1
|
Božič A, Podgornik R. Increased preference for lysine over arginine in spike proteins of SARS-CoV-2 BA.2.86 variant and its daughter lineages. PLoS One 2025; 20:e0320891. [PMID: 40193474 PMCID: PMC11975073 DOI: 10.1371/journal.pone.0320891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/25/2025] [Indexed: 04/09/2025] Open
Abstract
The COVID-19 pandemic offered an unprecedented glimpse into the evolution of its causative virus, SARS-CoV-2. It has been estimated that since its outbreak in late 2019, the virus has explored all possible alternatives in terms of missense mutations for all sites of its polypeptide chain. Spike protein of the virus exhibits the largest sequence variation in particular, with many individual mutations impacting target recognition, cellular entry, and endosomal escape of the virus. Moreover, recent studies unveiled a significant increase in the total charge on the spike protein during the evolution of the virus in the initial period of the pandemic. While this trend has recently come to a halt, we perform a sequence-based analysis of the spike protein of 2665 SARS-CoV-2 variants which shows that mutations in ionizable amino acids continue to occur with the newly emerging variants, with notable differences between lineages from different clades. What is more, we show that within mutations of amino acids which can acquire positive charge, the spike protein of SARS-CoV-2 exhibits a prominent preference for lysine residues over arginine residues. This lysine-to-arginine ratio increased at several points during spike protein evolution, most recently with BA.2.86 and its sublineages, including the recently dominant JN.1, KP.3, and XEC variants. The increased ratio is a consequence of mutations in different structural regions of the spike protein and is now among the highest among viral species in the Coronaviridae family. The impact of high lysine-to-arginine ratio in the spike proteins of BA.2.86 and its daughter lineages on viral fitness remains unclear; we discuss several potential mechanisms that could play a role and that can serve as a starting point for further studies.
Collapse
Affiliation(s)
- Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Rudolf Podgornik
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
2
|
Zhu B, Lin H, Huang JS, Zhang W. Semi-Covariance Coefficient Analysis of Spike Proteins from SARS-CoV-2 and Its Variants Omicron, BA.5, EG.5, and JN.1 for Viral Infectivity, Virulence and Immune Escape. Viruses 2024; 16:1192. [PMID: 39205166 PMCID: PMC11360586 DOI: 10.3390/v16081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Semi-covariance has attracted significant attention in recent years and is increasingly employed to elucidate statistical phenomena exhibiting fluctuations, such as the similarity or difference in charge patterns of spike proteins among coronaviruses. In this study, by examining values above and below the average/mean based on the positive and negative charge patterns of amino acid residues in the spike proteins of SARS-CoV-2 and its current circulating variants, the proposed methods offer profound insights into the nonlinear evolving trends in those viral spike proteins. Our study indicates that the charge span value can predict the infectivity of the virus and the charge density can estimate the virulence of the virus, and both predicated infectivity and virulence appear to be associated with the capability of viral immune escape. This semi-covariance coefficient analysis may be used not only to predict the infectivity, virulence and capability of immune escape for coronaviruses but also to analyze the functionality of other viral proteins. This study improves our understanding of the trend of viral evolution in terms of viral infectivity, virulence or the capability of immune escape, which remains further validated by more future studies and statistical data.
