1
|
Lama S, Muneer F, America AH, Kuktaite R. Polymeric Gluten Proteins as Climate-Resilient Markers of Quality: Can LC-MS/MS Provide Valuable Information about Spring Wheat Grown in Diverse Climates? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1844-1854. [PMID: 39786935 PMCID: PMC11760153 DOI: 10.1021/acs.jafc.4c10789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025]
Abstract
In this study, the impact of the varying environments, wet-cool (2017), dry-hot (2018), and fluctuating (2019), on two spring wheat genotypes, Diskett and Bumble, grown in field conditions in southern Sweden was studied. From harvested grains, polymeric gluten proteins were fractionated and collected using SE-HPLC and then analyzed with LC-MS/MS. Proteins and peptides identified through searches against the protein sequences ofTriticum aestivum (taxon 4565) from the UniProtKB database showed 7 high molecular weight glutenin subunits (HMW-GS) and 24 low molecular weight glutenin subunits (LMW-GS) with different enrichment levels for both genotypes. Glu-B1 for HMW-GS and Glu D3 and m- and s-types for LMW-GS were dominated in both genotypes, and a small proportion of α-, γ-, and ω-gliadins were also present. A minor variation in HMW-GS and LMW-GS compositions was observed between the years, while small amounts of heat shock proteins were identified under the "dry-hot" period for Diskett. In conclusion, Diskett showed more stable and climate-resistant protein patterns in the studied varying climate as compared to Bumble. The study highlights the use of proteomics and LC-MS/MS for differentiation of wheat genotypes, although it shows low sensitivity in measuring the diverse environment impact on the polymeric proteins.
Collapse
Affiliation(s)
- Sbatie Lama
- Department
of Plant Breeding, Swedish University of
Agricultural Sciences, Box 190, Lomma SE-23422, Sweden
- Agricultural
University of Iceland, H66H+9R9, Hvanneyrabraut, Hvanneyri 311, Iceland
| | - Faraz Muneer
- Department
of Plant Breeding, Swedish University of
Agricultural Sciences, Box 190, Lomma SE-23422, Sweden
| | - Antoine H.P. America
- Wageningen
Plant Research, Wageningen University and
Research, Wageningen 6708 PB, The Netherlands
| | - Ramune Kuktaite
- Department
of Plant Breeding, Swedish University of
Agricultural Sciences, Box 190, Lomma SE-23422, Sweden
| |
Collapse
|
2
|
Mishina K, Morita M, Matsumoto S, Sakuma S. Optimizing Visualization of Pollen Tubes in Wheat Pistils. PLANTS (BASEL, SWITZERLAND) 2024; 13:3600. [PMID: 39771297 PMCID: PMC11678161 DOI: 10.3390/plants13243600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Successful pollination and fertilization are crucial for grain setting in cereals. Wheat is an allohexaploid autogamous species. Due to its evolutionary history, the genetic diversity of current bread wheat (Triticum aestivum) cultivars is limited. Introducing favorable alleles from related wild and cultivated wheat species is a promising breeding strategy for resolving this issue. However, wide hybridization between bread wheat and its relatives is hampered by the presence of suppressor genes and difficulties in crossing. Optimized methods for observing pollen tubes are essential for understanding the mechanism of crossability between wheat and its relatives. Here, we improved the crossing procedure between bread wheat and rye (Secale cereale) and established an optimized protocol for visualizing pollen tube behavior. Crossing via detached spike culture significantly enhanced crossing efficiency and phenotypic stability. A combination of canonical aniline blue staining and optimized clearing and sectioning allowed us to visualize pollen tube behavior. The proportion of rye pollen tubes reaching the micropyle was lower than that for pollen tubes germinated on the stigmatic hair, explaining why the hybrid seed-setting rate was approximately 75% instead of 100%. This method sheds light on wide hybridization through deeper visualization of the insides of pistils.
