1
|
Chlipała P, Matera A, Sordon S, Popłoński J, Mazur M, Janeczko T. Enzymatic Glycosylation of 4'-Hydroxychalcones: Expanding the Scope of Nature's Catalytic Potential. Int J Mol Sci 2024; 25:11482. [PMID: 39519035 PMCID: PMC11546794 DOI: 10.3390/ijms252111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Chalcones, including 4'-hydroxychalcones, have garnered significant attention in the area of drug discovery due to their diverse pharmacological properties, such as anti-inflammatory, antioxidative, and anticancer effects. However, their low water solubility and bioavailability limit their efficacy in vivo. Glycosylation presents a promising approach to enhance the water solubility, stability, and metabolic properties of chalcones. This study investigates the enzymatic glycosylation of eight chemically synthesized 4'-hydroxychalcones using a diverse set of sugar glucosyltransferases from bacterial, plant, and fungal sources, alongside Glycine max sucrose synthase (GmSuSy) in a cascade reaction. Among the tested enzymes, five exhibited a remarkable versatility for glycoside production, and for large-scale biotransformation, flavonoid 7-O-glucosyltransferase Sbaic7OGT from Scutellaria baicalensis was selected as the most effective. As a result of the experiments conducted, eight trans-chalcone glycosides were obtained. During the purification of the reaction products, we also observed the isomerization of the products by simple sunlight exposure, which resulted in eight additional cis-chalcone glycosides. This study highlights the novel use of a cascade reaction involving Glycine max sucrose synthase (GmSuSy) for the efficient glycosylation of trans-4'-hydroxychalcones, alongside the unexpected discovery of cis-chalcone glycosides during the purification process.
Collapse
Affiliation(s)
- Paweł Chlipała
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.M.); (S.S.); (J.P.); (M.M.)
| | | | | | | | | | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.M.); (S.S.); (J.P.); (M.M.)
| |
Collapse
|
2
|
Krawczyk-Łebek A, Żarowska B, Janeczko T, Kostrzewa-Susłow E. Antimicrobial Activity of Chalcones with a Chlorine Atom and Their Glycosides. Int J Mol Sci 2024; 25:9718. [PMID: 39273666 PMCID: PMC11395246 DOI: 10.3390/ijms25179718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Chalcones, secondary plant metabolites, exhibit various biological properties. The introduction of a chlorine and a glucosyl substituent to the chalcone could enhance its bioactivity and bioavailability. Such compounds can be obtained through a combination of chemical and biotechnological methods. Therefore, 4-chloro-2'-hydroxychalcone and 5'-chloro-2'-hydroxychalcone were obtained by synthesis and then glycosylated in two filamentous fungi strains cultures, i.e., Isaria fumosorosea KCH J2 and Beauveria bassiana KCH J1.5. The main site of the glycosylation of both compounds by I. fumosorosea KCH J2 was C-2' and C-3 when the second strain was utilized. The pharmacokinetics of these compounds were predicted using chemoinformatics tools. Furthermore, antimicrobial activity tests were performed. Compounds significantly inhibited the growth of the bacteria strains Escherichia coli 10536, Staphylococcus aureus DSM 799, and yeast Candida albicans DSM 1386. Nevertheless, the bacterial strain Pseudomonas aeruginosa DSM 939 exhibited significant resistance to their effects. The growth of lactic acid bacteria strain Lactococcus acidophilus KBiMZ 01 bacteria was moderately inhibited, but strains Lactococcus rhamnosus GG and Streptococcus thermophilus KBM-1 were completely inhibited. In summary, chalcones substituted with a chlorine demonstrated greater efficacy in inhibiting the microbial strains under examination compared to 2'-hydroxychalcone, while aglycones and their glycosides exhibited similar effectiveness.