Collapse
Affiliation(s)
- Botao Zhu
- Department of Electrical and Computer engineering, Western University, London, ON N6A 5B9, Canada;
| | - Huancheng Lin
- School of Information Technology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Jun Steed Huang
- School of Information Technology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, Building M54, Ottawa, ON K1A 0R6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
3
|
Božič A, Podgornik R. Changes in total charge on spike protein of SARS-CoV-2 in emerging lineages. BIOINFORMATICS ADVANCES 2024; 4:vbae053. [PMID: 38645718 PMCID: PMC11031363 DOI: 10.1093/bioadv/vbae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024]
Abstract
Motivation Charged amino acid residues on the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been shown to influence its binding to different cell surface receptors, its non-specific electrostatic interactions with the environment, and its structural stability and conformation. It is therefore important to obtain a good understanding of amino acid mutations that affect the total charge on the spike protein which have arisen across different SARS-CoV-2 lineages during the course of the virus' evolution. Results We analyse the change in the number of ionizable amino acids and the corresponding total charge on the spike proteins of almost 2200 SARS-CoV-2 lineages that have emerged over the span of the pandemic. Our results show that the previously observed trend toward an increase in the positive charge on the spike protein of SARS-CoV-2 variants of concern has essentially stopped with the emergence of the early omicron variants. Furthermore, recently emerged lineages show a greater diversity in terms of their composition of ionizable amino acids. We also demonstrate that the patterns of change in the number of ionizable amino acids on the spike protein are characteristic of related lineages within the broader clade division of the SARS-CoV-2 phylogenetic tree. Due to the ubiquity of electrostatic interactions in the biological environment, our findings are relevant for a broad range of studies dealing with the structural stability of SARS-CoV-2 and its interactions with the environment. Availability and implementation The data underlying the article are available in the Supplementary material.
Collapse
Affiliation(s)
- Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana 1000, Slovenia
| | - Rudolf Podgornik
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
4
|
Zaccaria M, Genovese L, Lawhorn BE, Dawson W, Joyal AS, Hu J, Autissier P, Nakajima T, Johnson WE, Fofana I, Farzan M, Momeni B. Predicting potential SARS-CoV-2 mutations of concern via full quantum mechanical modelling. J R Soc Interface 2024; 21:20230614. [PMID: 38320601 PMCID: PMC10846948 DOI: 10.1098/rsif.2023.0614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
Ab initio quantum mechanical models can characterize and predict intermolecular binding, but only recently have models including more than a few hundred atoms gained traction. Here, we simulate the electronic structure for approximately 13 000 atoms to predict and characterize binding of SARS-CoV-2 spike variants to the human ACE2 (hACE2) receptor using the quantum mechanics complexity reduction (QM-CR) approach. We compare four spike variants in our analysis: Wuhan, Omicron, and two Omicron-based variants. To assess binding, we mechanistically characterize the energetic contribution of each amino acid involved, and predict the effect of select single amino acid mutations. We validate our computational predictions experimentally by comparing the efficacy of spike variants binding to cells expressing hACE2. At the time we performed our simulations (December 2021), the mutation A484K which our model predicted to be highly beneficial to ACE2 binding had not been identified in epidemiological surveys; only recently (August 2023) has it appeared in variant BA.2.86. We argue that our computational model, QM-CR, can identify mutations critical for intermolecular interactions and inform the engineering of high-specificity interactors.
Collapse
Affiliation(s)
- Marco Zaccaria
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Luigi Genovese
- Université Grenoble Alpes, CEA, INAC-MEM, L Sim, Grenoble, France
| | | | | | - Andrew S. Joyal
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Jingqing Hu
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | | | | | | | - Ismael Fofana
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Michael Farzan
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Center for Integrated Solutions for Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
| | - Babak Momeni
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
5
|
Jawad B, Adhikari P, Podgornik R, Ching WY. Impact of BA.1, BA.2, and BA.4/BA.5 Omicron mutations on therapeutic monoclonal antibodies. Comput Biol Med 2023; 167:107576. [PMID: 37871435 DOI: 10.1016/j.compbiomed.2023.107576] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
The emergence of Omicron SARS-CoV-2 subvariants (BA.1, BA.2, BA.4, and BA.5), with an unprecedented number of mutations in their receptor-binding domain (RBD) of the spike-protein, has fueled a resurgence of COVID-19 infections, posing a major challenge to the efficacy of existing vaccines and monoclonal antibody (mAb) therapeutics. We conducted a systematic molecular dynamics (MD) simulation to investigate how the RBD mutations of these subvariants affect the interactions with broad mAbs including AstraZeneca (COV2-2196 and COV2-2130), Brii Biosciences (BRII-196), Celltrion (CT-P59), Eli Lilly (LY-CoV555 and LY-CoV016), Regeneron (REGN10933 and REGN10987), Vir Biotechnology (S309), and S2X259. Our results show a complete loss of binding for COV2-2196, BRII-196, CT-P59, and LY-CoV555 with all Omicron RBDs. Additionally, REGN10987 totally loses its binding with BA.1, but retains a partial binding with BA.2 and BA.4/5. The binding reduction is significant for LY-CoV016 and REGN10933 but moderate for COV2-2130. S309 and S2X259 retain their binding with BA.1 but exhibit decreased binding with other subvariants. We introduce a mutational escape map for each mAb to identify the key RBD sites and the corresponding critical mutations. Overall, our findings suggest that the majority of therapeutic mAbs have diminished or missing activity against Omicron subvariants, indicating the urgent need for a new therapeutic mAb with a better design.