Collapse
Affiliation(s)
| | | | | | - Shun Sakuma
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; (K.M.)
| |
Collapse
|
3
|
Lv Y, Dong L, Wang X, Shen L, Lu W, Si F, Zhao Y, Zhu G, Ding Y, Cao S, Cao J, Lu J, Ma C, Chang C, Zhang H. Single- and multi-locus genome-wide association study reveals genomic regions of thirteen yield-related traits in common wheat. BMC PLANT BIOLOGY 2024; 24:1228. [PMID: 39709400 DOI: 10.1186/s12870-024-05956-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Genetic dissection of yield-related traits can be used to improve wheat yield through molecular design breeding. In this study, we genotyped 245 wheat varieties and measured 13 yield-related plant height-, grain-, and spike-related traits, in seven environments, and identified 778 loci for these traits by genome-wide association study (GWAS) using single- and multi-locus models. Among these loci, nine were major, of which seven were novel, including Qph/lph.ahau-7A for plant height (PH) and leaf pillow height (LPH), Qngps/sps.ahau-1A for number of grains per spike (NGPS) and spikelet number per spike (SPS), Qsd.ahau-2B.1 and Qsd.ahau-5A.2 for spikelet density (SD), Qlph.ahau-7B.2 for LPH, Qgl.ahau-7B.3 for grain length (GL), and Qsl.ahau-3A.3 for spike length (SL). Through marker development, re-GWAS, gene annotation and cloning, and sequence variation, haplotype, and expression analyses, we confirmed two novel major loci and identified potential candidate genes, TraesCS7A02G118000 (named TaF-box-7A) and TraesCS1A02G190200 (named TaBSK2-1A) underlying Qph/lph.ahau-7A for PH-related traits and Qngps/sps.ahau-1A for spike-related traits. We also reported two favorable haplotypes, including TaF-box-Hap1 associated with low PH and LPH and TaBSK2-Hap3 associated with high NGPS and SPS. In summary, these findings can be applied to improve wheat yield and enrich our understanding of the complex genetic mechanisms of yield-related traits.
Collapse
Affiliation(s)
- Yuxia Lv
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Liansheng Dong
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Xiatong Wang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Linhong Shen
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Wenbo Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Fan Si
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Yaoyao Zhao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Guanju Zhu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Yiting Ding
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Shujun Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Jiajia Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China.
| | - Haiping Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China.
| |
Collapse
|
4
|
Bohra A, Choudhary M, Bennett D, Joshi R, Mir RR, Varshney RK. Drought-tolerant wheat for enhancing global food security. Funct Integr Genomics 2024; 24:212. [PMID: 39535570 DOI: 10.1007/s10142-024-01488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Wheat is among the most produced grain crops of the world and alone provides a fifth of the world's calories and protein. Wheat has played a key role in food security since the crop served as a Neolithic founder crop for the establishment of world agriculture. Projections showing a decline in global wheat yields in changing climates imply that food security targets could be jeopardized. Increased frequency and intensity of drought occurrence is evident in major wheat-producing regions worldwide, and notably, the wheat-producing area under drought is projected to swell globally by 60% by the end of the 21st century. Wheat yields are significantly reduced due to changes in plant morphological, physiological, biochemical, and molecular activities in response to drought stress. Advances in wheat genetics, multi-omics technologies and plant phenotyping have enhanced the understanding of crop responses to drought conditions. Research has elucidated key genomic regions, candidate genes, signalling molecules and associated networks that orchestrate tolerance mechanisms under drought stress. Robust and low-cost selection tools are now available in wheat for screening genetic variations for drought tolerance traits. New breeding techniques and selection tools open a unique opportunity to tailor future wheat crop with optimal trait combinations that help withstand extreme drought. Adoption of the new wheat varieties will increase crop diversity in rain-fed agriculture and ensure sustainable improvements in crop yields to safeguard the world's food security in drier environments.