Collapse
Affiliation(s)
- Agnieszka Krawczyk-Łebek
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Barbara Żarowska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| |
Collapse
|
3
|
Cyboran-Mikołajczyk S, Matczak K, Olchowik-Grabarek E, Sękowski S, Nowicka P, Krawczyk-Łebek A, Kostrzewa-Susłow E. The influence of the chlorine atom on the biological activity of 2'-hydroxychalcone in relation to the lipid phase of biological membranes - Anticancer and antimicrobial activity. Chem Biol Interact 2024; 398:111082. [PMID: 38825055 DOI: 10.1016/j.cbi.2024.111082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
The study investigates the effect of the presence of a chlorine atom in the 2'-hydroxychalcone molecule on its interaction with model lipid membranes, in order to discern its potential pharmacological activity. Five chlorine derivatives of 2'-hydroxychalcone were synthesized and evaluated against liposomes composed of POPC and enriched with cationic (DOTAP) or anionic (POPG) lipids. The physicochemical properties of the compounds were initially simulated using SwissAdame software, revealing high lipophilicity (ilogP values: 2.79-2.90). The dynamic light scattering analysis of liposomes showed that chloro chalcones induce minor changes in the diameter of liposomes of different surface charges. Fluorescence quenching assays with a TMA-DPH probe demonstrated the strong ability of the compounds to interact with the lipid bilayer, with varying quenching capacities based on chlorine atom position. FTIR studies indicated alterations in carbonyl, phosphate, and choline groups, suggesting a transition area localization rather than deep penetration into the hydrocarbon chains. Additionally, dipole potential reduction was observed in POPC and POPC-POPG membranes, particularly pronounced by derivatives with a chlorine atom in the B ring. Antibacterial and antibiofilm assays revealed enhanced activity of derivatives with a chlorine atom compared to 2'-hydroxychalcone, especially against Gram-positive bacteria. The MIC and MBIC50 values showed increased efficacy in the presence of chlorine with 3'-5'-dichloro-2'-hydroxychalcone demonstrating optimal antimicrobial and antibiofilm activity. Furthermore, antiproliferative assays against breast cancer cell lines indicated higher activity of B-ring chlorine derivatives, particularly against MDA-MB-231 cells. In general, the presence of a chlorine atom in 2'-hydroxychalcone improves its pharmacological potential, with derivatives showing improved antimicrobial, antibiofilm, and antiproliferative activities, especially against aggressive breast cancer cell lines. These findings underscore the importance of molecular structure in modulating biological activity and highlight chalcones with a chlorine as promising candidates for further drug development studies.
Collapse
Affiliation(s)
- Sylwia Cyboran-Mikołajczyk
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375, Wrocław, Poland.
| | - Karolina Matczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St. 141/143, 90-236, Lodz, Poland
| | - Ewa Olchowik-Grabarek
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, Konstanty Ciolkowski St. 1J, 15-245, Białystok, Poland
| | - Szymon Sękowski
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, Konstanty Ciolkowski St. 1J, 15-245, Białystok, Poland
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego St. 37, 50-375, Wrocław, Poland
| | - Agnieszka Krawczyk-Łebek
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375, Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375, Wrocław, Poland
| |
Collapse
|
4
|
Ren J, Jackson K, Barton CD, Huang Y, Zhan J. Enhancing the physicochemical properties and bioactivities of 2'-hydroxyflavanone through fungal biotransformation. J Biosci Bioeng 2024; 138:144-152. [PMID: 38858130 DOI: 10.1016/j.jbiosc.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024]
Abstract
Flavonoids comprise a group of natural compounds with diverse bioactivities; however, their low water solubility and limited bioavailability often impede their potential health benefits for humans. In this study, five derivatives, namely 2',5'-dihydroxyflavanone (1), 2'-dihydroxyflavanone-5'-O-4″-O-methyl-β-d-glucoside (2), 2'-dihydroxyflavanone-6-O-4″-O-methyl-β-d-glucoside (3), 2'-dihydroxyflavanone-3'-O-4″-O-methyl-β-d-glucoside (4) and hydroxyflavanone-2'-O-4″-O-methyl-β-d-glucoside (5), were biosynthesized from 2'-hydroxyflavanone through microbial transformation using Beauveria bassiana ATCC 7159. Product 1 was identified as a known compound while 2-5 were structurally characterized as new structures through extensive 1D and 2D NMR analysis. The water solubility of biotransformed products 1-5 was enhanced by 30-280 times compared to the substrate 2'-hydroxyflavanone. Moreover, the antioxidant assay revealed that 1 and 2 exhibited improved 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity relative to the substrate, decreasing the logIC50 from 8.08 ± 0.11 μM to 6.19 ± 0.08 μM and 7.15 ± 0.08 μM, respectively. Compound 5 displayed significantly improved anticancer activity compared to the substrate 2'-hydroxyflavanone against Glioblastoma 33 cancer stem cells, decreasing the IC50 from 25.05 μM to 10.59 μM. Overall, fungal biotransformation represents an effective tool to modify flavonoids for enhanced water solubility and bioactivities.
