1
|
Leung JY, Chiu HY, Taneja R. Role of epigenetics in paediatric cancer pathogenesis & drug resistance. Br J Cancer 2025; 132:757-769. [PMID: 40055485 DOI: 10.1038/s41416-025-02961-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 05/01/2025] Open
Abstract
Paediatric oncogenesis is tightly intertwined with errors in developmental processes involving cell specification and differentiation, which are governed by intricate temporal epigenetic signals. As paediatric cancers are characterised by a low number of somatic mutations, dysregulated chromatin landscapes are believed to be key drivers of oncogenesis. Epigenetic dysregulation is induced by mutations and aberrant expression of histones and epigenetic regulatory genes, to altered DNA methylation patterns and dysregulated noncoding RNA expression. In this review, we discuss epigenetic alterations in paediatric cancer oncogenesis and recurrence, and their potential as diagnostic biomarkers. We also discuss various epigenetic drugs that have entered clinical trials for aggressive paediatric cancers. Targeting paediatric-specific epigenetic vulnerabilities may improve recurrence-free survival in high-risk cancers.
Collapse
Affiliation(s)
- Jia Yu Leung
- Department of Physiology, Healthy Longevity and NUS Centre for Cancer Research Translation Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 2 Medical Drive, MD9, Singapore, 117593, Republic of Singapore
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), National University Hospital (NUH), 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
| | - Hsin Yao Chiu
- Department of Physiology, Healthy Longevity and NUS Centre for Cancer Research Translation Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 2 Medical Drive, MD9, Singapore, 117593, Republic of Singapore
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity and NUS Centre for Cancer Research Translation Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 2 Medical Drive, MD9, Singapore, 117593, Republic of Singapore.
| |
Collapse
|
2
|
Yadav P, Rajendrasozhan S, Lajimi RH, Patel RR, Heymann D, Prasad NR. Circulating tumor cell markers for early detection and drug resistance assessment through liquid biopsy. Front Oncol 2025; 15:1494723. [PMID: 40260304 PMCID: PMC12009936 DOI: 10.3389/fonc.2025.1494723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
Circulating tumor cells (CTCs) are cancerous cells that extravasate from the primary tumor or metastatic foci and travel through the bloodstream to distant organs. CTCs provide crucial insights into cancer metastasis, the evolution of tumor genotypes during treatment, and the development of chemo- and/or radio-resistance during disease progression. The process of Epithelial-to-mesenchymal transition (EMT) plays a key role in CTCs formation, as this process enhances cell's migration properties and is often associated with increased invasiveness thereby leading to chemotherapy resistance. During the EMT process, tumor cells lose epithelial markers like EpCAM and acquire mesenchymal markers such as vimentin driven by transcription factors like Snail and Twist. CTCs are typically identified using specific cell surface markers, which vary depending on the cancer type. Common markers include EpCAM, used for epithelial cancers; CD44 and CD24, which are associated with cancer stem cells; and cytokeratins, such as CK8 and CK18. Other markers like HER2/neu and vimentin can also be used to target CTCs in specific cancer types and stages. Commonly, immune-based isolation techniques are being implemented for the isolation and enrichment of CTCs. This review emphasizes the clinical relevance of CTCs, particularly in understanding drug resistance mechanisms, and underscores the importance of EMT-derived CTCs in multidrug resistance (MDR). Moreover, the review also discusses CTCs-specific surface markers that are crucial for their isolation and enrichment. Ultimately, the EMT-specific markers found in CTCs could provide significant information to halt the disease progression and enable personalized therapies.