Collapse
Affiliation(s)
- Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, PAU campus, Ludhiana, 141001, India
| | - Dion Bennett
- Australian Grain technologies (AGT), Northam, WA, 6401, Australia
| | - Rohit Joshi
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST, Srinagar, 190025, Shalimar, India
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
5
|
He K, Xu Y, Ding H, Guo Q, Ci D, Zhang J, Qin F, Xu M, Zhang G. The Impact of Short-Term Drought on the Photosynthetic Characteristics and Yield of Peanuts Grown in Saline Alkali Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2920. [PMID: 39458867 PMCID: PMC11511333 DOI: 10.3390/plants13202920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Peanuts grown in saline alkali soil are also subjected to drought stress caused by water scarcity. Therefore, we used HY25 (peanut variety) as an experimental material to investigate the effects of drought on the height of peanut main stems, length of the first lateral branch, leaf area per plant, SPAD value, net photosynthetic rate, and accumulation and distribution of photosynthetic products in saline alkali soil. The results showed that the combined stress of short-term drought and salt significantly reduced the main stem height, first lateral branch length, single plant leaf area, SPAD value, net photosynthetic rate (Pn), intercellular carbon dioxide concentration (Ci), and dry matter accumulation of peanuts, including a decrease in single plant pod yield, 100-pod weight, 100-kernel weight, and peanut yield. And the impact of drought stress on peanut yield varies at different growth stages. For example, under drought stress alone, the sensitive period is the 40th day after planting (40D) > 60th day after planting (60D) > 30th day after planting (30D). Short-term drought has the greatest impact on peanut yield at 40D, while in contrast, resuming watering after drought at 30D results in a slight but not significant increase in peanut yield in comparison with the control. Under the combined stress of drought and salt, the sensitive period of peanuts was 40D > 30D > 60D, and the single pod weight of peanuts was significantly reduced by 15.26% to 57.60% from the flowering stage to the pod stage under drought treatment compared to salt treatment, indicating a significant interaction between drought and salt stress, reducing the single leaf area and net photosynthetic rate of peanut leaves, ultimately leading to a decrease in peanut yield. Therefore, when planting peanuts in saline alkali soil, drought should be avoided, especially early drought, in order to prevent the combined effects of drought and salt stress from harming peanut yield.
Collapse
Affiliation(s)
- Kang He
- Shandong Peanut Research Institute, Qingdao 266100, China; (K.H.); (Y.X.); (H.D.); (Q.G.); (D.C.); (F.Q.); (M.X.)
| | - Yang Xu
- Shandong Peanut Research Institute, Qingdao 266100, China; (K.H.); (Y.X.); (H.D.); (Q.G.); (D.C.); (F.Q.); (M.X.)
| | - Hong Ding
- Shandong Peanut Research Institute, Qingdao 266100, China; (K.H.); (Y.X.); (H.D.); (Q.G.); (D.C.); (F.Q.); (M.X.)
| | - Qing Guo
- Shandong Peanut Research Institute, Qingdao 266100, China; (K.H.); (Y.X.); (H.D.); (Q.G.); (D.C.); (F.Q.); (M.X.)
| | - Dunwei Ci
- Shandong Peanut Research Institute, Qingdao 266100, China; (K.H.); (Y.X.); (H.D.); (Q.G.); (D.C.); (F.Q.); (M.X.)
| | - Jialei Zhang
- Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Feifei Qin
- Shandong Peanut Research Institute, Qingdao 266100, China; (K.H.); (Y.X.); (H.D.); (Q.G.); (D.C.); (F.Q.); (M.X.)
| | - Manlin Xu
- Shandong Peanut Research Institute, Qingdao 266100, China; (K.H.); (Y.X.); (H.D.); (Q.G.); (D.C.); (F.Q.); (M.X.)
| | - Guanchu Zhang
- Shandong Peanut Research Institute, Qingdao 266100, China; (K.H.); (Y.X.); (H.D.); (Q.G.); (D.C.); (F.Q.); (M.X.)
| |
Collapse
|
6
|
Gao X, Lin F, Li M, Mei Y, Li Y, Bai Y, He X, Zheng Y. Prediction of the potential distribution of a raspberry (Rubus idaeus) in China based on MaxEnt model. Sci Rep 2024; 14:24438. [PMID: 39424891 PMCID: PMC11489761 DOI: 10.1038/s41598-024-75559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Rubus idaeus is a pivotal cultivated species of raspberry known for its attractive color, distinct flavor, and numerous health benefits. It can be used in pharmaceutical, cosmetics, agriculture and food industries not only as fresh but also as a processed product. Nowadays due to climatic changes, genetic diversity of cultivars has decreased dramatically. However, until now, the status of wild R. idaeus resources in China have not been exploited. In this study, we investigated the resources of wild R. idaeus in China to secure its future potential and sustainability. The MaxEnt model was used to predict R. idaeus suitable habitats and spatial distribution patterns for current and future climate scenarios, based on wild domestic geographic distribution data, current and future climate variables, and topographic variables. The results showed that, mean temperature of the coldest quarter (bio11), precipitation of the coldest quarter (bio19), precipitation of the warmest quarter (bio18), and temperature seasonality (bio4) were crucial factors affecting the distribution of R. idaeus. Presently, the suitable habitats were mainly distributed in the north of China including Xinjiang, Inner Mongolia, Gansu, Ningxia, Shaanxi, Shanxi, Hebei, Beijing, Liaoning, Jilin, Heilongjiang. According to our results, in 2050s, the total suitable habitat area of R. idaeus will increase under SSP1-2.6 and then will be decreased with climate change, while in the 2090s, the total suitable habitat area will continue to decrease. From the present to the 2090s, the centroid distribution of R. idaeus in China will shift towards the east and the species will always be present in Inner Mongolia. Our results provide wild resource information and theoretical reference for the protection and rational utilization of R. idaeus.