Collapse
Affiliation(s)
- Bahaa Jawad
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO, 64110, United States; Department of Applied Sciences, University of Technology, Baghdad, 10066, Iraq.
| | - Puja Adhikari
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO, 64110, United States
| | - Rudolf Podgornik
- Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China; School of Physical Sciences and Kavli Institute of Theoretical Science, University of Chinese Academy of Sciences, Beijing, 100049, China; CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100090, China; Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Wai-Yim Ching
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO, 64110, United States
| |
Collapse
|
6
|
Wu CY, Yang YH, Lin YS, Shu LH, Cheng YC, Liu HT, Lin YY, Lee IY, Shih WT, Yang PR, Tsai YY, Chang GH, Hsu CM, Yeh RA, Wu YH, Wu YH, Shen RC, Tsai MS. The anti-SARS-CoV-2 effect and mechanism of Chiehyuan herbal oral protection solution. Heliyon 2023; 9:e17701. [PMID: 37483781 PMCID: PMC10359827 DOI: 10.1016/j.heliyon.2023.e17701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
The Chiehyuan herbal oral protection solution (GB-2) is a herbal mixture commonly utilized in Taiwan for combating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as per traditional Chinese medicine practices. This study assessed the clinical impact of GB-2 through prospective clinical trials. With twice-daily use for a week, GB-2 was shown to diminish the expression of angiotensin-converting enzyme 2 (ACE2) in oral mucosal cells. Moreover, after two weeks of use, it could reduce transmembrane protease, serine 2 (TMRPSS2) expression in these cells. Additionally, in vitro experiments demonstrated that GB-2 lessened the entry efficiency of the Omicron, L452R-D614G, T478K-D614G, and L452R-T478K-D614G variants of the SARS-CoV-2 pseudotyped lentivirus. It also impeded the interaction between ACE2 and the receptor-binding domain (RBD) presenting N501Y-K417N-E484A-G339D-Q493R-G496S-Q498R and L452R-T478K mutations. Glycyrrhizic acid, a major compound in GB-2, also hindered the entry of the Omicron variant (BA.1) of the SARS-CoV-2 pseudotyped lentivirus by obstructing the binding between ACE2 and the RBD presenting the N501Y-K417N-E484A-G339D-Q493R-G496S-Q498R mutation. To sum up, these findings suggest that GB-2 can decrease ACE2 and TMPRSS2 expression in oral mucosal cells. Both glycyrrhizic acid and GB-2 were found to reduce the entry efficiency of the Omicron variant (BA.1) of the SARS-CoV-2 pseudotyped lentivirus and block the binding between ACE2 and the RBD with the N501Y-K417N-E484A-G339D-Q493R-G496S-Q498R mutation. This evidence implies that GB-2 might be a potential candidate for further study as a preventative measure against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yao-Hsu Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Li-Hsin Shu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Ching Cheng
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Department of Otolaryngology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hung-Te Liu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yin-Yin Lin
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - I-Yun Lee
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Wei-Tai Shih
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Pei-Rung Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ying-Ying Tsai
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Geng-He Chang
- Department of Otolaryngology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Cheng-Ming Hsu
- Department of Otolaryngology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Reming-Albert Yeh
- Department of Otolaryngology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Huei Wu
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Heng Wu
- Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Rou-Chen Shen
- Department of Otolaryngology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ming-Shao Tsai
- Department of Otolaryngology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
7
|
Božič A, Podgornik R. Evolutionary changes in the number of dissociable amino acids on spike proteins and nucleoproteins of SARS-CoV-2 variants. Virus Evol 2023; 9:vead040. [PMID: 37583936 PMCID: PMC10424713 DOI: 10.1093/ve/vead040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 08/17/2023] Open