Collapse
Affiliation(s)
- Jie Ren
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Kyle Jackson
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Caleb Don Barton
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Yu Huang
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA.
| |
Collapse
|
5
|
Krawczyk-Łebek A, Żarowska B, Dymarska M, Janeczko T, Kostrzewa-Susłow E. Synthesis, fungal biotransformation, and evaluation of the antimicrobial potential of chalcones with a chlorine atom. Sci Rep 2024; 14:15050. [PMID: 38951205 PMCID: PMC11217454 DOI: 10.1038/s41598-024-65054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Chalcones are intermediate products in the biosynthesis of flavonoids, which possess a wide range of biological properties, including antimicrobial and anticancer activities. The introduction of a chlorine atom and the glucosyl moiety into their structure may increase their bioavailability, bioactivity, and pharmacological use. The combined chemical and biotechnological methods can be applied to obtain such compounds. Therefore, 2-chloro-2'-hydroxychalcone and 3-chloro-2'-hydroxychalcone were synthesized and biotransformed in cultures of two strains of filamentous fungi, i.e. Isaria fumosorosea KCH J2 and Beauveria bassiana KCH J1.5 to obtain their novel glycosylated derivatives. Pharmacokinetics, drug-likeness, and biological activity of them were predicted using cheminformatics tools. 2-Chloro-2'-hydroxychalcone, 3-chloro-2'-hydroxychalcone, their main glycosylation products, and 2'-hydrochychalcone were screened for antimicrobial activity against several microbial strains. The growth of Escherichia coli 10,536 was completely inhibited by chalcones with a chlorine atom and 3-chlorodihydrochalcone 2'-O-β-D-(4″-O-methyl)-glucopyranoside. The strain Pseudomonas aeruginosa DSM 939 was the most resistant to the action of the tested compounds. However, chalcone aglycones and glycosides with a chlorine atom almost completely inhibited the growth of bacteria Staphylococcus aureus DSM 799 and yeast Candida albicans DSM 1386. The tested compounds had different effects on lactic acid bacteria depending on the tested species. In general, chlorinated chalcones were more effective in the inhibition of the tested microbial strains than their unchlorinated counterparts and aglycones were a little more effective than their glycosides.
Collapse
Affiliation(s)
- Agnieszka Krawczyk-Łebek
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| | - Barbara Żarowska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Monika Dymarska
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
6
|
Chlipała P, Janeczko T, Mazur M. Bioreduction of 4'-Hydroxychalcone in Deep Eutectic Solvents: Optimization and Efficacy with Various Yeast Strains. Int J Mol Sci 2024; 25:7152. [PMID: 39000255 PMCID: PMC11241015 DOI: 10.3390/ijms25137152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
4'-dihydrochalcones are secondary metabolites isolated from many medicinal plants and from the resin known as 'dragon's blood'. Due to their biological potential, our research objective was to determine the possibilities of using biocatalysis processes carried out in deep eutectic solvents (DESs) to obtain 4'-dihydrochalcones as a model compound. The processes were carried out in a culture of the yeast Yarrowia lipolytica KCh 71 and also in cultures of strains of the genera Rhodotorula and Debaryomyces. Based on the experiments carried out, an optimum process temperature of 35 °C was chosen, and the most suitable DES contained glycerol as a hydrogen bond donor (HBD). For a medium with 30% water content (DES 11), the conversion observed after 24 h exceeded 70%, while increasing the amount of water to 50% resulted in a similar level of conversion after just 1 h. A fivefold increase in the amount of added substrate resulted in a reduction in conversion, which reached 30.3%. Of the other yeast strains tested, Rhodotorula marina KCh 77 and Rhodotorula rubra KCh 4 also proved to be good biocatalysts for the bioreduction process. For these strains, the conversion reached 95.4% and 95.1%, respectively. These findings highlight the potential of yeast as a biocatalyst for the selective reduction of α,β-unsaturated ketones and the possibility of using a DESs as a reaction medium in this process.
