1
|
Song W, Ki DU, Cho H, Kwon O, Cho H, Yoon SI. Structural basis of transcriptional regulation by UrtR in response to uric acid. Nucleic Acids Res 2024; 52:13192-13205. [PMID: 39484741 PMCID: PMC11602129 DOI: 10.1093/nar/gkae922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
Uric acid (UA)-responsive transcriptional regulators (UrtRs), which belong to the multiple antibiotic resistance regulator (MarR) superfamily, transcriptionally coordinate virulence and metabolism in bacteria by modulating interactions with operator DNA in response to UA. To elucidate the transcriptional regulatory mechanism of UrtR, we structurally analyzed UrtR proteins, including PecS, MftR, and HucR, alone and in complex with UA or DNA. UrtR contains a dimerization domain (DD) and a winged helix-turn-helix domain (wHTHD) and forms a homodimer primarily via the DD, as observed for other MarR superfamily proteins. However, UrtRs are characterized by a unique N-terminal α-helix, which contributes to dimerization and UA recognition. In the absence of UA, the UrtR dimer symmetrically binds to the operator double-stranded DNA (dsDNA) by inserting its α4 recognition helix and β-stranded wing within the wHTHD into the major and minor grooves of dsDNA, respectively. Upon exposure to UA, UrtR accommodates UA in the intersubunit pocket between the DD and wHTHD. UA binding induces a conformational change in the major groove-binding core element of the UrtR wHTHD, generating a DNA binding-incompatible structure. This local allosteric mechanism of UrtR completely differs from that generally observed in other MarR superfamily members, in which the entire wHTHD undergoes effector-responsive global shifts.
Collapse
Affiliation(s)
- Wan Seok Song
- Institute of Bioscience and Biotechnology, Kangwon National University, 1 Kangwondaehakgil, Chuncheon 24341, Republic of Korea
| | - Dong Uk Ki
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehakgil, Chuncheon 24341, Republic of Korea
| | - Hye Yeon Cho
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehakgil, Chuncheon 24341, Republic of Korea
| | - Oh Hyun Kwon
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Hongbaek Cho
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Sung-il Yoon
- Institute of Bioscience and Biotechnology, Kangwon National University, 1 Kangwondaehakgil, Chuncheon 24341, Republic of Korea
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehakgil, Chuncheon 24341, Republic of Korea
| |
Collapse
|
2
|
Liang F, Sun S, Zhou Y, Peng T, Xu X, Li B, Tan G. Escherichia coli alcohol dehydrogenase YahK is a protein that binds both iron and zinc. PeerJ 2024; 12:e18040. [PMID: 39282118 PMCID: PMC11397123 DOI: 10.7717/peerj.18040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Background Previous studies have highlighted the catalytic activity of Escherichia coli alcohol dehydrogenase YahK in the presence of coenzyme nicotinamide adenine dinucleotide (NAD) and metal zinc. Notably, competitive interaction between iron and zinc ligands has been shown to influence the catalytic efficiency of several key proteases. This study aims to unravel the intricate mechanisms underlying YahK's catalytic action, with a particular focus on the pivotal roles played by metal ions zinc and iron. Methods The purified YahK protein from E. coli cells cultivated in LB medium was utilized to investigate its metal-binding properties through UV-visible absorption measurements and determination of metal content. Subsequently, the effects of excess zinc and iron on the metal-binding ability and alcohol dehydrogenase activity of the YahK protein were explored using M9 minimal medium. Furthermore, site-directed mutagenesis technology was employed to determine the iron-binding site location within the YahK protein. Polyacrylamide gel electrophoresis was conducted to examine the relationship between iron and zinc with respect to the YahK protein. Results The study confirmed the presence of iron and zinc in the YahK protein, with the zinc-bound form exhibiting enhanced catalytic activity in alcohol dehydrogenation reactions. Conversely, the presence of iron appears to play a pivotal role in maintaining overall stability of the YahK protein. Furthermore, experimental findings indicate that excessive zinc within M9 minimal medium can competitively bind to iron-binding sites on YahK, thereby augmenting its alcohol dehydrogenase activity. Conclusion The dynamic binding of YahK to iron and zinc unveils its intricate regulatory mechanism as an alcohol dehydrogenase, thereby highlighting the possible physiological role of YahK in E. coli and its significance in governing cellular metabolic processes. This discovery provides a novel perspective for further investigating the specific impact of metal ion binding on YahK and E. coli cell metabolism.