Abstract
The spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for target recognition, cellular entry, and endosomal escape of the virus. At the same time, it is the part of the virus that exhibits the greatest sequence variation across the many variants which have emerged during its evolution. Recent studies have indicated that with progressive lineage emergence, the positive charge on the spike protein has been increasing, with certain positively charged amino acids (AAs) improving the binding of the spike protein to cell receptors. We have performed a detailed analysis of dissociable AAs of more than 1400 different SARS-CoV-2 lineages, which confirms these observations while suggesting that this progression has reached a plateau with Omicron and its subvariants and that the positive charge is not increasing further. Analysis of the nucleocapsid protein shows no similar increase in positive charge with novel variants, which further indicates that positive charge of the spike protein is being evolutionarily selected for. Furthermore, comparison with the spike proteins of known coronaviruses shows that already the wild-type SARS-CoV-2 spike protein carries an unusually large amount of positively charged AAs when compared to most other betacoronaviruses. Our study sheds light on the evolutionary changes in the number of dissociable AAs on the spike protein of SARS-CoV-2, complementing existing studies and providing a stepping stone towards a better understanding of the relationship between the spike protein charge and viral infectivity and transmissibility.
Collapse
Affiliation(s)
- Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia
| | - Rudolf Podgornik
- School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, No. 3 Nanyitiao, Zhongguancun, Haidian District, Beijing 100049, China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, No. 8 3rd South Street, Zhongguancun, Haidian District, Beijing 100190, China
- Wenzhou Institute of the University of Chinese Academy of Sciences, No.1 Jinlian Road, Wenzhou, Zhejiang 325001, China
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana SI-1000, Slovenia
| |
Collapse
|
8
|
Marriam S, Afghan MS, Nadeem M, Sajid M, Ahsan M, Basit A, Wajid M, Sabri S, Sajid M, Zafar I, Rashid S, Sehgal SA, Alkhalifah DHM, Hozzein WN, Chen KT, Sharma R. Elucidation of novel compounds and epitope-based peptide vaccine design against C30 endopeptidase regions of SARS-CoV-2 using immunoinformatics approaches. Front Cell Infect Microbiol 2023; 13:1134802. [PMID: 37293206 PMCID: PMC10244718 DOI: 10.3389/fcimb.2023.1134802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/29/2023] [Indexed: 06/10/2023] Open
Abstract
There has been progressive improvement in immunoinformatics approaches for epitope-based peptide design. Computational-based immune-informatics approaches were applied to identify the epitopes of SARS-CoV-2 to develop vaccines. The accessibility of the SARS-CoV-2 protein surface was analyzed, and hexa-peptide sequences (KTPKYK) were observed having a maximum score of 8.254, located between amino acids 97 and 102, whereas the FSVLAC at amino acids 112 to 117 showed the lowest score of 0.114. The surface flexibility of the target protein ranged from 0.864 to 1.099 having amino acid ranges of 159 to 165 and 118 to 124, respectively, harboring the FCYMHHM and YNGSPSG hepta-peptide sequences. The surface flexibility was predicted, and a 0.864 score was observed from amino acids 159 to 165 with the hepta-peptide (FCYMHHM) sequence. Moreover, the highest score of 1.099 was observed between amino acids 118 and 124 against YNGSPSG. B-cell epitopes and cytotoxic T-lymphocyte (CTL) epitopes were also identified against SARS-CoV-2. In molecular docking analyses, -0.54 to -26.21 kcal/mol global energy was observed against the selected CTL epitopes, exhibiting binding solid energies of -3.33 to -26.36 kcal/mol. Based on optimization, eight epitopes (SEDMLNPNY, GSVGFNIDY, LLEDEFTPF, DYDCVSFCY, GTDLEGNFY, QTFSVLACY, TVNVLAWLY, and TANPKTPKY) showed reliable findings. The study calculated the associated HLA alleles with MHC-I and MHC-II and found that MHC-I epitopes had higher population