Collapse
Affiliation(s)
- Xiangqian Gao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Furong Lin
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Meng Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yujie Mei
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei, China
| | - Yongxiang Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yanlin Bai
- Shanxi State-Owned Forest Farm and Seedling Station, Taiyuan, 030000, Shanxi, China
| | - Xiaolong He
- Shanxi State-Owned Forest Farm and Seedling Station, Taiyuan, 030000, Shanxi, China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
7
|
Song R, Shi P, Xiang L, He Y, Dong Y, Miao Y, Qi J. Evaluation of barley genotypes for drought adaptability: based on stress indices and comprehensive evaluation as criteria. FRONTIERS IN PLANT SCIENCE 2024; 15:1436872. [PMID: 39253570 PMCID: PMC11381406 DOI: 10.3389/fpls.2024.1436872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
The prevalence of drought events worldwide emphasizes the importance of screening and cultivating drought-adapted crops. In this study, 206 germplasm resources were used as materials, dry weight as target trait, and two genotyping methods as criteria to evaluate drought adaptability at the seedling establishment stage. The results showed a significant decrease in average dry weight of the tested germplasm resources (from 746.90 mg to 285.40 mg) and rich variation in the responses of dry weight among each genotype to drought (CV=61.14%). In traditional evaluation method, drought resistance coefficient (DC), geometric mean productivity index (GMP), mean productivity index (MP), stress susceptibility index (SSI), stress tolerance index (STI), and tolerance index (TOL) also exhibited diversity in tested genotypes (CV>30%). However, these indices showed varying degrees of explanation for dry weight under stress and non-stress environments and failed to differentiate drought adaptability among genotypes clearly. In new evaluation method, four stress indices were developed to quantify barley seedling production and stability capacities. Compared to traditional stress indices, the stress production index (SI) explained dry weight more comprehensively under stress conditions (R2 = 0.98), while the ideal production index (II) explained dry weight better under non-stress conditions (R2 = 0.89). Furthermore, the potential index (PI) and elasticity index (EI) eliminated disparities in traditional stress indices and comprehensively clarified the contribution of elasticity and potential to production capacity under drought stress. Ultimately, through grading evaluation and cluster analysis, the tested germplasm resources were effectively categorized, and 11 genotypes were identified as suitable for cultivation in arid areas. Overall, the comprehensive evaluation method based on the newly developed stress indices surpasses the traditional method in screening drought adaptability of crops and serves as a vital tool for identifying high-stability and high-production capacities genotypes in various environments, which is expected to provide practical guidance for barley planting and breeding in arid areas.
Collapse
Affiliation(s)
- Ruijiao Song
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group-College of Agriculture, Shihezi University, Shihezi, China
| | - Peichun Shi
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group-College of Agriculture, Shihezi University, Shihezi, China
| | - Li Xiang
- Qitai Triticeae Crops Experimental Station, Xinjiang Academy of Agricultural Sciences, Qitai, China
| | - Yu He
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group-College of Agriculture, Shihezi University, Shihezi, China
| | - Yusheng Dong
- Qitai Triticeae Crops Experimental Station, Xinjiang Academy of Agricultural Sciences, Qitai, China
| | - Yu Miao
- Qitai Triticeae Crops Experimental Station, Xinjiang Academy of Agricultural Sciences, Qitai, China
| | - Juncang Qi
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group-College of Agriculture, Shihezi University, Shihezi, China
| |
Collapse
|
8
|
Johansson E, Lan Y, Olalekan O, Kuktaite R, Chawade A, Rahmatov M. Alien introgression to wheat for food security: functional and nutritional quality for novel products under climate change. Front Nutr 2024; 11:1393357. [PMID: 38933881 PMCID: PMC11199737 DOI: 10.3389/fnut.2024.1393357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Crop yield and quality has increased globally during recent decades due to plant breeding, resulting in improved food security. However, climate change and shifts in human dietary habits and preferences display novel pressure on crop production to deliver enough quantity and quality to secure food for future generations. This review paper describes the current state-of-the-art and presents innovative approaches related to alien introgressions into wheat, focusing on aspects related to quality, functional characteristics, nutritional attributes, and development of novel food products. The benefits and opportunities that the novel and traditional plant breeding methods contribute to using alien germplasm in plant breeding are also discussed. In principle, gene introgressions from rye have been the most widely utilized alien gene source for wheat. Furthermore, the incorporation of