Collapse
Affiliation(s)
- Feng Liang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Shujuan Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, Shandong, China
| | - YongGuang Zhou
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tiantian Peng
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xianxian Xu
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Beibei Li
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guoqiang Tan
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Li Y, Pan L, He YC. Co-production of 2,5-dihydroxymethylfuran and furfuralcohol from sugarcane bagasse via chemobiocatalytic approach in a sustainable system. BIORESOURCE TECHNOLOGY 2023; 389:129819. [PMID: 37797802 DOI: 10.1016/j.biortech.2023.129819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
2,5-Dihydroxymethylfuran and furfuryl alcohol serve as versatile building-blocks in pharmaceuticals, polymers, and value-added intermediates. To develop an efficient and sustainable method for their production from biomass, a combined approach using deep eutectic solvent Citric acid:Betaine (CTA:BT) for bagasse catalysis and recombinant E. coli SCFD23 for bioreduction of bagasse-derived 5-hydroxymethylfurfural and furfural was devised. Bagasse was effectively transformed into 5-hydroxymethylfurfural (48 mM) and furfural (14 mM) in CTA:BT (8 wt%)-water at 170 °C for 30 min. Bioreduction of 5-hydroxymethylfurfural and furfural by SCFD23 cell co-expressing formate dehydrogenase and NAD(P)H-dependent aldehyde reductase (SsCR) yielded 2,5-dihydroxymethylfuran (90.0 % yield) and furfuryl alcohol (99.0 % yield) in 6 h, using biomass-derived formic acid, xylose and glucose as co-substrates. Molecular docking confirmed the stable binding and reductase activity of SsCR with the biomass-derived 5-hydroxymethylfurfural and furfural. An efficient and eco-friendly chemobiological approach was applied for co-production of 2,5-dihydroxymethylfuran and furfuryl alcohol from biomass in one-pot two-step reaction.
Collapse
Affiliation(s)
- Yucheng Li
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Lei Pan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
4
|
Bremer E, Calteau A, Danchin A, Harwood C, Helmann JD, Médigue C, Palsson BO, Sekowska A, Vallenet D, Zuniga A, Zuniga C. A model industrial workhorse:
Bacillus subtilis
strain 168 and its genome after a quarter of a century. Microb Biotechnol 2023; 16:1203-1231. [PMID: 37002859 DOI: 10.1111/1751-7915.14257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
The vast majority of genomic sequences are automatically annotated using various software programs. The accuracy of these annotations depends heavily on the very few manual annotation efforts that combine verified experimental data with genomic sequences from model organisms. Here, we summarize the updated functional annotation of Bacillus subtilis strain 168, a quarter century after its genome sequence was first made public. Since the last such effort 5 years ago, 1168 genetic functions have been updated, allowing the construction of a new metabolic model of this organism of environmental and industrial interest. The emphasis in this review is on new metabolic insights, the role of metals in metabolism and macromolecule biosynthesis, functions involved in biofilm formation, features controlling cell growth, and finally, protein agents that allow class discrimination, thus allowing maintenance management, and accuracy of all cell processes. New 'genomic objects' and an extensive updated literature review have been included for the sequence, now available at the International Nucleotide Sequence Database Collaboration (INSDC: AccNum AL009126.4).
Collapse
Affiliation(s)
- Erhard Bremer
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| | - Alexandra Calteau
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of Medicine Hong Kong University Pokfulam SAR Hong Kong China
| | - Colin Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute Newcastle University Baddiley Clark Building Newcastle upon Tyne UK
| | - John D. Helmann
- Department of Microbiology Cornell University Ithaca New York USA
| | - Claudine Médigue
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Bernhard O. Palsson
- Department of Bioengineering University of California San Diego La Jolla USA
| | | | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Abril Zuniga
- Department of Biology San Diego State University San Diego California USA
| | - Cristal Zuniga
- Bioinformatics and Medical Informatics Graduate Program San Diego State University San Diego California USA
| |
Collapse
|
5
|
Structural analysis of the pseudaminic acid synthase PseI from Campylobacter jejuni. Biochem Biophys Res Commun 2022; 635:252-258. [DOI: 10.1016/j.bbrc.2022.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022]
|
6
|
Furfural Influences Hydrogen Evolution and Energy Conversion in Photo-Fermentation by Rhodobacter capsulatus. Catalysts 2022. [DOI: 10.3390/catal12090979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Furfural, as a typical byproduct produced during the hydrolysis of lignocellulose biomass, is harmful to the photo fermentation hydrogen production. In this work, the effects of furfural on the photo fermentation hydrogen production by Rhodobacter capsulatus using glucose as substrate were investigated. The characteristics of cell growth, hydrogen production, and fermentation end-products with the addition of different concentrations of furfural (0–20 mM) were studied. The results showed that furfural negatively affected the maximum hydrogen production rate and total hydrogen yield. The maximum hydrogen yield of 2.59 ± 0.13 mol-H2/mol-glucose was obtained without furfural. However, 5 mM furfural showed a 40% increase in cell concentration. Furfural in high concentrations can favor the overproduction and accumulation of inhibitive end-products. Further analysis of energy conversion efficiency showed that most of the energy in the substrate was underused and unconverted when the furfural concentration was high. The maximum glucose consumption (93%) was achieved without furfural, while it dramatically declined to 7% with 20 mM furfural addition. The index of half-maximal inhibitory concentration was calculated as 13.40 mM. Moreover, the possible metabolic pathway of furfural and glucose was discussed.
Collapse
|