coverage (0.9019% and 0.5639%) than MHC-II epitopes, which ranged from 58.49% to 34.71% in Italy and China, respectively. The CTL epitopes were docked with antigenic sites and analyzed with MHC-I HLA protein. In addition, virtual screening was conducted using the ZINC database library, which contained 3,447 compounds. The 10 top-ranked scrutinized molecules (ZINC222731806, ZINC077293241, ZINC014880001, ZINC003830427, ZINC030731133, ZINC003932831, ZINC003816514, ZINC004245650, ZINC000057255, and ZINC011592639) exhibited the least binding energy (-8.8 to -7.5 kcal/mol). The molecular dynamics (MD) and immune simulation data suggest that these epitopes could be used to design an effective SARS-CoV-2 vaccine in the form of a peptide-based vaccine. Our identified CTL epitopes have the potential to inhibit SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Saigha Marriam
- Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Muhammad Sher Afghan
- Department of Ear, Nose, and Throat (ENT), District Headquarter (DHQ) Teaching Hospital Faisalabad, Faisalabad, Punjab, Pakistan
| | - Mazhar Nadeem
- Department of Ear, Nose, and Throat (ENT), District Headquarter (DHQ) Teaching Hospital Faisalabad, Faisalabad, Punjab, Pakistan
| | - Muhammad Sajid
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Muhammad Ahsan
- Institute of Environmental and Agricultural Sciences, University of Okara, Okara, Pakistan
| | - Abdul Basit
- Department of Microbiology, University of Jhang, Jhang, Pakistan
| | - Muhammad Wajid
- Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Sabeen Sabri
- Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Muhammad Sajid
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University, Punjab, Pakistan
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sheikh Arslan Sehgal
- Department of Bioinformatics, Faculty of Life Sciences, University of Okara, Okara, Pakistan
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Dalal Hussien M Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wael N Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (managed by ShowChwan Medical Care Corporation), Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
9
|
Sang P, Chen YQ, Liu MT, Wang YT, Yue T, Li Y, Yin YR, Yang LQ. Electrostatic Interactions Are the Primary Determinant of the Binding Affinity of SARS-CoV-2 Spike RBD to ACE2: A Computational Case Study of Omicron Variants. Int J Mol Sci 2022; 23:ijms232314796. [PMID: 36499120 PMCID: PMC9740405 DOI: 10.3390/ijms232314796] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
To explore the mechanistic origin that determines the binding affinity of SARS-CoV-2 spike receptor binding domain (RBD) to human angiotensin converting enzyme 2 (ACE2), we constructed the homology models of RBD-ACE2 complexes of four Omicron subvariants (BA.1, BA.2, BA.3 and BA.4/5), and compared them with wild type complex (RBDWT-ACE2) in terms of various structural dynamic properties by molecular dynamics (MD) simulations and binding free energy (BFE) calculations. The results of MD simulations suggest that the RBDs of all the Omicron subvariants (RBDOMIs) feature increased global structural fluctuations when compared with RBDWT. Detailed comparison of BFE components reveals that the enhanced electrostatic attractive interactions are the main determinant of the higher ACE2-binding affinity of RBDOMIs than RBDWT, while the weakened electrostatic attractive interactions determine RBD of BA.4/5 subvariant (RBDBA.4/5) lowest ACE2-binding affinity among all Omicron subvariants. The per-residue BFE decompositions and the hydrogen bond (HB) networks analyses indicate that the enhanced electrostatic attractive interactions are mainly through gain/loss of the positively/negatively charged residues, and the formation or destruction of the interfacial HBs and salt bridges can also largely affect the ACE2-binding affinity of RBD. It is worth pointing out that since Q493R plays the most important positive contribution in enhancing binding affinity, the absence of this mutation in RBDBA.4/5 results in a significantly weaker binding affinity to ACE2 than other Omicron subvariants. Our results provide insight into the role of electrostatic interactions in determining of the binding affinity of SARS-CoV-2 RBD to human ACE2.
