and low production cost, these activators possess significant application value. Since they have been widely used in the food industry, they hold potential for broader application in plants, fostering apple industry development.
Collapse
Affiliation(s)
- Zi-Quan Feng
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Tong Li
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Xin-Yi Li
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Long-Xin Luo
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Zhi Li
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Chun-Ling Liu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Shun-Feng Ge
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Zhan-Ling Zhu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yuan-Yuan Li
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Han Jiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yuan-Mao Jiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
6
|
Kong W, Huang H, Du W, Jiang Z, Luo Y, Yi D, Yang G, Pang Y. Overexpression of MsNIP2 improves salinity tolerance in Medicago sativa. JOURNAL OF PLANT PHYSIOLOGY 2024; 295:154207. [PMID: 38430574 DOI: 10.1016/j.jplph.2024.154207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 03/04/2024]
Abstract
Alfalfa (Medicago sativa) is one of the most widely cultivated forage crops in the world. However, alfalfa yield and quality are adversely affected by salinity stress. Nodulin 26-like intrinsic proteins (NIPs) play essential roles in water and small molecules transport and response to salt stress. Here, we isolated a salt stress responsive MsNIP2 gene and demonstrated its functions by overexpression in alfalfa. The open reading frame of MsNIP2 is 816 bp in length, and it encodes 272 amino acids. It has six transmembrane domains and two NPA motifs. MsNIP2 showed high identity to other known NIP proteins, and its tertiary model was similar to the crystal structure of OsNIP2-1 (7cjs) tetramer. Subcellular localization analysis showed that MsNIP2 protein fused with green fluorescent protein (GFP) was localized to the plasma membrane. Transgenic alfalfa lines overexpressing MsNIP2 showed significantly higher height and branch number compared with the non-transgenic control. The POD and CAT activity of the transgenic alfalfa lines was significantly increased and their MDA content was notably reduced compared with the control group under the treatment of NaCl. The transgenic lines showed higher capability in scavenging oxygen radicals with lighter NBT staining than the control under salt stress. The transgenic lines showed relative lower water loss rate and electrolyte leakage, but relatively higher Na+ content than the control line under salt stress. The relative expression levels of abiotic-stress-related genes (MsHSP23, MsCOR47, MsATPase, and MsRD2) in three transgenic lines were compared with the control, among them, only the expression of MsCOR47 was up-regulated. Consequently, this study offers a novel perspective for exploring the function of MsNIP2 in improving salt tolerance of alfalfa.
Collapse
Affiliation(s)
- Weiye Kong
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haijun Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenxuan Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhihu Jiang
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yijing Luo
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Dengxia Yi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Guofeng Yang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China.
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
7
|
Zhou X, Yi D, Ma L, Wang X. Genome-wide analysis and expression of the aquaporin gene family in Avena sativa L. FRONTIERS IN PLANT SCIENCE 2024; 14:1305299. [PMID: 38312362 PMCID: PMC10836146 DOI: 10.3389/fpls.2023.1305299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024]
Abstract
Background Oat (Avena sativa L.) belongs to the early maturity grass subfamily of the Gramineae subfamily oats (Avena) and has excellent characteristics, such as tolerance to barrenness, salt, cold, and drought. Aquaporin (AQP) proteins belong to the major intrinsic protein (MIP) superfamily, are widely involved in plant growth and development, and play an important role in abiotic stress responses. To date, previous studies have not identified or analyzed the AsAQP gene family system, and functional studies of oat AQP genes in response to drought, cold, and salt stress have not been performed. Methods In this study, AQP genes (AsAQP) were identified from the oat genome, and various bioinformatics data on the AQP gene family, gene structure, gene replication, promoters and regulatory networks were analyzed. Quantitative real-time PCR technology was used to verify the expression patterns of the AQP gene family in different oat tissues under different abiotic stresses. Results In this study, a total of 45 AQP genes (AsAQP) were identified from the oat reference genome. According to a phylogenetic analysis, 45 AsAQP were divided into 4 subfamilies (PIP, SIP, NIP, and TIP). Among the 45 AsAQP, 23 proteins had interactions, and among these, 5AG0000633.1 had the largest number of interacting proteins. The 20 AsAQP genes were expressed in all tissues, and their expression varied greatly among different tissues and organs. All 20 AsAQP genes responded to salt, drought and cold stress. The NIP subfamily 6Ag0000836.1 gene was significantly upregulated under different abiotic stresses and could be further verified as a key candidate gene. Conclusion The findings of this study provide a comprehensive list of members and their sequence characteristics of the AsAQP protein family, laying a solid theoretical foundation for further functional analysis of AsAQP in oats. This research also offers valuable reference for the creation of stress-tolerant oat varieties through genetic engineering techniques.
