1
|
Zanetti M, Braidotti N, Khumar M, Montelongo E, Lombardi R, Sbaizero O, Mestroni L, Taylor MRG, Baj G, Lazzarino M, Peña B, Andolfi L. Investigations of cardiac fibrosis rheology by in vitro cardiac tissue modeling with 3D cellular spheroids. J Mech Behav Biomed Mater 2024; 155:106571. [PMID: 38744118 PMCID: PMC12049085 DOI: 10.1016/j.jmbbm.2024.106571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Cardiac fibrosis refers to the abnormal accumulation of extracellular matrix within the cardiac muscle, leading to increased stiffness and impaired heart function. From a rheological standpoint, knowledge about myocardial behavior is still lacking, partially due to a lack of appropriate techniques to investigate the rheology of in vitro cardiac tissue models. 3D multicellular cardiac spheroids are powerful and versatile platforms for modeling healthy and fibrotic cardiac tissue in vitro and studying how their mechanical properties are modulated. In this study, cardiac spheroids were created by co-culturing neonatal rat ventricular cardiomyocytes and fibroblasts in definite ratios using the hanging-drop method. The rheological characterization of such models was performed by Atomic Force Microscopy-based stress-relaxation measurements on the whole spheroid. After strain application, a viscoelastic bi-exponential relaxation was observed, characterized by a fast relaxation time (τ1) followed by a slower one (τ2). In particular, spheroids with higher fibroblasts density showed reduction for both relaxation times comparing to control, with a more pronounced decrement of τ1 with respect to τ2. Such response was found compatible with the increased production of extracellular matrix within these spheroids, which recapitulates the main feature of the fibrosis pathophysiology. These results demonstrate how the rheological characteristics of cardiac tissue vary as a function of cellular composition and extracellular matrix, confirming the suitability of such system as an in vitro preclinical model of cardiac fibrosis.
Collapse
Affiliation(s)
- Michele Zanetti
- Consiglio Nazionale Delle Ricerche-Istituto Officina Dei Materiali (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149, Trieste, Italy; Department of Physics, University of Trieste, Via A. Valerio 2, 34127, Trieste, Italy.
| | - Nicoletta Braidotti
- Consiglio Nazionale Delle Ricerche-Istituto Officina Dei Materiali (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149, Trieste, Italy; Department of Physics, University of Trieste, Via A. Valerio 2, 34127, Trieste, Italy.
| | - Maydha Khumar
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, At Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, CO, 80045, United States
| | - Efren Montelongo
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, At Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, CO, 80045, United States
| | - Raffaella Lombardi
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States; Cardiovascular Institute, University of Colorado Denver Anschutz Medical Campus, School of Medicine, Division of Cardiology, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States
| | - Orfeo Sbaizero
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States; Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6/A, 34127, Trieste, Italy
| | - Luisa Mestroni
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States; Cardiovascular Institute, University of Colorado Denver Anschutz Medical Campus, School of Medicine, Division of Cardiology, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States
| | - Matthew R G Taylor
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States
| | - Gabriele Baj
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| | - Marco Lazzarino
- Consiglio Nazionale Delle Ricerche-Istituto Officina Dei Materiali (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149, Trieste, Italy
| | - Brisa Peña
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, At Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, CO, 80045, United States; Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States; Cardiovascular Institute, University of Colorado Denver Anschutz Medical Campus, School of Medicine, Division of Cardiology, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States
| | - Laura Andolfi
- Consiglio Nazionale Delle Ricerche-Istituto Officina Dei Materiali (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149, Trieste, Italy
| |
Collapse
|
2
|
Braidotti N, Demontis G, Conti M, Andolfi L, Ciubotaru CD, Sbaizero O, Cojoc D. The local mechanosensitive response of primary cardiac fibroblasts is influenced by the microenvironment mechanics. Sci Rep 2024; 14:10365. [PMID: 38710778 PMCID: PMC11074268 DOI: 10.1038/s41598-024-60685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/26/2024] [Indexed: 05/08/2024] Open
Abstract
Cardiac fibroblasts (CFs) are essential for preserving myocardial integrity and function. They can detect variations in cardiac tissue stiffness using various cellular mechanosensors, including the Ca2+ permeable mechanosensitive channel Piezo1. Nevertheless, how CFs adapt the mechanosensitive response to stiffness changes remains unclear. In this work we adopted a multimodal approach, combining the local mechanical stimulation (from 10 pN to 350 nN) with variations of culture substrate stiffness. We found that primary rat CFs cultured on stiff (GPa) substrates showed a broad Piezo1 distribution in the cell with particular accumulation at the mitochondria membrane. CFs displayed a force-dependent behavior in both calcium uptake and channel activation probability, showing a threshold at 300 nN, which involves both cytosolic and mitochondrial Ca2+ mobilization. This trend decreases as the myofibroblast phenotype within the cell population increases, following a possible Piezo1 accumulation at focal adhesion sites. In contrast, the inhibition of fibroblasts to myofibroblasts transition with soft substrates (kPa) considerably reduces both mechanically- and chemically-induced Piezo1 activation and expression. Our findings shed light on how Piezo1 function and expression are regulated by the substrate stiffness and highlight its involvement in the environment-mediated modulation of CFs mechanosensitivity.