Collapse
Affiliation(s)
- Priya Yadav
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Saravanan Rajendrasozhan
- Department of Chemistry, College of Science, University of Ha’il, Ha’il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il, Saudi Arabia
| | - Ramzi Hadj Lajimi
- Department of Chemistry, College of Science, University of Ha’il, Ha’il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il, Saudi Arabia
| | - Raja Ramadevi Patel
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il, Saudi Arabia
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medecine Laboratory, Saint-Herblain, France
- Medical School, University of Sheffield, Sheffield, United Kingdom
| | - N. Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| |
Collapse
|
3
|
Nie J, Huang L, Shen Y, Pan H, Wang S, Zhao H, Gao P, Yang J, Huang X, Zeng S, Miao J. Methotrexate resistance and its regulatory mechanisms in pediatric tumors and beyond. Drug Resist Updat 2025; 81:101225. [PMID: 40088855 DOI: 10.1016/j.drup.2025.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Methotrexate (MTX) is a critical antimetabolite drug in treating various pediatric diseases, including acute lymphoblastic leukemia (ALL), non-Hodgkin lymphoma (NHL), brain tumors, osteosarcoma, inflammatory myofibroblastic tumor (IMT), juvenile scleroderma (JS), and juvenile idiopathic arthritis (JIA). MTX acts as a folate antagonist by inhibiting dihydrofolate reductase (DHFR), an enzyme essential for the synthesis of tetrahydrofolate. This disruption impairs DNA synthesis, repair, and cellular replication, particularly affecting rapidly dividing cells. Despite its efficacy, MTX resistance poses significant challenges, particularly in pediatric oncology, where it undermines the ability to achieve sustained therapeutic effects, resulting in reduced therapeutic efficacy and poor prognosis. The mechanisms of MTX resistance encompassed reduced enzyme activity pivotal for MTX metabolism, enhanced expression of efflux transporters, genetic variations, and alterations in signaling pathways. Multifaceted strategies have been explored to overcome MTX resistance. Combination therapies with ginger extract, gold nanoparticles, and arsenic trioxide (ATO) have been investigated to augment MTX's cytotoxic effects. Synergies with mTOR inhibitors and MDM2 inhibitors have demonstrated enhanced outcomes in ALL. In JIA, targeting ATP-binding cassette (ABC) transporters and modulating transforming growth factor‑β (TGF-β) signaling pathways have emerged as promising approaches. For osteosarcoma, emphasis on autophagy pathways and non-coding RNAs influencing chemotherapy sensitivity could enhance MTX effectiveness. This review delineates MTX's therapeutic roles, elucidates its resistance mechanisms, and discusses current and potential strategies for managing MTX resistance to bolster treatment effectiveness in pediatric tumors and other diseases. This knowledge base could underpin further research and development of personalized treatments to optimize MTX's clinical benefits.
Collapse
Affiliation(s)
- Jing Nie
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China
| | - Lantian Huang
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Yan Shen
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongai Pan
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siwan Wang
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Huawei Zhao
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peng Gao
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Jufei Yang
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Xiaojun Huang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310059, China
| | - Su Zeng
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China.
| | - Jing Miao
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Dong SW, Zhang H, Wang J, Huang SY, Wang HC. Factors affecting chemotherapy response after the first relapse of B-cell acute lymphoblastic leukemia in pediatric patients. Am J Transl Res 2025; 17:897-912. [PMID: 40092125 PMCID: PMC11909567 DOI: 10.62347/ydno1939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/27/2024] [Indexed: 03/19/2025]
Abstract
OBJECTIVE To investigate the factors affecting chemotherapy efficacy following first relapse in pediatric B-cell acute lymphoblastic leukemia (B-ALL). METHODS A retrospective investigation was conducted on the clinical data from 254 pediatric patients with B-ALL treated at the First Affiliated Hospital of Xinjiang Medical University, Red Star Hospital of the 13th Division of Xinjiang Production and Construction Corps and Chengdu Women's and Children's Central Hospital between August 2016 and September 2022. Patients were divided into a Good Response (GR) group and a Poor Response (PR) group based on minimal residual disease (MRD) levels post-relapse treatment. The demographic data, blood and cytokine profiles, cytogenetic/molecular alterations, and therapeutic interventions were analyzed. Factors influencing response were screened using univariate and multivariate logistic regression models. RESULTS The GR group showed significantly higher white blood cell (WBC) counts (8.24 ± 2.21 × 103/µL) compared to the PR group (7.50 ± 1.88 × 103/µL; P = 0.004). Elevated levels of tumor necrosis factor-alpha (TNF-α) (22.78 ± 4.31 vs. 20.94 ± 4.28 pg/mL; P < 0.001) and interleukin-6 (IL-6) (112.48 ± 21.09 vs. 106.31 ± 20.77 pg/mL; P = 0.020) were linked to poor outcome. Hypodiploidy and combined genetic alterations in Ikaros family zinc finger 1 (IKZF1), nuclear receptor subfamily 3 group C member 1 (NR3C1), and B-cell translocation gene 1 (BTG1) were associated with poor response (P = 0.032 and P = 0.003, respectively). Blinatumomab usage was associated with improved outcome (P = 0.030). Multivariate analysis revealed that higher TNF-α and IL-6 levels were independent risk factors of PR, while higher WBC count was a protective factor. CONCLUSION Chemotherapy efficacy in relapsed pediatric B-ALL is influenced by hematologic, cytokine, and genetic factors.