Collapse
Affiliation(s)
| | | | - Marcelina Mazur
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (P.C.); (T.J.)
| |
Collapse
|
7
|
Perz M, Szymanowska D, Janeczko T, Kostrzewa-Susłow E. Antimicrobial Properties of Flavonoid Derivatives with Bromine, Chlorine, and Nitro Group Obtained by Chemical Synthesis and Biotransformation Studies. Int J Mol Sci 2024; 25:5540. [PMID: 38791577 PMCID: PMC11122099 DOI: 10.3390/ijms25105540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The search for new substances of natural origin, such as flavonoids, is necessary in the fight against the growing number of diseases and bacterial resistance to antibiotics. In our research, we wanted to check the influence of flavonoids with chlorine or bromine atoms and a nitro group on pathogenic and probiotic bacteria. We synthesized flavonoids using Claisen-Schmidt condensation and its modifications, and through biotransformation via entomopathogenic filamentous fungi, we obtained their glycoside derivatives. Biotransformation yielded two new flavonoid glycosides: 8-amino-6-chloroflavone 4'-O-β-D-(4″-O-methyl)-glucopyranoside and 6-bromo-8-nitroflavone 4'-O-β-D-(4″-O-methyl)-glucopyranoside. Subsequently, we checked the antimicrobial properties of the aforementioned aglycon flavonoid compounds against pathogenic and probiotic bacteria and yeast. Our studies revealed that flavones have superior inhibitory effects compared to chalcones and flavanones. Notably, 6-chloro-8-nitroflavone showed potent inhibitory activity against pathogenic bacteria. Conversely, flavanones 6-chloro-8-nitroflavanone and 6-bromo-8-nitroflavanone stimulated the growth of probiotic bacteria (Lactobacillus acidophilus and Pediococcus pentosaceus). Our research has shown that the presence of chlorine, bromine, and nitro groups has a significant effect on their antimicrobial properties.
Collapse
Affiliation(s)
- Martyna Perz
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Daria Szymanowska
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-627 Poznań, Poland;
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznań University of Medical Sciences, 60-806 Poznań, Poland
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| |
Collapse
|
8
|
Chlipała P, Tronina T, Dymarska M, Urbaniak M, Kozłowska E, Stępień Ł, Kostrzewa-Susłow E, Janeczko T. Multienzymatic biotransformation of flavokawain B by entomopathogenic filamentous fungi: structural modifications and pharmacological predictions. Microb Cell Fact 2024; 23:65. [PMID: 38402203 PMCID: PMC10893614 DOI: 10.1186/s12934-024-02338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/16/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Flavokawain B is one of the naturally occurring chalcones in the kava plant (Piper methysticum). It exhibits anticancer, anti-inflammatory and antimalarial properties. Due to its therapeutic potential, flavokawain B holds promise for the treatment of many diseases. However, due to its poor bioavailability and low aqueous solubility, its application remains limited. The attachment of a sugar unit impacts the stability and solubility of flavonoids and often determines their bioavailability and bioactivity. Biotransformation is an environmentally friendly way to improve the properties of compounds, for example, to increase their hydrophilicity and thus affect their bioavailability. Recent studies proved that entomopathogenic filamentous fungi from the genera Isaria and Beauveria can perform O-methylglycosylation of hydroxyflavonoids or O-demethylation and hydroxylation of selected chalcones and flavones. RESULTS In the present study, we examined the ability of entomopathogenic filamentous fungal strains of Beauveria bassiana, Beauveria caledonica, Isaria farinosa, Isaria fumosorosea, and Isaria tenuipes to transform flavokawain B into its glycosylated derivatives. The main process occurring during the reaction is O-demethylation and/or hydroxylation followed by 4-O-methylglycosylation. The substrate used was characterized by low susceptibility to transformations compared to our previously described transformations of flavones and chalcones in the cultures of the tested strains. However, in the culture of the B. bassiana KCh J1.5 and BBT, Metarhizium robertsii MU4, and I. tenuipes MU35, the expected methylglycosides were obtained with high yields. Cheminformatic analyses indicated altered physicochemical and pharmacokinetic properties in the derivatives compared to flavokawain B. Pharmacological predictions suggested potential anticarcinogenic activity, caspase 3 stimulation, and antileishmanial effects. CONCLUSIONS In summary, the study provided valuable insights into the enzymatic transformations of flavokawain B by entomopathogenic filamentous fungi, elucidating the structural modifications and predicting potential pharmacological activities of the obtained derivatives. The findings contribute to the understanding of the biocatalytic capabilities of these microbial cultures and the potential therapeutic applications of the modified flavokawain B derivatives.