Collapse
Affiliation(s)
- Nicoletta Braidotti
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127, Trieste, Italy
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5, Area Science Park Basovizza, 34149, Trieste, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Giorgia Demontis
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127, Trieste, Italy
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5, Area Science Park Basovizza, 34149, Trieste, Italy
| | - Martina Conti
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5, Area Science Park Basovizza, 34149, Trieste, Italy
| | - Laura Andolfi
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5, Area Science Park Basovizza, 34149, Trieste, Italy
| | - Catalin Dacian Ciubotaru
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5, Area Science Park Basovizza, 34149, Trieste, Italy
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6/A, 34127, Trieste, Italy
| | - Dan Cojoc
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5, Area Science Park Basovizza, 34149, Trieste, Italy.
| |
Collapse
|
3
|
Gigli L, Braidotti N, Lima MADRBF, Ciubotaru CD, Cojoc D. Label-Free Analysis of Urine Samples with In-Flow Digital Holographic Microscopy. BIOSENSORS 2023; 13:789. [PMID: 37622874 PMCID: PMC10452265 DOI: 10.3390/bios13080789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
Urinary tract infections are among the most frequent infectious diseases and require screening a great amount of urine samples from patients. However, a high percentage of samples result as negative after urine culture plate tests (CPTs), demanding a simple and fast preliminary technique to screen out the negative samples. We propose a digital holographic microscopy (DHM) method to inspect fresh urine samples flowing in a glass capillary for 3 min, recording holograms at 2 frames per second. After digital reconstruction, bacteria, white and red blood cells, epithelial cells and crystals were identified and counted, and the samples were classified as negative or positive according to clinical cutoff values. Taking the CPT as reference, we processed 180 urine samples and compared the results with those of urine flow cytometry (UFC). Using standard evaluation metrics for our screening test, we found a similar performance for DHM and UFC, indicating DHM as a suitable and fast screening technique retaining several advantages. As a benefit of DHM, the technique is label-free and does not require sample preparation. Moreover, the phase and amplitude images of the cells and other particles present in urine are digitally recorded and can serve for further investigation afterwards.
Collapse
Affiliation(s)
- Lucia Gigli
- Alifax s.r.l. Via Merano, 30, Nimis, 33045 Udine, Italy;
| | - Nicoletta Braidotti
- Consiglio Nazionale Delle Ricerche (CNR), Istituto Officina dei Materiali (IOM), Area Science Park-Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy; (N.B.); (M.A.d.R.B.F.L.); (C.D.C.)
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127 Trieste, Italy
| | - Maria Augusta do R. B. F. Lima
- Consiglio Nazionale Delle Ricerche (CNR), Istituto Officina dei Materiali (IOM), Area Science Park-Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy; (N.B.); (M.A.d.R.B.F.L.); (C.D.C.)
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127 Trieste, Italy
| | - Catalin Dacian Ciubotaru
- Consiglio Nazionale Delle Ricerche (CNR), Istituto Officina dei Materiali (IOM), Area Science Park-Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy; (N.B.); (M.A.d.R.B.F.L.); (C.D.C.)
| | - Dan Cojoc
- Consiglio Nazionale Delle Ricerche (CNR), Istituto Officina dei Materiali (IOM), Area Science Park-Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy; (N.B.); (M.A.d.R.B.F.L.); (C.D.C.)
| |
Collapse
|
4
|
Kerivan EM, Tobin L, Basil M, Reinemann DN. Molecular and cellular level characterization of cytoskeletal mechanics using a quartz crystal microbalance. Cytoskeleton (Hoboken) 2023; 80:100-111. [PMID: 36891731 PMCID: PMC10272097 DOI: 10.1002/cm.21752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/19/2023] [Accepted: 03/05/2023] [Indexed: 03/10/2023]
Abstract
A quartz crystal microbalance (QCM) is an instrument that has the ability to measure nanogram-level changes in mass on a quartz sensor and is traditionally used to probe surface interactions and assembly kinetics of synthetic systems. The addition of dissipation monitoring (QCM-D) facilitates the study of viscoelastic systems, such as those relevant to molecular and cellular mechanics. Due to real-time recording of frequency and dissipation changes and single protein-level precision, the QCM-D is effective in interrogating the viscoelastic properties of cell surfaces and in vitro cellular components. However, few studies focus on the application of this instrument to cytoskeletal systems, whose dynamic parts create interesting emergent mechanics as ensembles that drive essential tasks, such as division and motility. Here, we review the ability of the QCM-D to characterize key kinetic and mechanical features of the cytoskeleton through in vitro reconstitution and cellular assays and outline how QCM-D studies can yield insightful mechanical data alone and in tandem with other biophysical characterization techniques.
Collapse
Affiliation(s)
- Emily M. Kerivan
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| | - Lyle Tobin
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 USA
| | - Mihir Basil
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| | - Dana N. Reinemann
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
- Department of Chemical Engineering, University of Mississippi, University, MS 38677 USA
| |
Collapse
|