Collapse
Affiliation(s)
- Shu-Wan Dong
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Hong Zhang
- Department of Nursing, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Jing Wang
- Department of Pediatrics, Red Star Hospital, 13th Division, Xinjiang Production and Construction CorpsHami 839000, Xinjiang Uygur Autonomous Region, China
| | - Shi-Yong Huang
- Pediatric Intensive Care Unit, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of ChinaChengdu 610073, Sichuan, China
| | - Hui-Cai Wang
- Department of Teaching and Research, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830054, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
5
|
Le Y, Zhu S, Peng H, Wang Z. Unveiling the omics tapestry of B-acute lymphoblastic leukemia: bridging genomics, metabolomics, and immunomics. Sci Rep 2025; 15:3188. [PMID: 39863799 PMCID: PMC11762316 DOI: 10.1038/s41598-025-87684-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL. Our findings indicate that the PI3K-Akt signaling pathway is significantly enriched across all groups, highlighting its critical role in B-ALL pathogenesis and progression. Furthermore, metabolomic analysis revealed that lipid metabolism, ferroptosis, and glutathione metabolism are closely linked to disease progression. Notably, in relapsed patients, dysregulated lipid metabolism and the activation of antioxidant mechanisms may contribute to treatment resistance. Immune-related pathways, such as the complement system and coagulation cascade, were also significantly enriched in patients with B-ALL. This suggests that these pathways, alongside the PI3K-Akt pathway, play a role in forming the tumor microenvironment, thereby promoting disease progression and relapse. Based on these findings, this study provides novel potential therapeutic targets for the personalized treatment of B-ALL and lays the foundation for further development of PI3K-Akt pathway inhibitors and immunometabolism-targeted therapies.
Collapse
Affiliation(s)
- Yin Le
- Division of Hematology, Second Xiang-ya Hospital, Central South University, Changsha, China
- Institute of Molecular Hematology, Central South University, Changsha, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, China
| | - Shicong Zhu
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongling Peng
- Division of Hematology, Second Xiang-ya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, 410011, Hunan, China.
- Institute of Molecular Hematology, Central South University, Changsha, China.
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, China.
| | - Zhihua Wang
- Division of Hematology, Second Xiang-ya Hospital, Central South University, Changsha, China.
| |
Collapse
|
6
|
Coricello A, Nardone AJ, Lupia A, Gratteri C, Vos M, Chaptal V, Alcaro S, Zhu W, Takagi Y, Richards NGJ. 3D variability analysis reveals a hidden conformational change controlling ammonia transport in human asparagine synthetase. Nat Commun 2024; 15:10538. [PMID: 39627226 PMCID: PMC11615228 DOI: 10.1038/s41467-024-54912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
Advances in X-ray crystallography and cryogenic electron microscopy (cryo-EM) offer the promise of elucidating functionally relevant conformational changes that are not easily studied by other biophysical methods. Here we show that 3D variability analysis (3DVA) of the cryo-EM map for wild-type (WT) human asparagine synthetase (ASNS) identifies a functional role for the Arg-142 side chain and test this hypothesis experimentally by characterizing the R142I variant in which Arg-142 is replaced by isoleucine. Support for Arg-142 playing a role in the intramolecular translocation of ammonia between the active site of the enzyme is provided by the glutamine-dependent synthetase activity of the R142 variant relative to WT ASNS, and MD simulations provide a possible molecular mechanism for these findings. Combining 3DVA with MD simulations is a generally applicable approach to generate testable hypotheses of how conformational changes in buried side chains might regulate function in enzymes.
Collapse
Affiliation(s)
- Adriana Coricello
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Alanya J Nardone
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Antonio Lupia
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Carmen Gratteri
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
| | - Matthijn Vos
- NanoImaging Core Facility, Centre de Resources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, Lyon, France
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy.
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy.
| | - Wen Zhu
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, USA.
| | - Yuichiro Takagi
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff, UK.
- Foundation for Applied Molecular Evolution, Alachua, FL, USA.
| |
Collapse
|
7
|
Lill CB, Fitter S, Zannettino ACW, Vandyke K, Noll JE. Molecular and cellular mechanisms of chemoresistance in paediatric pre-B cell acute lymphoblastic leukaemia. Cancer Metastasis Rev 2024; 43:1385-1399. [PMID: 39102101 PMCID: PMC11554931 DOI: 10.1007/s10555-024-10203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Paediatric patients with relapsed B cell acute lymphoblastic leukaemia (B-ALL) have poor prognosis, as relapse-causing clones are often refractory to common chemotherapeutics. While the molecular mechanisms leading to chemoresistance are varied, significant evidence suggests interactions between B-ALL blasts and cells within the bone marrow microenvironment modulate chemotherapy sensitivity. Importantly, bone marrow mesenchymal stem cells (BM-MSCs) and BM adipocytes are known to support B-ALL cells through multiple distinct molecular mechanisms. This review discusses the contribution of integrin-mediated B-ALL/BM-MSC signalling and asparagine supplementation in B-ALL chemoresistance. In addition, the role of adipocytes in sequestering anthracyclines and generating a BM niche favourable for B-ALL survival is explored. Furthermore, this review discusses the role of BM-MSCs and adipocytes in promoting a quiescent and chemoresistant B-ALL phenotype. Novel treatments which target these mechanisms are discussed herein, and are needed to improve dismal outcomes in patients with relapsed/refractory disease.