Collapse
Affiliation(s)
- Paweł Chlipała
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Norwida 25, 50-375, Poland.
| | - Tomasz Tronina
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Norwida 25, 50-375, Poland
| | - Monika Dymarska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Norwida 25, 50-375, Poland
| | - Monika Urbaniak
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Strzeszyńska 34, 60-479, Poland
| | - Ewa Kozłowska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Norwida 25, 50-375, Poland
| | - Łukasz Stępień
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Strzeszyńska 34, 60-479, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Norwida 25, 50-375, Poland
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Norwida 25, 50-375, Poland.
| |
Collapse
|
9
|
Tahara A, Tani K, Wakatsuki M, Tokiwa T, Higo M, Nonaka K, Hirose T, Hokari R, Ishiyama A, Iwatsuki M, Watanabe Y, Honsho M, Asami Y, Matsui H, Sunazuka T, Hanaki H, Teruya T, Ishii T. A novel aromatic compound from the fungus Synnemellisia sp. FKR-0921. J Antibiot (Tokyo) 2023; 76:706-710. [PMID: 37758818 DOI: 10.1038/s41429-023-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/15/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
The filamentous fungus Synnemellisia sp. strain FKR-0921 was obtained from soil collected on Kume Island, Okinawa. The MeOH extract of FKR-0921 cultured on a solid rice medium yielded a new aromatic compound, synnemellisitriol A (1). The structure, including the absolute configuration, was elucidated by spectroscopic analysis (FT-IR, NMR, and HR-ESI-MS), and the absolute configuration at C-9 of 1 was determined using the modified Mosher's method. Additionally, 1 was evaluated for its biological activities, including metallo-β-lactamase inhibitory activity, type III secretion system inhibitory activity, antimicrobial activity, antimalarial activity, and cytotoxicity.
Collapse
Affiliation(s)
- Arisu Tahara
- Department of Biosciences and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Kazuki Tani
- Department of Biosciences and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Miyu Wakatsuki
- Department of Biosciences and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Toshiyuki Tokiwa
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Mayuka Higo
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kenichi Nonaka
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tomoyasu Hirose
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Rei Hokari
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Aki Ishiyama
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masato Iwatsuki
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yoshihiro Watanabe
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masako Honsho
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yukihiro Asami
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Hidehito Matsui
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Toshiaki Sunazuka
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Hideaki Hanaki
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Toshiaki Teruya
- Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Takahiro Ishii
- Department of Biosciences and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.
| |
Collapse
|
10
|
Kłósek M, Krawczyk-Łebek A, Kostrzewa-Susłow E, Szliszka E, Bronikowska J, Jaworska D, Pietsz G, Czuba ZP. In Vitro Anti-Inflammatory Activity of Methyl Derivatives of Flavanone. Molecules 2023; 28:7837. [PMID: 38067567 PMCID: PMC10708004 DOI: 10.3390/molecules28237837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Inflammation plays an important role in the immune defense against injury and infection agents. However, the inflammatory chronic process may lead to neurodegenerative diseases, atherosclerosis, inflammatory bowel diseases, or cancer. Flavanones present in citrus fruits exhibit biological activities, including anti-oxidative and anti-inflammatory properties. The beneficial effects of flavanones have been found based on in vitro cell cultures and animal studies. A suitable in vitro model for studying the inflammatory process are macrophages (RAW264.7 cell line) because, after stimulation using lipopolysaccharide (LPS), they release inflammatory cytokines involved in the immune response. We determined the nitrite concentration in the macrophage cell culture and detected ROS using chemiluminescence. Additionally, we measured the production of selected cytokines using the Bio-Plex Magnetic Luminex Assay and the Bio-PlexTM 200 System. For the first time, we have shown that methyl derivatives of flavanone inhibit NO and chemiluminescence generated via LPS-stimulated macrophages. Moreover, the tested compounds at 1-20 µM dose-dependently modulate proinflammatory cytokine production (IL-1β, IL-6, IL-12p40, IL-12p70, and TNF-α) in stimulated RAW264.7 cells. The 2'-methylflavanone (5B) and the 3'-methylflavanone (6B) possess the strongest anti-inflammatory activity among all the tested flavanone derivatives. These compounds reduce the concentration of IL-6, IL-12p40, and IL12p70 compared to the core flavanone structure. Moreover, 2'-methylflavanone reduces TNF-α, and 3'-methylflavanone reduces IL-1β secreted by RAW264.7 cells.