Collapse
Affiliation(s)
- Peng Sang
- College of Agriculture and Biological Science, Dali University, Dali 671000, China
- Key Laboratory of Bioinformatics and Computational Biology, Department of Education of Yunnan Province, Dali University, Dali 671000, China
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from West Yunnan, Dali University, Dali 671000, China
| | - Yong-Qin Chen
- College of Agriculture and Biological Science, Dali University, Dali 671000, China
| | - Meng-Ting Liu
- College of Agriculture and Biological Science, Dali University, Dali 671000, China
| | - Yu-Ting Wang
- College of Agriculture and Biological Science, Dali University, Dali 671000, China
| | - Ting Yue
- College of Agriculture and Biological Science, Dali University, Dali 671000, China
| | - Yi Li
- College of Mathematics and Computer Science, Dali University, Dali 671000, China
| | - Yi-Rui Yin
- College of Agriculture and Biological Science, Dali University, Dali 671000, China
| | - Li-Quan Yang
- College of Agriculture and Biological Science, Dali University, Dali 671000, China
- Key Laboratory of Bioinformatics and Computational Biology, Department of Education of Yunnan Province, Dali University, Dali 671000, China
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from West Yunnan, Dali University, Dali 671000, China
- Correspondence:
| |
Collapse
|
10
|
Molecular Mechanisms of Pathogenesis, Prevention, and Therapy of COVID-19: Summarizing the Results of 2021. Int J Mol Sci 2022; 23:ijms232214210. [PMID: 36430684 PMCID: PMC9699257 DOI: 10.3390/ijms232214210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
The purpose of this special issue is to highlight the main problems of the COVID-19 epidemic and to outline some ways to solve these problems, including research into the biology of the SARS-CoV-2 virus, general pathological and particular patterns of COVID-19 pathogenesis, acute and long-term complications of COVID-19, and evaluation of high-potential general and specific prevention methods and etiological and pathogenetic therapies for COVID-19 [...].
Collapse
|
11
|
Quantum Chemical Computation of Omicron Mutations Near Cleavage Sites of the Spike Protein. Microorganisms 2022; 10:microorganisms10101999. [PMID: 36296275 PMCID: PMC9612061 DOI: 10.3390/microorganisms10101999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
The attachment of the spike protein in SARS-CoV-2 to host cells and the initiation of viral invasion are two critical processes in the viral infection and transmission in which the presence of unique furin (S1/S2) and TMPRSS2 (S2′) cleavage sites play a pivotal role. We provide a detailed analysis of the impact of the BA.1 Omicron mutations vicinal to these cleavage sites using a novel computational method based on the amino acid–amino acid bond pair unit (AABPU), a specific protein structural unit as a proxy for quantifying the atomic interaction. Our study is focused mainly on the spike region between subdomain 2 (SD2) and the central helix (CH), which contains both S1/S2 and S2’ cleavage sites. Based on ab initio quantum calculations, we have identified several key features related to the electronic structure and bonding of the Omicron mutations that significantly increase the size of the relevant AABPUs and the positive charge. These findings enable us to conjecture on the biological role of Omicron mutations and their specific effects on cleavage sites and identify the principles that can be of some value in analyzing new variants.