Collapse
Affiliation(s)
- Caleb B Lill
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stephen Fitter
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jacqueline E Noll
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
8
|
Özay B, Tükel EY, Ayna Duran G, Kiraz Y. Identification of potential inhibitors for drug resistance in acute lymphoblastic leukemia through differentially expressed gene analysis and in silico screening. Anal Biochem 2024; 694:115619. [PMID: 39025197 DOI: 10.1016/j.ab.2024.115619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is a disease of lymphocyte origin predominantly diagnosed in children. While its 5-year survival rate is high, resistance to chemotherapy drugs is still an obstacle. Our aim is to determine differentially expressed genes (DEGs) related to Asparaginase, Daunorubicin, Prednisolone, and Vincristine resistance and identify potential inhibitors via docking. Three datasets were accessed from the Gene Expression Omnibus database; GSE635, GSE19143, and GSE22529. The microarray data was analyzed using R4.2.0 and Bioconductor packages, and pathway and protein-protein interaction analysis were performed. We identified 1294 upregulated DEGs, with 12 genes consistently upregulated in all four resistant groups. KEGG analysis revealed an association with the PI3K-Akt pathway. Among DEGs, 33 hub genes including MDM2 and USP7 were pinpointed. Within common genes, CLDN9 and HS3ST3A1 were subjected to molecular docking against 3556 molecules. Following ADMET analysis, three drugs emerged as potential inhibitors: Flunarizine, Talniflumate, and Eltrombopag. Molecular dynamics analysis for HS3ST3A1 indicated all candidates had the potential to overcome drug resistance, Eltrombopag displaying particularly promising results. This study promotes a further understanding of drug resistance in ALL, introducing novel genes for consideration in diagnostic screening. It also presents potential inhibitor candidates to tackle drug resistance through repurposing.
Collapse
Affiliation(s)
- Başak Özay
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, Izmir, Turkey
| | - Ezgi Yağmur Tükel
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, Izmir, Turkey
| | - Gizem Ayna Duran
- İzmir University of Economics, Faculty of Engineering, Department of Biomedical Engineering, 35330, Balçova, Izmir, Turkey
| | - Yağmur Kiraz
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, Izmir, Turkey.
| |
Collapse
|
9
|
Coricello A, Nardone AJ, Lupia A, Gratteri C, Vos M, Chaptal V, Alcaro S, Zhu W, Takagi Y, Richards NGJ. 3D Variability Analysis Reveals a Hidden Conformational Change Controlling Ammonia Transport in Human Asparagine Synthetase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.16.541009. [PMID: 37292727 PMCID: PMC10245805 DOI: 10.1101/2023.05.16.541009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
How motions in enzymes might be linked to catalytic function is of considerable general interest. Advances in X-ray crystallography and cryogenic electron microscopy (cryo-EM) offer the promise of elucidating functionally relevant conformational changes that are not easily studied by other biophysical methods. Here we use 3D variability analysis (3DVA) of the cryo-EM map for wild-type (WT) human asparagine synthetase (ASNS) to identify a functional role for the Arg-142 side chain as a gate that mediates ammonia access to a catalytically relevant intramolecular tunnel. Our 3DVA-derived hypothesis is assessed experimentally, using the R142I variant in which Arg-142 is replaced by isoleucine, and by molecular dynamics (MD) simulations on independent, computational models of the WT human ASNS monomer and its catalytically relevant, ternary complex with β-aspartyl-AMP and MgPPi. Residue fluctuations in the MD trajectories for the human ASNS monomer are consistent with those determined for 3DVA-derived structures. These MD simulations also indicate that the gating function of Arg-142 is separate from the molecular events that form a continuous tunnel linking the two active sites. Experimental support for Arg-142 playing a role in intramolecular ammonia translocation is provided by the glutamine-dependent synthetase activity of the R142 variant relative to WT ASNS. MD simulations of computational models for the R142I variant and the R142I/β-aspartyl-AMP/MgPPi ternary complex provide a possible molecular basis for this observation. Overall, the combination of 3DVA with MD simulations is a generally applicable approach to generate testable hypotheses of how conformational changes in buried side chains might regulate function in enzymes.