novel resistance genes toward diseases and pests have been the most transferred type of genes into the wheat genome. The incorporation of novel resistance genes toward diseases and pests into the wheat genome is important in breeding for increased food security. Alien introgressions to wheat from e.g. rye and Aegilops spp. have also contributed to improved nutritional and functional quality. Recent studies have shown that introgressions to wheat of genes from chromosome 3 in rye have an impact on both yield, nutritional and functional quality, and quality stability during drought treatment, another character of high importance for food security under climate change scenarios. Additionally, the introgression of alien genes into wheat has the potential to improve the nutritional profiles of future food products, by contributing higher minerals levels or lower levels of anti-nutritional compounds into e.g., plant-based products substituting animal-based food alternatives. To conclude, the present review paper highlights great opportunities and shows a few examples of how food security and functional-nutritional quality in traditional and novel wheat products can be improved by the use of genes from alien sources, such as rye and other relatives to wheat. Novel and upcoming plant breeding methods such as genome-wide association studies, gene editing, genomic selection and speed breeding, have the potential to complement traditional technologies to keep pace with climate change and consumer eating habits.
Collapse
Affiliation(s)
- Eva Johansson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, Lomma, Sweden
| | | | | | | | | | | |
Collapse
|
9
|
Lan Y, Burca G, Yong JWH, Johansson E, Kuktaite R. New Insights into the Bio-Chemical Changes in Wheat Induced by Cd and Drought: What Can We Learn on Cd Stress Using Neutron Imaging? PLANTS (BASEL, SWITZERLAND) 2024; 13:554. [PMID: 38498534 PMCID: PMC10892926 DOI: 10.3390/plants13040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/20/2024]
Abstract
Cadmium (Cd) and drought stresses are becoming dominant in a changing climate. This study explored the impact of Cd and Cd + drought stress on durum wheat grown in soil and sand at two Cd levels. The physiological parameters were studied using classical methods, while the root architecture was explored using non-invasive neutron computed tomography (NCT) for the first time. Under Cd + drought, all the gas exchange parameters were significantly affected, especially at 120 mg/kg Cd + drought. Elevated Cd was found in the sand-grown roots. We innovatively show the Cd stress impact on the wheat root volume and architecture, and the water distribution in the "root-growing media" was successfully visualized using NCT. Diverse and varying root architectures were observed for soil and sand under the Cd stress compared to the non-stress conditions, as revealed using NCT. The intrinsic structure of the growing medium was responsible for a variation in the water distribution pattern. This study demonstrated a pilot approach to use NCT for quantitative and in situ mapping of Cd stress on wheat roots and visualized the water dynamics in the rhizosphere. The physiological and NCT data provide valuable information to relate further to genetic information for the identification of Cd-resilient wheat varieties in the changing climate.
Collapse
Affiliation(s)
- Yuzhou Lan
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-23422 Lomma, Sweden; (Y.L.); (E.J.)
| | - Genoveva Burca
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK;
- ISIS Pulsed Neutron and Muon Source, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Faculty of Science and Engineering, The University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-23422 Lomma, Sweden;
| | - Eva Johansson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-23422 Lomma, Sweden; (Y.L.); (E.J.)
| | - Ramune Kuktaite
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-23422 Lomma, Sweden; (Y.L.); (E.J.)
| |
Collapse
|
10
|
Lan Y, Kuktaite R, Chawade A, Johansson E. Chasing high and stable wheat grain mineral content: Mining diverse spring genotypes under induced drought stress. PLoS One 2024; 19:e0298350. [PMID: 38359024 PMCID: PMC10868752 DOI: 10.1371/journal.pone.0298350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Climate change-induced drought has an effect on the nutritional quality of wheat. Here, the impact of drought at different plant stages on mineral content in mature wheat was evaluated in 30 spring-wheat lines of diverse backgrounds (modern, old and wheat-rye-introgressions). Genotypes with rye chromosome 3R introgression showed a high accumulation of several important minerals, including Zn and Fe, and these also showed stability across drought conditions. High Se content was found in genotypes with chromosome 1R. Old cultivars (K, Mg, Na, P and S) and 2R introgression lines (Fe, Ca, Mn, Mg and Na) demonstrated high mineral yield at early and late drought, respectively. Based on the low nutritional value often reported for modern wheat and negative climate effects on the stability of mineral content and yield, genes conferring high Zn/Fe, Se, and stable mineral yield under drought at various plant stages should be explicitly explored among 3R, 1R, old and 2R genotypes, respectively.