Collapse
Affiliation(s)
- Małgorzata Kłósek
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland; (E.S.); (J.B.); (D.J.); (G.P.); (Z.P.C.)
| | - Agnieszka Krawczyk-Łebek
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.K.-Ł.); (E.K.-S.)
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.K.-Ł.); (E.K.-S.)
| | - Ewelina Szliszka
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland; (E.S.); (J.B.); (D.J.); (G.P.); (Z.P.C.)
| | - Joanna Bronikowska
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland; (E.S.); (J.B.); (D.J.); (G.P.); (Z.P.C.)
| | - Dagmara Jaworska
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland; (E.S.); (J.B.); (D.J.); (G.P.); (Z.P.C.)
| | - Grażyna Pietsz
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland; (E.S.); (J.B.); (D.J.); (G.P.); (Z.P.C.)
| | - Zenon P. Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland; (E.S.); (J.B.); (D.J.); (G.P.); (Z.P.C.)
| |
Collapse
|
11
|
Tronina T, Łużny M, Dymarska M, Urbaniak M, Kozłowska E, Piegza M, Stępień Ł, Janeczko T. Glycosylation of Quercetin by Selected Entomopathogenic Filamentous Fungi and Prediction of Its Products' Bioactivity. Int J Mol Sci 2023; 24:11857. [PMID: 37511613 PMCID: PMC10380404 DOI: 10.3390/ijms241411857] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Quercetin is the most abundant flavonoid in food products, including berries, apples, cauliflower, tea, cabbage, nuts, onions, red wine and fruit juices. It exhibits various biological activities and is used for medical applications, such as treating allergic, inflammatory and metabolic disorders, ophthalmic and cardiovascular diseases, and arthritis. However, its low water solubility may limit quercetin's therapeutic potential. One method of increasing the solubility of active compounds is their coupling to polar molecules, such as sugars. The attachment of a glucose unit impacts the stability and solubility of flavonoids and often determines their bioavailability and bioactivity. Entomopathogenic fungi are biocatalysts well known for their ability to attach glucose and its 4-O-methyl derivative to bioactive compounds, including flavonoids. We investigated the ability of cultures of entomopathogenic fungi belonging to Beauveria, Isaria, Metapochonia, Lecanicillium and Metarhizium genera to biotransform quercetin. Three major glycosylation products were detected: (1), 7-O-β-D-(4″-O-methylglucopyranosyl)-quercetin, (2) 3-O-β-D-(4″-O-methylglucopyranosyl)-quercetin and (3) 3-O-β-D-(glucopyranosyl)-quercetin. The results show evident variability of the biotransformation process, both between strains of the tested biocatalysts from different species and between strains of the same species. Pharmacokinetic and pharmacodynamic properties of the obtained compounds were predicted with the use of cheminformatics tools. The study showed that the obtained compounds may have applications as effective modulators of intestinal flora and may be stronger hepato-, cardio- and vasoprotectants and free radical scavengers than quercetin.