Collapse
Affiliation(s)
- Adriana Coricello
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Present address: Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Alanya. J. Nardone
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Antonio Lupia
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Present address: Dipartimento di Scienze della vita e dell’ambiente, Università degli Studi di Cagliari, 09042 Cagliari, Italy
| | - Carmen Gratteri
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
| | - Matthijn Vos
- NanoImaging Core Facility, Centre de Resources et Recherches Technologiques, Institut Pasteur, 75015 Paris, France
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, 69367 Lyon, France
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
| | - Wen Zhu
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Yuichiro Takagi
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nigel G. J. Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
- Foundation for Applied Molecular Evolution, Alachua, FL 32615, USA
| |
Collapse
|
10
|
Vijayakumar S, Dhakshanamoorthy R, Baskaran A, Sabari Krishnan B, Maddaly R. Drug resistance in human cancers - Mechanisms and implications. Life Sci 2024; 352:122907. [PMID: 39004273 DOI: 10.1016/j.lfs.2024.122907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Cancers have complex etiology and pose a significant impact from the health care perspective apart from the socio-economic implications. The enormity of challenge posed by cancers can be understood from the fact that clinical trials for cancer therapy has yielded minimum potential promises compared to those obtained for other diseases. Surgery, chemotherapy and radiotherapy continue to be the mainstay therapeutic options for cancers. Among the challenges posed by these options, induced resistance to chemotherapeutic drugs is probably the most significant contributor for poor prognosis and ineffectiveness of the therapy. Drug resistance is a property exhibited by almost all cancer types including carcinomas, leukemias, myelomas, sarcomas and lymphomas. The mechanisms by which drug resistance is induced include the factors within the tumor microenvironment, mutations in the genes responsible for drug metabolism, changes in the surface drug receptors and increased drug efflux. We present here comprehensively the drug resistance in cancers along with their mechanisms. Also, apart from resistance to regularly used chemotherapeutic drugs, we present resistance induction to new generation therapeutic agents such as monoclonal antibodies. Finally, we have discussed the experimental approaches to understand the mechanisms underlying induction of drug resistance and potential ways to mitigate induced drug resistance.
Collapse
Affiliation(s)
- Sudikshaa Vijayakumar
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Raveena Dhakshanamoorthy
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Akshaya Baskaran
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - B Sabari Krishnan
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Ravi Maddaly
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India.
| |
Collapse
|
11
|
Wang W, Yu L, Li Z, Xiao Y, Jiang H, Tang YL, Chen Y, Xue H. Dysregulated arginine metabolism in precursor B-cell acute lymphoblastic leukemia in children: a metabolomic study. BMC Pediatr 2024; 24:540. [PMID: 39174946 PMCID: PMC11340190 DOI: 10.1186/s12887-024-05015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Precursor B-cell acute lymphoblastic leukemia (B-ALL) is the most common cancers in children. Failure of induction chemotherapy is a major factor leading to relapse and death in children with B-ALL. Given the importance of altered metabolites in the carcinogenesis of pediatric B-ALL, studying the metabolic profile of children with B-ALL during induction chemotherapy and in different minimal residual disease (MRD) status may contribute to the management of pediatric B-ALL. METHODS We collected paired peripheral blood plasma samples from children with B-ALL at pre- and post-induction chemotherapy and analyzed the metabolomic profiling of these samples by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS). Healthy children were included as controls. We selected metabolites that were depleted in pediatric B-ALL and analyzed the concentrations in pediatric B-ALL samples. In vitro, we study the effects of the selected metabolites on the viability of ALL cell lines and the sensitivity to conventional chemotherapeutic agents in ALL cell lines. RESULTS Forty-four metabolites were identified with different levels between groups. KEGG pathway enrichment analyses revealed that dysregulated linoleic acid (LA) metabolism and arginine (Arg) biosynthesis were closely associated with pediatric B-ALL. We confirmed that LA and Arg were decreased in pediatric B-ALL samples. The treatment of LA and Arg inhibited the viability of NALM-6 and RS4;11 cells in a dose-dependent manner, respectively. Moreover, Arg increased the sensitivity of B-ALL cells to L-asparaginase and daunorubicin. CONCLUSION Arginine increases the sensitivity of B-ALL cells to the conventional chemotherapeutic drugs L-asparaginase and daunorubicin. This may represent a promising therapeutic approach.
Collapse
Affiliation(s)
- Wenqing Wang
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Liuting Yu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zhen Li
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Yan Xiao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Hao Jiang
- Medical laboratory science, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Yan-Lai Tang
- Department of Pediatrics, , The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Hongman Xue
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
12
|
Collins M, Gorgoglione R, Impedovo V, Pan X, Chakkarai S, Yi SS, Lodi A, Tiziani S. Exploration of the intracellular chiral metabolome in pediatric BCP-ALL: a pilot study investigating the metabolic phenotype of IgH locus aberrations. Front Oncol 2024; 14:1413264. [PMID: 39161381 PMCID: PMC11332069 DOI: 10.3389/fonc.2024.1413264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/13/2024] [Indexed: 08/21/2024] Open
Abstract
Background and aims Aberrations in the immunoglobulin heavy chain (IgH) locus are associated with poor prognosis in pediatric precursor B-cell acute lymphoblastic leukemia (BCP-ALL) patients. The primary objective of this pilot study is to enhance our understanding of the IgH phenotype by exploring the intracellular chiral metabolome. Materials and methods Leukemia cells were isolated from the bone marrow of BCP-ALL pediatric patients at diagnosis. The samples' metabolome and transcriptome were characterized using untargeted chiral metabolomic and next-generation sequencing transcriptomic analyses. Results For the first time D- amino acids were identified in the leukemic cells' intracellular metabolome from the bone marrow niche. Chiral metabolic signatures at diagnosis was indicative of a resistant phenotype. Through integrated network analysis and Pearson correlation, confirmation was obtained regarding the association of the IgH phenotype with several genes linked to poor prognosis. Conclusion The findings of this study have contributed to the understanding that the chiral metabolome plays a role in the poor prognosis observed in an exceptionally rare patient cohort. The findings include elevated D-amino acid incorporation in the IgH group, the emergence of several unknown, potentially enantiomeric, metabolites, and insights into metabolic pathways that all warrant further exploration.