Collapse
|
12
|
Ching WY, Adhikari P, Jawad B, Podgornik R. Effect of Delta and Omicron Mutations on the RBD-SD1 Domain of the Spike Protein in SARS-CoV-2 and the Omicron Mutations on RBD-ACE2 Interface Complex. Int J Mol Sci 2022; 23:10091. [PMID: 36077490 PMCID: PMC9456519 DOI: 10.3390/ijms231710091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
The receptor-binding domain (RBD) is the essential part in the Spike-protein (S-protein) of SARS-CoV-2 virus that directly binds to the human ACE2 receptor, making it a key target for many vaccines and therapies. Therefore, any mutations at this domain could affect the efficacy of these treatments as well as the viral-cell entry mechanism. We introduce ab initio DFT-based computational study that mainly focuses on two parts: (1) Mutations effects of both Delta and Omicron variants in the RBD-SD1 domain. (2) Impact of Omicron RBD mutations on the structure and properties of the RBD-ACE2 interface system. The in-depth analysis is based on the novel concept of amino acid-amino acid bond pair units (AABPU) that reveal the differences between the Delta and/or Omicron mutations and its corresponding wild-type strain in terms of the role played by non-local amino acid interactions, their 3D shapes and sizes, as well as contribution to hydrogen bonding and partial charge distributions. Our results also show that the interaction of Omicron RBD with ACE2 significantly increased its bonding between amino acids at the interface providing information on the implications of penetration of S-protein into ACE2, and thus offering a possible explanation for its high infectivity. Our findings enable us to present, in more conspicuous atomic level detail, the effect of specific mutations that may help in predicting and/or mitigating the next variant of concern.
Collapse
Affiliation(s)
- Wai-Yim Ching
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Puja Adhikari
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Bahaa Jawad
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Rudolf Podgornik
- School of Physical Sciences and Kavli Institute of Theoretical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100090, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| |
Collapse
|
13
|
Gopi P, Gurnani M, Singh S, Sharma P, Pandya P. Structural aspects of SARS-CoV-2 mutations: Implications to plausible infectivity with ACE-2 using computational modeling approach. J Biomol Struct Dyn 2022:1-16. [PMID: 35938696 DOI: 10.1080/07391102.2022.2108901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Some of the SARS-CoV-2 variants are said to be more infectious than the previous others and are causing panic around the globe. Cases related to Delta plus (δ+) and omicron (ο) variants are on the rise worldwide. This sudden surge warrants an investigation into the reasons for its binding with ACE-2. The present study attempts to find out the structural basis of binding interactions of SARS-CoV-2 mutants based on computational modeling and comparative analysis. In silico strategies including protein-protein docking, mutation analysis, molecular dynamics, and binding energy calculations were used to study the binding of the 'receptor binding domain' (RBD) of the seven 'variants of concern' which include Alpha (α), Beta (β), Gamma (γ), Kappa (κ), Delta (δ), Delta plus (δ+) and omicron (ο) with ACE-2 (human angiotensin-converting enzyme-2) and with antibodies. Among all the variants dealt with in this study, Delta plus and omicron were found to be binding more strongly to ACE-2 than others due to inherent mutations and the consequent change in the hydrophilic and hydrophobic environment of the binding site. Furthermore, molecular dynamic (MD) simulations and subsequent MM/PBSA calculations provided useful structural insights into key residues participating in the interaction. Infectivity of a virus could be dependent on the interplay of evading antibodies and simultaneously attaching strongly with the host receptor. A cross-correlation between mutant spike proteins' binding with ACE-2 and antibodies provides a holistic assessment of the binding nature of these mutants vis-à-vis native virus and offers opportunities for designing potential therapeutics against these new mutants.