Collapse
Affiliation(s)
- Tomasz Tronina
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Mateusz Łużny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Monika Dymarska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Monika Urbaniak
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Ewa Kozłowska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Michał Piegza
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
12
|
Perz M, Krawczyk-Łebek A, Dymarska M, Janeczko T, Kostrzewa-Susłow E. Biotransformation of Flavonoids with -NO 2, -CH 3 Groups and -Br, -Cl Atoms by Entomopathogenic Filamentous Fungi. Int J Mol Sci 2023; 24:9500. [PMID: 37298456 PMCID: PMC10254066 DOI: 10.3390/ijms24119500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Combining chemical and microbiological methods using entomopathogenic filamentous fungi makes obtaining flavonoid glycosides possible. In the presented study, biotransformations were carried out in cultures of Beauveria bassiana KCH J1.5, Isaria fumosorosea KCH J2, and Isaria farinosa KCH J2.6 strains on six flavonoid compounds obtained in chemical synthesis. As a result of the biotransformation of 6-methyl-8-nitroflavanone using the strain I. fumosorosea KCH J2, two products were obtained: 6-methyl-8-nitro-2-phenylchromane 4-O-β-D-(4″-O-methyl)-glucopyranoside and 8-nitroflavan-4-ol 6-methylene-O-β-D-(4″-O-methyl)-glucopyranoside. 8-Bromo-6-chloroflavanone was transformed by this strain to 8-bromo-6-chloroflavan-4-ol 4'-O-β-D-(4″-O-methyl)-glucopyranoside. As a result of microbial transformation by I. farinosa KCH J2.6 effectively biotransformed only 8-bromo-6-chloroflavone into 8-bromo-6-chloroflavone 4'-O-β-D-(4″-O-methyl)-glucopyranoside. B. bassiana KCH J1.5 was able to transform 6-methyl-8-nitroflavone to 6-methyl-8-nitroflavone 4'-O-β-D-(4″-O-methyl)-glucopyranoside, and 3'-bromo-5'-chloro-2'-hydroxychalcone to 8-bromo-6-chloroflavanone 3'-O-β-D-(4″-O-methyl)-glucopyranoside. None of the filamentous fungi used transformed 2'-hydroxy-5'-methyl-3'-nitrochalcone effectively. Obtained flavonoid derivatives could be used to fight against antibiotic-resistant bacteria. To the best of our knowledge, all the substrates and products presented in this work are new compounds and are described for the first time.
Collapse
Affiliation(s)
- Martyna Perz
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.K.-Ł.); (M.D.); (T.J.)
| | | | | | | | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.K.-Ł.); (M.D.); (T.J.)
| |
Collapse
|
13
|
Mazur M, Zych KM, Obmińska-Mrukowicz B, Pawlak A. Microbial Transformations of Halolactones and Evaluation of Their Antiproliferative Activity. Int J Mol Sci 2023; 24:ijms24087587. [PMID: 37108750 PMCID: PMC10144491 DOI: 10.3390/ijms24087587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The microbial transformations of lactones with a halogenoethylocyclohexane moiety were performed in a filamentous fungi culture. The selected, effective biocatalyst for this process was the Absidia glauca AM177 strain. The lactones were transformed into the hydroxy derivative, regardless of the type of halogen atom in the substrate structure. For all lactones, the antiproliferative activity was determined toward several cancer cell lines. The antiproliferative potential of halolactones was much broader than that observed for the hydroxyderivative. According to the presented results, the most potent was chlorolactone, which exhibited significant activity toward the T-cell lymphoma line (CL-1) cell line. The hydroxyderivative obtained through biotransformation was not previously described in the literature.
Collapse
Affiliation(s)
- Marcelina Mazur
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Karolina Maria Zych
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland
| |
Collapse
|
14
|
Łużny M, Kaczanowska D, Gawdzik B, Wzorek A, Pawlak A, Obmińska-Mrukowicz B, Dymarska M, Kozłowska E, Kostrzewa-Susłow E, Janeczko T. Regiospecific Hydrogenation of Bromochalcone by Unconventional Yeast Strains. Molecules 2022; 27:molecules27123681. [PMID: 35744806 PMCID: PMC9228445 DOI: 10.3390/molecules27123681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 02/01/2023] Open
Abstract
This research aimed to select yeast strains capable of the biotransformation of selected 2′-hydroxybromochalcones. Small-scale biotransformations were carried out using four substrates obtained by chemical synthesis (2′-hydroxy-2″-bromochalcone, 2′-hydroxy-3″-bromochalcone, 2′-hydroxy-4″-bromochalcone and 2′-hydroxy-5′-bromochalcone) and eight strains of non-conventional yeasts. Screening allowed for the determination of the substrate specificity of selected microorganisms and the selection of biocatalysts that carried out the hydrogenation of tested compounds in the most effective way. It was found that the position of the bromine atom has a crucial influence on the degree of substrate conversion by the tested yeast strains. As a result of the biotransformation of the 2′-hydroxybromochalcones, the corresponding 2′-hydroxybromodihydrochalcones were obtained. The products obtained belong to the group of compounds with high potential as precursors of sweet substances.
Collapse
Affiliation(s)
- Mateusz Łużny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Dagmara Kaczanowska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland; (B.G.); (A.W.)
| | - Alicja Wzorek
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland; (B.G.); (A.W.)
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
| | - Monika Dymarska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Ewa Kozłowska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
- Correspondence: ; Tel.: +48-713-205-195
| |
Collapse
|