1
|
Tong SK, Chang CY, Shih SW, Chua FZ, Hwang PP, Chou MY. Regulatory Role of Oxytocin in Ionocyte Functions During Zebrafish Cold Acclimation. FASEB J 2025; 39:e70587. [PMID: 40277309 DOI: 10.1096/fj.202500161r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/23/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Environmental temperatures substantially affect both endothermic and ectothermic vertebrates despite the two types of vertebrates having different adaptive strategies. Notably, the cellular and physiological mechanisms employed by ectothermic animals to cope with environmental changes remain poorly understood. Using zebrafish as a model, we investigated the detailed processes of cold acclimation in such fish. We analyzed the activation of oxytocin (OT) neurons and the release of peptide hormones into circulation within 3 h of cold exposure at 18°C, with this process followed by a dynamic downregulation at 24 h. Prolonged cold stress for 7 days resulted in a sustained reduction of plasma OT levels but a 30% increase in OT neuron numbers, which replenished the OT reservoir. We observed significant upregulation of RNA levels for proton ATPase (atp6v1aa) and epithelial calcium channel (trpv6) in the gills, indicating osmolarity acclimation by 7 days of cold exposure. Proton efflux was rapidly decreased within minutes of acute cold stress, but this reduction was mitigated by pretreatment with an OT agonist. Furthermore, OT was essential for the adaptive upregulation of ion-regulating genes (atp6v1aa and trpv6) during 7 days of cold acclimation. Although fundamental differences exist between endothermic and ectothermic animals, OT plays an evolutionarily conserved and pivotal role in cold acclimation, ensuring proper physiological adaptation to support survival under cold stress.
Collapse
Affiliation(s)
- Sok-Keng Tong
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chun-Yung Chang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shang-Wu Shih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Fang Zhi Chua
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Meirelles MG, Fénero CIM, Nornberg BF, Camara NOS, Marins LF. In Vivo Measurement of Intestinal Permeability to Macromolecules in Adult Zebrafish ( Danio rerio). Zebrafish 2025; 22:1-10. [PMID: 39895322 DOI: 10.1089/zeb.2024.0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Intestinal permeability plays a crucial role in intestinal barrier function. Altered intestinal permeability is well documented in numerous chronic diseases and may serve as a risk factor for disease onset as well as a target for innovative therapeutic strategies. While reliable and sensitive approaches for studying intestinal permeability have been established in animal models, such as mice and zebrafish larvae, methods for investigating this in adult zebrafish remain a considerable challenge. The zebrafish has emerged as a valuable model for studying intestinal development, physiology, and disease. Moreover, zebrafish offer certain advantages over rodent models, such as the ability to evaluate the dynamic interactions of labeled markers in vivo and in real time. In this study, we present a comprehensive pipeline for assessing in vivo intestinal permeability in adult zebrafish using fluorescent-labeled dextran. Detailed protocols for fish handling, reagent preparation, optimization of reagent dosage and delivery routes, and quantification of fluorescent markers in extraintestinal sites are provided. Our findings suggest that zebrafish hold promise as an alternative model for in vivo investigations of intestinal permeability induced by genetic, pathophysiological, and/or pharmacological events.
Collapse
Affiliation(s)
- Marcela G Meirelles
- LEGENE-Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande-FURG, Rio Grande, Brazil
| | - Camila I M Fénero
- Department of Immunology, Institute of Biomedical Science, University of São Paulo-USP, São Paulo, Brazil
| | - Bruna F Nornberg
- LEGENE-Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande-FURG, Rio Grande, Brazil
| | - Niels Olsen S Camara
- Department of Immunology, Institute of Biomedical Science, University of São Paulo-USP, São Paulo, Brazil
| | - Luis Fernando Marins
- LEGENE-Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande-FURG, Rio Grande, Brazil
| |
Collapse
|
3
|
Gonzalez RJ, Patrick ML, Val AL. Ion uptake in naturally acidic water. J Comp Physiol B 2024; 194:685-696. [PMID: 38652292 PMCID: PMC11486802 DOI: 10.1007/s00360-024-01552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024]
Abstract
The first studies on ion regulation in fish exposed to low pH, which were inspired by the Acid Rain environmental crisis, seemed to indicate that ion transport at the gills was completely and irreversibly inhibited at pH 4.0-4.5 and below. However, work on characid fish native to the Rio Negro, a naturally acidic, blackwater tributary of the Amazon River, found that they possess ion transport mechanisms that are completely insensitive to pHs as low as 3.25. As more species were examined it appeared that pH-insensitive transport was a trait shared by many, if not most, species in the Order Characiformes. Subsequently, a few other species of fish have been shown to be able to transport ions at low pH, in particular zebrafish (Danio rerio), which show rapid recovery of Na+ uptake at pH 4.0 after initial inhibition. Measurements of rates of Na+ transport during exposure to pharmacological agents that inhibit various transport proteins suggested that characiform fish do not utilize the generally accepted mechanisms for Na+ transport that rely on some form of H+ extrusion. Examination of zebrafish transport at low pH suggest the rapid recovery may be due to a novel Na+/K+ exchanger, but after longer term exposure they may rely on a coupling of Na+/H+ exchangers and NH3 excretion. Further work is needed to clarify these mechanisms of transport and to find other acid-tolerant species to fully gain an appreciation of the diversity of physiological mechansisms involved.