Collapse
Affiliation(s)
- Yuzhou Lan
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ramune Kuktaite
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Aakash Chawade
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Eva Johansson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
11
|
Ma J, Geng Y, Liu H, Zhang M, Liu S, Hao C, Hou J, Zhang Y, Zhang D, Zhang W, Zhang X, Li T. TaTIP41 and TaTAP46 positively regulate drought tolerance in wheat by inhibiting PP2A activity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2056-2070. [PMID: 37310066 DOI: 10.1111/jipb.13542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Drought is a major environmental stress limiting global wheat (Triticum aestivum) production. Exploring drought tolerance genes is important for improving drought adaptation in this crop. Here, we cloned and characterized TaTIP41, a novel drought tolerance gene in wheat. TaTIP41 is a putative conserved component of target of rapamycin (TOR) signaling, and the TaTIP41 homoeologs were expressed in response to drought stress and abscisic acid (ABA). The overexpression of TaTIP41 enhanced drought tolerance and the ABA response, including ABA-induced stomatal closure, while its downregulation using RNA interference (RNAi) had the opposite effect. Furthermore, TaTIP41 physically interacted with TaTAP46, another conserved component of TOR signaling. Like TaTIP41, TaTAP46 positively regulated drought tolerance. Furthermore, TaTIP41 and TaTAP46 interacted with type-2A protein phosphatase (PP2A) catalytic subunits, such as TaPP2A-2, and inhibited their enzymatic activities. Silencing TaPP2A-2 improved drought tolerance in wheat. Together, our findings provide new insights into the roles of TaTIP41 and TaTAP46 in the drought tolerance and ABA response in wheat, and their potential application in improving wheat environmental adaptability.
Collapse
Affiliation(s)
- Jianhui Ma
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yuke Geng
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Hong Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mengqi Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shujuan Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Youfu Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Daijing Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Weijun Zhang
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
12
|
Parrotta L, Mareri L, Cai G. Environmental Stress and Plants 2.0. Int J Mol Sci 2023; 24:12413. [PMID: 37569788 PMCID: PMC10418621 DOI: 10.3390/ijms241512413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Following the success of our previous edition [...].
Collapse
Affiliation(s)
- Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Lavinia Mareri
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; (L.M.); (G.C.)
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; (L.M.); (G.C.)
| |
Collapse
|
13
|
Barratt LJ, Reynolds IJ, Franco Ortega S, Harper AL. Transcriptomic and co-expression network analyses on diverse wheat landraces identifies candidate master regulators of the response to early drought. FRONTIERS IN PLANT SCIENCE 2023; 14:1212559. [PMID: 37426985 PMCID: PMC10326901 DOI: 10.3389/fpls.2023.1212559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Introduction Over four billion people around the world rely on bread wheat (Triticum aestivum L.) as a major constituent of their diet. The changing climate, however, threatens the food security of these people, with periods of intense drought stress already causing widespread wheat yield losses. Much of the research into the wheat drought response has centred on the response to drought events later in development, during anthesis or grain filling. But as the timing of periods of drought stress become increasingly unpredictable, a more complete understanding of the response to drought during early development is also needed. Methods Here, we utilized the YoGI landrace panel to identify 10,199 genes which were differentially expressed under early drought stress, before weighted gene co-expression network analysis (WGCNA) was used to construct a co-expression network and identify hub genes in modules particularly associated with the early drought response. Results Of these hub genes, two stood out as novel candidate master regulators of the early drought response - one as an activator (TaDHN4-D1; TraesCS5D02G379200) and the other as a repressor (uncharacterised gene; TraesCS3D02G361500). Discussion As well as appearing to coordinate the transcriptional early drought response, we propose that these hub genes may be able to regulate the physiological early drought response due to potential control over the expression of members of gene families well-known for their involvement in the drought response in many plant species, namely dehydrins and aquaporins, as well as other genes seemingly involved in key processes such as, stomatal opening, stomatal closing, stomatal morphogenesis and stress hormone signalling.