Collapse
Affiliation(s)
- Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Manisha Gurnani
- Amity Institute of Environmental Science, Amity University, Noida, Uttar Pradesh, India
| | - Shweta Singh
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Palak Sharma
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
14
|
MicroRNAs as Potential Tools for Predicting Cancer Patients’ Susceptibility to SARS-CoV-2 Infection and Vaccination Response. Cells 2022; 11:cells11152279. [PMID: 35892576 PMCID: PMC9332853 DOI: 10.3390/cells11152279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease (COVID-19) is an infectious disease that is caused by a highly contagious and severe acute respiratory syndrome—coronavirus 2 (SARS-CoV-2). This infection started to spread across the world in 2019 and rapidly turned into a global pandemic, causing an urgent necessity for treatment strategies development. The mRNA vaccines against SARS-CoV-2 can trigger an immune response, providing genetic information that allows the production of spike glycoproteins. MiRNAs play a crucial role in diverse key cellular processes, including antiviral defense. Several miRNAs are described as key factors in SARS-CoV-2 human infection through the regulation of ACE2 levels and by the inhibition of SARS-CoV-2 replication and spike expression. Consequently, these molecules have been considered as highly promising biomarkers. In numerous human malignancies, it has been recognized that miRNAs expression is dysregulated. Since miRNAs can target SARS-CoV-2-associated mRNAs, in cancer patients, the deregulation of these molecules can impair the immune response to the vaccines. Therefore, in this review, we propose a miRNA profile of seven SARS-CoV-2-related miRNAs, namely miR-214, miR-98-5p, miR-7-5p, miR-24-3p, miR-145-5p, miR-223-3p and miR-15b-5p, that are deregulated in a high number of cancers and have the potential to be used as prognostic biomarkers to stratify cancer patients.
Collapse
|
15
|
Celik I, Abdellattif MH, Tallei TE. An Insight Based on Computational Analysis of the Interaction between the Receptor-Binding Domain of the Omicron Variants and Human Angiotensin-Converting Enzyme 2. BIOLOGY 2022; 11:biology11050797. [PMID: 35625526 PMCID: PMC9171583 DOI: 10.3390/biology11050797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022]
Abstract
Simple Summary The Omicron variant has recently been divided into BA.1, BA.2, and BA.3 subvariants. In the present study, we focused on comparing the interaction between the receptor-binding domain (RBD) of BA.1 and BA.2 spike proteins with human angiotensin-converting enzyme 2 (hACE2) using a computational approach. The RBD BA.2 was modeled after the BA.1. The results from molecular docking and molecular dynamics studies showed that RBD BA.2 has a higher and more stable affinity for hACE2 compared to RBD BA.1. Abstract Concerns have been raised about the high number of mutations in the spike protein of the new emergence of the highly transmissible Omicron variant (B.1.1529 lineage) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This variant’s extraordinary ability to evade antibodies would significantly impair the current vaccination program. This present study aimed to computationally analyze the interaction between the receptor-binding domain (RBD) in the spike protein of Omicron variants and human angiotensin-converting enzyme 2 (hACE2). The docking results indicated that Omicron BA.2 has exceptionally strong interactions with hACE2 in comparison to Omicron BA.1, Delta, and wild-type, as indicated by various parameters such as salt bridge, hydrogen bond, and non-bonded interactions. The results of the molecular dynamics simulation study corroborate these findings, indicating that Omicron BA.2 has a strong and stable interaction with hACE2. This study provides insight into the development of an effective intervention against this variant.
Collapse
Affiliation(s)
- Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey;
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
- Correspondence: ; Tel.: +62-811-4314-880
| |
Collapse
|