Collapse
Affiliation(s)
- Meghan Collins
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Ruggiero Gorgoglione
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Valeria Impedovo
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Xingxin Pan
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Sathyaseelan Chakkarai
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - S. Stephen Yi
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Interdisciplinary Life Sciences Graduate Programs, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Oden Institute for Computational Engineering and Sciences, and Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
13
|
Pathania AS. Immune Microenvironment in Childhood Cancers: Characteristics and Therapeutic Challenges. Cancers (Basel) 2024; 16:2201. [PMID: 38927907 PMCID: PMC11201451 DOI: 10.3390/cancers16122201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The tumor immune microenvironment is pivotal in cancer initiation, advancement, and regulation. Its molecular and cellular composition is critical throughout the disease, as it can influence the balance between suppressive and cytotoxic immune responses within the tumor's vicinity. Studies on the tumor immune microenvironment have enriched our understanding of the intricate interplay between tumors and their immunological surroundings in various human cancers. These studies illuminate the role of significant components of the immune microenvironment, which have not been extensively explored in pediatric tumors before and may influence the responsiveness or resistance to therapeutic agents. Our deepening understanding of the pediatric tumor immune microenvironment is helping to overcome challenges related to the effectiveness of existing therapeutic strategies, including immunotherapies. Although in the early stages, targeted therapies that modulate the tumor immune microenvironment of pediatric solid tumors hold promise for improved outcomes. Focusing on various aspects of tumor immune biology in pediatric patients presents a therapeutic opportunity that could improve treatment outcomes. This review offers a comprehensive examination of recent literature concerning profiling the immune microenvironment in various pediatric tumors. It seeks to condense research findings on characterizing the immune microenvironment in pediatric tumors and its impact on tumor development, metastasis, and response to therapeutic modalities. It covers the immune microenvironment's role in tumor development, interactions with tumor cells, and its impact on the tumor's response to immunotherapy. The review also discusses challenges targeting the immune microenvironment for pediatric cancer therapies.
Collapse
Affiliation(s)
- Anup Singh Pathania
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
14
|
Ekpa QL, Akahara PC, Anderson AM, Adekoya OO, Ajayi OO, Alabi PO, Okobi OE, Jaiyeola O, Ekanem MS. A Review of Acute Lymphocytic Leukemia (ALL) in the Pediatric Population: Evaluating Current Trends and Changes in Guidelines in the Past Decade. Cureus 2023; 15:e49930. [PMID: 38179374 PMCID: PMC10766210 DOI: 10.7759/cureus.49930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Acute lymphocytic leukemia (ALL) is a commonly diagnosed cancer in children. Despite technological advancements to improve treatment and survival rates, there has been a steady increase in the incidence of ALL and treatment failures. This paper discusses the pathogenic interaction between genetic and environmental factors leading to childhood ALL. It evaluates the current treatment guidelines and notable obstacles leading to resistance, relapse, and treatment toxicities. The review evaluates a 10-year trend in the management guidelines of pediatric ALL through a systematic literature review of records from 2012 to 2023. Findings show that improvement in the five-year survival rates, notwithstanding rates of relapse and incurable diseases, is still high. Furthermore, several risk factors, including an interplay between genetic and environmental factors, are largely contributory to the outcome of ALL treatments and its overall incidence. Moreover, huge financial costs have remained a significant challenge in outcomes. There remains a need to provide individualized treatment plans, shared decision-making, and goals of care as parts of the management guidelines for the best possible outcomes. We expect that future advancements will increase overall survival rates and disease-free years.