Collapse
|
14
|
Lama S, Leiva F, Vallenback P, Chawade A, Kuktaite R. Impacts of heat, drought, and combined heat-drought stress on yield, phenotypic traits, and gluten protein traits: capturing stability of spring wheat in excessive environments. FRONTIERS IN PLANT SCIENCE 2023; 14:1179701. [PMID: 37275246 PMCID: PMC10235758 DOI: 10.3389/fpls.2023.1179701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/17/2023] [Indexed: 06/07/2023]
Abstract
Wheat production and end-use quality are severely threatened by drought and heat stresses. This study evaluated stress impacts on phenotypic and gluten protein characteristics of eight spring wheat genotypes (Diskett, Happy, Bumble, SW1, SW2, SW3, SW4, and SW5) grown to maturity under controlled conditions (Biotron) using RGB imaging and size-exclusion high-performance liquid chromatography (SE-HPLC). Among the stress treatments compared, combined heat-drought stress had the most severe negative impacts on biomass (real and digital), grain yield, and thousand kernel weight. Conversely, it had a positive effect on most gluten parameters evaluated by SE-HPLC and resulted in a positive correlation between spike traits and gluten strength, expressed as unextractable gluten polymer (%UPP) and large monomeric protein (%LUMP). The best performing genotypes in terms of stability were Happy, Diskett, SW1, and SW2, which should be further explored as attractive breeding material for developing climate-resistant genotypes with improved bread-making quality. RGB imaging in combination with gluten protein screening by SE-HPLC could thus be a valuable approach for identifying climate stress-tolerant wheat genotypes.
Collapse
Affiliation(s)
- Sbatie Lama
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Fernanda Leiva
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ramune Kuktaite
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
15
|
Nehe A, Martinsson UD, Johansson E, Chawade A. Genotype and environment interaction study shows fungal diseases and heat stress are detrimental to spring wheat production in Sweden. PLoS One 2023; 18:e0285565. [PMID: 37163567 PMCID: PMC10171613 DOI: 10.1371/journal.pone.0285565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
Spring wheat is an economically important crop for Scandinavia and its cultivation is likely to be affected by climate change. The current study focused on wheat yield in recent years, during which climate change-related yield fluctuations have been more pronounced than previously observed. Here, effects of the environment, together with the genotype and fungicide treatment was evaluated. Spring wheat multi-location trials conducted at five locations between 2016 and 2020 were used to understand effects of the climate and fungicides on wheat yield. The results showed that the environment has a strong effect on grain yield, followed by the genotype effect. Moreover, temperature has a stronger (negative) impact than rainfall on grain yield and crop growing duration. Despite a low rainfall in the South compared to the North, the southern production region (PR) 2 had the highest yield performance, indicating the optimal environment for spring wheat production. The fungicide treatment effect was significant in 2016, 2017 and 2020. Overall, yield reduction due to fungal diseases ranged from 0.98 (2018) to 13.3% (2017) and this reduction was higher with a higher yield. Overall yield reduction due to fungal diseases was greater in the South (8.9%) than the North zone (5.3%). The genotypes with higher tolerance to diseases included G4 (KWS Alderon), G14 (WPB 09SW025-11), and G23 (SW 11360) in 2016; G24 (SW 11360), G25 (Millie), and G19 (SEC 526-07-2) in 2017; and G19 (WPB 13SW976-01), G12 (Levels), and G18 (SW 141011) in 2020. The combined best performing genotypes for disease tolerance and stable and higher yield in different locations were KWS Alderon, SEC 526-07-2, and WPB 13SW976-01 with fungicide treatment and WPB Avonmore, SEC 526-07-2, SW 131323 without fungicide treatment. We conclude that the best performing genotypes could be recommended for Scandinavian climatic conditions with or without fungicide application and that developing heat-tolerant varieties for Scandinavian countries should be prioritized.