Collapse
Affiliation(s)
| | | | - Lin Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuemin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Qi X, Wan C, Zhang X, Sun W, Liu R, Wang Z, Wang Z, Ling F. Effects of histone methylation modification on low temperature seed germination and growth of maize. Sci Rep 2023; 13:5196. [PMID: 36997660 PMCID: PMC10063631 DOI: 10.1038/s41598-023-32451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
Low temperature is a limiting factor of seed germination and plant growth. Although there is a lot information on the response of maize to low temperatures, there is still poorly description of how histone methylation affects maize germination and growth development at low temperatures. In this study, the germination rate and physiological indexes of wild-type maize inbred lines B73 (WT), SDG102 silencing lines (AS), SDG102 overexpressed lines (OE) at germination stage and seedling stage were measured under low temperature stress (4 ℃), and transcriptome sequencing was applied to analyze the differences of gene expression in panicle leaves among different materials. The results showed that the germination rate of WT and OE maize seeds at 4 ℃ was significantly lower than 25 ℃. The content of MDA, SOD and POD of 4 ℃ seeding leaves higher than contrast. Transcriptome sequencing results showed that there were 409 different expression genes (DEGs) between WT and AS, and the DEGs were mainly up-regulated expression in starch and sucrose metabolism and phenylpropanoid biosynthesis. There were 887 DEGs between WT and OE, which were mainly up-regulated in the pathways of plant hormone signal transduction, porphyrin and chlorophyll metabolism. This result could provide a theoretical basis for analyzing the growth and development of maize from the perspective of histone methylation modification.
Collapse
Affiliation(s)
- Xin Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Chang Wan
- Institute of Grassland and Ecology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xing Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Weifeng Sun
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Rui Liu
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhennan Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhenhui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China.
| | - Fenglou Ling
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
9
|
Promoter of Vegetable Soybean GmTIP1;6 Responds to Diverse Abiotic Stresses and Hormone Signals in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms232012684. [PMID: 36293538 PMCID: PMC9604487 DOI: 10.3390/ijms232012684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Tonoplast intrinsic proteins (TIPs), a sub-family of aquaporins (AQPs), are known to play important roles in plant abiotic stress responses. However, evidence for the promoters of TIPs involvement in abiotic stress processes remains scarce. In this study, the promoter of the vegetable soybean GmTIP1;6 gene, which had the highest similarity to TIP1-type AQPs from other plants, was cloned. Expression pattern analyses indicated that the GmTIP1;6 gene was dramatically induced by drought, salt, abscisic acid (ABA), and methyl jasmonate (MeJA) stimuli. Promoter analyses revealed that the GmTIP1;6 promoter contained drought, ABA, and MeJA cis-acting elements. Histochemical staining of the GmTIP1;6 promoter in transgenic Arabidopsis corroborated that it was strongly expressed in the vascular bundles of leaves, stems, and roots. Beta-glucuronidase (GUS) activity assays showed that the activities of the GmTIP1;6 promoter were enhanced by different concentrations of polyethylene glycol 6000 (PEG 6000), NaCl, ABA, and MEJA treatments. Integrating these results revealed that the GmTIP1;6 promoter could be applied for improving the tolerance to abiotic stresses of the transgenic plants by promoting the expression of vegetable soybean AQPs.
Collapse
|
10
|
Sasi JM, VijayaKumar C, Kukreja B, Budhwar R, Shukla RN, Agarwal M, Katiyar-Agarwal S. Integrated transcriptomics and miRNAomics provide insights into the complex multi-tiered regulatory networks associated with coleoptile senescence in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:985402. [PMID: 36311124 PMCID: PMC9597502 DOI: 10.3389/fpls.2022.985402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Coleoptile is the small conical, short-lived, sheath-like organ that safeguards the first leaf and shoot apex in cereals. It is also the first leaf-like organ to senesce that provides nutrition to the developing shoot and is, therefore, believed to play a crucial role in seedling establishment in rice and other grasses. Though histochemical studies have helped in understanding the pattern of cell death in senescing rice coleoptiles, genome-wide expression changes during coleoptile senescence have not yet been explored. With an aim to investigate the gene regulation underlying the coleoptile senescence (CS), we performed a combinatorial whole genome expression analysis by sequencing transcriptome and miRNAome of senescing coleoptiles. Transcriptome analysis revealed extensive reprogramming of 3439 genes belonging to several categories, the most prominent of which encoded for transporters, transcription factors (TFs), signaling components, cell wall organization enzymes, redox homeostasis, stress response and hormone metabolism. Small RNA sequencing identified 41 known and 21 novel miRNAs that were differentially expressed during CS. Comparison of gene expression and miRNA profiles generated for CS with publicly available leaf senescence (LS) datasets revealed that the two aging programs are remarkably distinct at molecular level in rice. Integration of expression data of transcriptome and miRNAome identified high confidence 140 miRNA-mRNA pairs forming 42 modules, thereby demonstrating multi-tiered regulation of CS. The present study has generated a comprehensive resource of the molecular networks that enrich our understanding of the fundamental pathways regulating coleoptile senescence in rice.
Collapse
Affiliation(s)
| | - Cheeni VijayaKumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | - Roli Budhwar
- Bionivid Technology Pvt. Limited, Bengaluru, Karnataka, India
| | | | - Manu Agarwal
- Department of Botany, University of Delhi, Delhi, India
| | | |
Collapse
|