Collapse
Affiliation(s)
- R J Gonzalez
- Department of Biology, University of San Diego, 5998 Alcalá Park, San Diego, CA, 92110, USA.
| | - M L Patrick
- Department of Biology, University of San Diego, 5998 Alcalá Park, San Diego, CA, 92110, USA
| | - A L Val
- Laboratório de Ecofisiologia E Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brasil
| |
Collapse
|
4
|
Zhao XF, Huang J, Li W, Wang SY, Liang LQ, Zhang LM, Liew HJ, Chang YM. Rh proteins and H + transporters involved in ammonia excretion in Amur Ide (Leuciscus waleckii) under high alkali exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116160. [PMID: 38432157 DOI: 10.1016/j.ecoenv.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
High alkaline environment can lead to respiratory alkalosis and ammonia toxification to freshwater fish. However, the Amur ide (Leuciscus waleckii), which inhabits an extremely alkaline lake in China with titratable alkalinity up to 53.57 mM (pH 9.6) has developed special physiological and molecular mechanisms to adapt to such an environment. Nevertheless, how the Amur ide can maintain acid-base balance and perform ammonia detoxification effectively remains unclear. Therefore, this study was designed to study the ammonia excretion rate (Tamm), total nitrogen accumulation in blood and tissues, including identification, expression, and localization of ammonia-related transporters in gills of both the alkali and freshwater forms of the Amur ide. The results showed that the freshwater form Amur ide does not have a perfect ammonia excretion mechanism exposed to high-alkaline condition. Nevertheless, the alkali form of Amur ide was able to excrete ammonia better than freshwater from Amur ide, which was facilitated by the ionocytes transporters (Rhbg, Rhcg1, Na+/H+ exchanger 2 (NHE2), and V-type H+ ATPase (VHA)) in the gills. Converting ammonia into urea served as an ammonia detoxication strategy to reduced endogenous ammonia accumulation under high-alkaline environment.
Collapse
Affiliation(s)
- Xue Fei Zhao
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Jing Huang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Wen Li
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 2000, China
| | - Shuang Yi Wang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Li Qun Liang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Li Min Zhang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Hon Jung Liew
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti of Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Yu Mei Chang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| |
Collapse
|
5
|
Tresguerres M, Kwan GT, Weinrauch A. Evolving views of ionic, osmotic and acid-base regulation in aquatic animals. J Exp Biol 2023; 226:jeb245747. [PMID: 37522267 DOI: 10.1242/jeb.245747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The regulation of ionic, osmotic and acid-base (IOAB) conditions in biological fluids is among the most fundamental functions in all organisms; being surrounded by water uniquely shapes the IOAB regulatory strategies of water-breathing animals. Throughout its centennial history, Journal of Experimental Biology has established itself as a premier venue for publication of comparative, environmental and evolutionary studies on IOAB regulation. This Review provides a synopsis of IOAB regulation in aquatic animals, some of the most significant research milestones in the field, and evolving views about the underlying cellular mechanisms and their evolutionary implications. It also identifies promising areas for future research and proposes ideas for enhancing the impact of aquatic IOAB research.
Collapse
Affiliation(s)
- Martin Tresguerres
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA
| | - Garfield T Kwan
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA 95616, USA
| | - Alyssa Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2M5, Canada
| |
Collapse
|
6
|
Shih SW, Yan JJ, Lu SW, Chuang YT, Lin HW, Chou MY, Hwang PP. Molecular Physiological Evidence for the Role of Na+-Cl− Co-Transporter in Branchial Na+ Uptake in Freshwater Teleosts. Int J Mol Sci 2023; 24:ijms24076597. [PMID: 37047570 PMCID: PMC10094795 DOI: 10.3390/ijms24076597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The gills are the major organ for Na+ uptake in teleosts. It was proposed that freshwater (FW) teleosts adopt Na+/H+ exchanger 3 (Nhe3) as the primary transporter for Na+ uptake and Na+-Cl− co-transporter (Ncc) as the backup transporter. However, convincing molecular physiological evidence to support the role of Ncc in branchial Na+ uptake is still lacking due to the limitations of functional assays in the gills. Thus, this study aimed to reveal the role of branchial Ncc in Na+ uptake with an in vivo detection platform (scanning ion-selective electrode technique, SIET) that has been recently established in fish gills. First, we identified that Ncc2-expressing cells in zebrafish gills are a specific subtype of ionocyte (NCC ionocytes) by using single-cell transcriptome analysis and immunofluorescence. After a long-term low-Na+ FW exposure, zebrafish increased branchial Ncc2 expression and the number of NCC ionocytes and enhanced gill Na+ uptake capacity. Pharmacological treatments further suggested that Na+ is indeed taken up by Ncc, in addition to Nhe, in the gills. These findings reveal the uptake roles of both branchial Ncc and Nhe under FW and shed light on osmoregulatory physiology in adult fish.
Collapse
Affiliation(s)
- Shang-Wu Shih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
- Department of Life Science, National Taiwan University, Taipei 106319, Taiwan
| | - Jia-Jiun Yan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Shao-Wei Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Ya-Ting Chuang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
| | - How-Wei Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei 106319, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
- Department of Life Science, National Taiwan University, Taipei 106319, Taiwan
| |
Collapse
|