Collapse
Affiliation(s)
- Ajit Nehe
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
16
|
Alsamadany H, Alzahrani Y, Shah ZH. Physiomorphic and molecular-based evaluation of wheat germplasm under drought and heat stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1107945. [PMID: 37123840 PMCID: PMC10131247 DOI: 10.3389/fpls.2023.1107945] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Drought and heat stress are potential problems that can reduce wheat yield, particularly during the terminal growth stages in arid and semiarid regions of the world. The current study intended to examine the impact of individual and combined drought and heat stress on the biochemical contents (antioxidant enzymes, proline, soluble proteins, and soluble sugars), physiological parameters (chlorophyll content, cell membrane stability, photosynthesis, stomatal conductance, and transpiration), plant-water relations (relative water content, water potential, osmotic potential, and pressure potential), agronomic traits (flag leaf area, plant height, number of tillers per plant, spike length, grains per spike, and thousand-grain weight), and gene expression (TaHSF1a, TaWRKY-33, TaNAC2L, and TaGASR1) in four different thermostable and drought-tolerant wheat genotypes (i.e., Gold-16, HS-240, Suntop, and Hemai-13) collected from different countries. The tri-replicate experiment was conducted using two factorial arrangements in a randomized complete block design (RCBD). All measured traits, except total soluble sugars, proline, and cell membrane stability index, showed significant reduction under both combined and individual treatments. Furthermore, correlation analysis revealed a significant association between biochemical and physiological characteristics and crop agronomic productivity. Furthermore, principal component analysis (PCA) and heatmap analysis demonstrated significant levels of variation in traits according to the type of stress and nature of wheat genotype. The spectrographs and micrographs generated by scanning electron microscopy for the selected high- and low- tolerance samples revealed clear differences in mineral distribution and starch granulation. All studied genes showed comparatively high levels of relative expression under combined treatments of drought and heat stress in all wheat genotypes, but this expression was the highest in 'Gold-16' followed by 'HS-240', 'Suntop', and 'Hemai-13'. Overall, this study concluded that plants are proactive entities and they respond to stresses at all levels; however, the tolerant plants tend to retain the integrity of their biochemical, physiological, and molecular equilibrium.
Collapse
Affiliation(s)
- Hameed Alsamadany
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Hameed Alsamadany, ; Zahid Hussain Shah,
| | - Yahya Alzahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zahid Hussain Shah
- Department of Plant Breeding and Genetics, Pir Mehar Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
- *Correspondence: Hameed Alsamadany, ; Zahid Hussain Shah,
| |
Collapse
|
17
|
Lama S, Kuzmenkova M, Vallenback P, Kuktaite R. Striving for Stability in the Dough Mixing Quality of Spring Wheat under the Influence of Prolonged Heat and Drought. PLANTS (BASEL, SWITZERLAND) 2022; 11:2662. [PMID: 36235528 PMCID: PMC9570727 DOI: 10.3390/plants11192662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The effects of prolonged heat and drought stress and cool growing conditions on dough mixing quality traits of spring wheat (Triticum aestivum L.) were studied in fifty-six genotypes grown in 2017 and 2018 in southern Sweden. The mixing parameters evaluated by mixograph and the gluten protein characteristics studied by size exclusion high-performance liquid chromatography (SE-HPLC) in dough were compared between the two growing seasons which were very different in length, temperature and precipitation. The genotypes varying in gluten strength between the growing seasons (≤5%, ≤12%, and ≤17%) from three groups (stable (S), moderately stable (MS), and of varying stability (VS)) were studied. The results indicate that most of the mixing parameters were more strongly impacted by the interaction between the group, genotype, and year than by their individual contribution. The excessive prolonged heat and drought did not impact the buildup and mixing time expressed as peak time and time 1-2. The gluten polymeric proteins (unextractable, %UPP; total unextractable, TOTU) and large unextractable monomeric proteins (%LUMP) were closely associated with buildup and water absorption in dough. Major significant differences were found in the dough mixing parameters between the years within each group. In Groups S and MS, the majority of genotypes showed the smallest variation in the dough mixing parameters responsible for the gluten strength and dough development between the years. The mixing parameters such as time 1-2, buildup, and peak time (which were not affected by prolonged heat and drought stress) together with the selected gluten protein parameters (%UPP, TOTU, and %LUMP) are essential components to be used in future screening of dough mixing quality in wheat in severe growing environments.
Collapse
Affiliation(s)
- Sbatie Lama
- Department of Plant Breeding, Swedish University of Agricultural Sciences (Alnarp), SE-234 22 Lomma, Sweden
| | - Marina Kuzmenkova
- Department of Plant Breeding, Swedish University of Agricultural Sciences (Alnarp), SE-234 22 Lomma, Sweden
| | | | - Ramune Kuktaite
- Department of Plant Breeding, Swedish University of Agricultural Sciences (Alnarp), SE-234 22 Lomma, Sweden
| |
Collapse
|