Collapse
Affiliation(s)
- Queen L Ekpa
- General Practice, Conestoga College, Kitchener, CAN
| | | | - Alexis M Anderson
- Pediatric Medicine, St. George's University, School of Medicine, St. George's, GRD
| | | | - Olamide O Ajayi
- Pediatrics, Medway Maritime Hospital, Kent, GBR
- Internal Medicine, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu, NGA
| | - Peace O Alabi
- Pediatrics, University of Abuja Teaching Hospital, Abuja, NGA
| | - Okelue E Okobi
- Family Medicine, Larkin Community Hospital Palm Springs Campus, Hialeah, USA
- Family Medicine, Medficient Health Systems, Laurel, USA
- Family Medicine, Lakeside Medical Center, Belle Glade, USA
| | | | - Medara S Ekanem
- General Medicine, Babcock University Teaching Hospital, Ilishan-Remo, NGA
| |
Collapse
|
15
|
Wu M, Zhang S, Chi C, Zhu H, Ma H, Liu L, Shi Q, Li D, Ju X. 1,5-AG suppresses pro-inflammatory polarization of macrophages and promotes the survival of B-ALL in vitro by upregulating CXCL14. Mol Immunol 2023; 158:91-102. [PMID: 37178520 DOI: 10.1016/j.molimm.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/30/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
B-lineage acute lymphoblastic leukemia (B-ALL) is one of the most common malignancies in children. Despite advances in treatment, the role of the tumor microenvironment in B-ALL remains poorly understood. Among the key components of the immune microenvironment, macrophages play a critical role in the progression of the disease. However, recent research has suggested that abnormal metabolites may influence the function of macrophages, altering the immune microenvironment and promoting tumor growth. Our previous non-targeted metabolomic detection revealed that the metabolite 1,5-anhydroglucitol (1,5-AG) level in the peripheral blood of children newly diagnosed with B-ALL was significantly elevated. Except for its direct influence on leukemia cells, the effect of 1,5-AG on macrophages is still unclear. Herein, we demonstrated new potential therapeutic targets by focusing on the effect of 1,5-AG on macrophages. We used polarization-induced macrophages to determine how 1,5-AG acted on M1-like polarization and screened out the target gene CXCL14 via transcriptome sequencing. Furthermore, we constructed CXCL14 knocked-down macrophages and a macrophage-leukemia cell coculture model to validate the interaction between macrophages and leukemia cells. We discovered that 1,5-AG upregulated the CXCL14 expression, thereby inhibiting M1-like polarization. CXCL14 knockdown restored the M1-like polarization of macrophages and induced leukemia cells apoptosis in the coculture model. Our findings offer new possibilities for the genetic engineering of human macrophages to rehabilitate their immune activity against B-ALL in cancer immunotherapy.
Collapse
Affiliation(s)
- Min Wu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Shule Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Cheng Chi
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Huasu Zhu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Huixian Ma
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Linghong Liu
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Qing Shi
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Dong Li
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China; Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
16
|
Mendivil-Perez M, Jimenez-Del-Rio M, Velez-Pardo C. TPEN/TPGS (T2) combo dramatically reduces Philadelphia chromosome-positive pro-lymphoblastic B leukemia in BALB/c mice. Med Oncol 2023; 40:15. [PMID: 36352172 PMCID: PMC9646590 DOI: 10.1007/s12032-022-01873-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is hematological neoplasia that affects human beings from early life to adulthood. Although ALL treatment has been effective, an important percentage of ALL patients are resilient to treatment. Therefore, there is an urgent need for testing a new combination of compounds for the treatment of this disease. Recently, combined TPEN and TPGS (T2 combo) have shown selective cytotoxic effects in vitro leukemia cells such as Jurkat, K562, and Ba/F3 cells. In this study, we aimed to test the effect of combined TPEN and TPGS agents (T2 combo) at a fixed dose (TPEN 5 mg/kg: TPGS 100 mg/kg) on leukemic Ba/F3-BCR-ABL P210 BALB-c mice model. We found that 4 successive 2-day apart intravenous injections of T2 combo showed a statistically significant reduction of Ba/F3 BCR-ABL leukemia cells (- 69%) in leukemia BALB/c mice (n = 6) compared to untreated leukemia group (n = 6). Moreover, the T2 combo was innocuous to non-leukemia BALB/c mice (n = 3) compared to untreated non-leukemia mice (control, n = 3). After treatments (day 42), all mice were left to rest until day 50. Outstandingly, the leukemia BALB/c mice treated with the T2 combo showed a lower percentage of Ba/F3-BCR-ABL P210 cells (- 84%) than untreated leukemia BALB/c mice. Furthermore, treatment of leukemia and non-leukemia mice with T2 combo showed no significant tissue alteration/damage according to the histopathological analysis of brain, heart, liver, kidney, and spleen samples; however, T2 combo significantly reduced the number of leukocytes in the bone marrow of treated leukemia mice. We conclude that the T2 combo specifically affects leukemia cells but no other tissue/organs. Therefore, we anticipate that the T2 combo might be a potential pro-oxidant combination for the treatment of leukemia patients.
Collapse
Affiliation(s)
- Miguel Mendivil-Perez
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia
| |
Collapse
|
17
|
Lin C, Xu JQ, Zhong GC, Chen H, Xue HM, Yang M, Chen C. Integrating RNA-seq and scRNA-seq to explore the biological significance of NAD + metabolism-related genes in the initial diagnosis and relapse of childhood B-cell acute lymphoblastic leukemia. Front Immunol 2022; 13:1043111. [PMID: 36439178 PMCID: PMC9691973 DOI: 10.3389/fimmu.2022.1043111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Nicotinamide Adenine Dinucleotide (NAD) depletion is reported to be a potential treatment for B-cell Acute Lymphoblastic Leukemia (B-ALL), but the mechanism of NAD metabolism-related genes (NMRGs) in B-ALL relapse remains unclear. METHODS Transcriptome data (GSE3912), and single-cell sequencing data (GSE130116) of B-ALL patients were downloaded from Gene Expression Omnibus (GEO) database. NMRGs were sourced from Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome databases. Further, the differentially expressed NMRGs (DE-NMRGs) were selected from the analysis between initial diagnosis and relapse B-ALL samples, which further performed functional enrichment analyses. The biomarkers were obtained through random forest (RF) algorithm and repeated cross validation. Additionally, cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm was used to evaluate the immune cell differences between the initial diagnosis and relapse samples, and the correlations between biomarkers and gene markers of differential immune cells were analyzed. Furthermore, single cell RNA sequencing was conducted in the GSE130116 dataset to find key cell clusters. In addition, according to biomarkers expressions, cell clusters were categorized into high and low biomarker expression groups, and Gene Set Enrichment Analysis (GSEA) analysis was performed on them. Finally, the cell clusters with the highest expression of biomarkers were selected to explore the roles of biomarkers in different cell clusters and identify transcription factors (TFs) influencing biological markers. RESULTS 23 DE-NMRGs were screened out, which were mainly enriched in nucleoside phosphate metabolic process, nucleotide metabolic process, and Nicotinate and nicotinamide metabolism. Moreover, 3 biomarkers (NADSYN1, SIRT3, and PARP6) were identified from the machine learning. CIBERSORT results demonstrated that four types of immune cells (B Cells naive, Monocyte, Neutrophils, and T cells CD4 memory Activated) were significantly different between the initial diagnosis and the relapse B-ALL samples, and there were strong correlations between biomarkers and differential immune cells such as positive correlation between NADSYN1 and B Cells naive. The single cell analyses showed that the biomarkers were highly expressed in common myeloid progenitors (CMP), granulocyte-macrophage progenitor (GMP), and megakaryocyte-erythroid progenitor (MEP) cell clusters. Gene set enrichment analysis (GSEA) results indicated that 55 GO terms and 3 KEGG pathways were enriched by the genes in high and low biomarker expression groups. It was found that TF CREB3L2(+) was significantly reduced in the high expression group, which may be the TF affecting biomarkers in the high expression group. CONCLUSION This study identified NADSYN1, SIRT3, and PARP6 as the biomarkers of B-ALL, explored biological significance of NMRGs in the initial diagnosis and relapse of B-ALL, and revealed mechanism of biomarkers at the level of the single cell.
Collapse
Affiliation(s)
- Chao Lin
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jia-Qi Xu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Gui-Chao Zhong
- Department of Pediatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Hui Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Hong-Man Xue
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Mo Yang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Chun Chen
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
18
|
Recent Advances in Treatment Options for Childhood Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 14:cancers14082021. [PMID: 35454927 PMCID: PMC9032060 DOI: 10.3390/cancers14082021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Acute lymphoblastic leukemia is the most common blood cancer in pediatric patients. Despite the enormous progress in ALL treatment, which is reflected by a high 5-year overall survival rate that reaches up to 96% in the most recent studies, there are still patients that cannot be saved. Treatment of ALL is based on conventional methods, including chemotherapy and radiotherapy. These methods carry with them the risk of very high toxicities. Severe complications related to conventional therapies decrease their effectiveness and can sometimes lead to death. Therefore, currently, numerous studies are being carried out on novel forms of treatment. In this work, classical methods of treatment have been summarized. Furthermore, novel treatment methods and the possibility of combining them with chemotherapy have been incorporated into the present work. Targeted treatment, CAR-T-cell therapy, and immunotherapy for ALL have been described. Treatment options for the relapse/chemoresistance ALL have been presented. Abstract Acute lymphoblastic leukemia is the most common blood cancer in pediatric patients. There has been enormous progress in ALL treatment in recent years, which is reflected by the increase in the 5-year OS from 57% in the 1970s to up to 96% in the most recent studies. ALL treatment is based primarily on conventional methods, which include chemotherapy and radiotherapy. Their main weakness is severe toxicity, which prompts dose reduction, decreases the effectiveness of the treatment, and, in some cases, can lead to death. Currently, numerous modifications in treatment regimens are applied in order to limit toxicities emerging from conventional approaches and improve outcomes. Hematological treatment of pediatric patients is reaching for more novel treatment options, such as targeted treatment, CAR-T-cells therapy, and immunotherapy. These methods are currently used in conjunction with chemotherapy. Nevertheless, the swift progress in their development and increasing efficacity can lead to applying those novel therapies as standalone therapeutic options for pediatric ALL.
Collapse
|