1
|
Lee CI, Su CY, Chen HH, Huang CC, Cheng EH, Lee TH, Lin PY, Yu TN, Chen CI, Chen MJ, Lee MS, Chen CH. Investigating developmental characteristics of biopsied blastocysts stratified by mitochondrial copy numbers using time-lapse monitoring. Reprod Biol Endocrinol 2024; 22:89. [PMID: 39080754 PMCID: PMC11290074 DOI: 10.1186/s12958-024-01262-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND For in vitro fertilization (IVF), mitochondrial DNA (mtDNA) levels in the trophectodermal (TE) cells of biopsied blastocysts have been suggested to be associated with the cells' developmental potential. However, scholars have reached differing opinions regarding the use of mtDNA levels as a reliable biomarker for predicting IVF outcomes. Therefore, this study aims to assess the association of mitochondrial copy number measured by mitoscore associated with embryonic developmental characteristics and ploidy. METHODS This retrospective study analyzed the developmental characteristics of embryos and mtDNA levels in biopsied trophectodermal cells. The analysis was carried out using time-lapse monitoring and next-generation sequencing from September 2021 to September 2022. Five hundred and fifteen blastocysts were biopsied from 88 patients undergoing IVF who met the inclusion criteria. Embryonic morphokinetics and morphology were evaluated at 118 h after insemination using all recorded images. Blastocysts with appropriate morphology on day 5 or 6 underwent TE biopsy and preimplantation genetic testing for aneuploidy (PGT-A). Statistical analysis involved generalized estimating equations, Pearson's chi-squared test, Fisher's exact test, and Kruskal-Wallis test, with a significance level set at P < 0.05. RESULTS To examine differences in embryonic characteristics between blastocysts with low versus high mitoscores, the blastocysts were divided into quartiles based on their mitoscore. Regarding morphokinetic characteristics, no significant differences in most developmental kinetics and observed cleavage dysmorphisms were discovered. However, blastocysts in mitoscore group 1 had a longer time for reaching 3-cell stage after tPNf (t3; median: 14.4 h) than did those in mitoscore group 2 (median: 13.8 h) and a longer second cell cycle (CC2; median: 11.7 h) than did blastocysts in mitoscore groups 2 (median: 11.3 h) and 4 (median: 11.4 h; P < 0.05). Moreover, blastocysts in mitoscore group 4 had a lower euploid rate (22.6%) and a higher aneuploid rate (59.1%) than did those in the other mitoscore groups (39.6-49.3% and 30.3-43.2%; P < 0.05). The rate of whole-chromosomal alterations in mitoscore group 4 (63.4%) was higher than that in mitoscore groups 1 (47.3%) and 2 (40.1%; P < 0.05). A multivariate logistic regression model was used to analyze associations between the mitoscore and euploidy of elective blastocysts. After accounting for factors that could potentially affect the outcome, the mitoscore still exhibited a negative association with the likelihood of euploidy (adjusted OR = 0.581, 95% CI: 0.396-0.854; P = 0.006). CONCLUSIONS Blastocysts with varying levels of mitochondrial DNA, identified through biopsies, displayed similar characteristics in their early preimplantation development as observed through time-lapse imaging. However, the mitochondrial DNA level determined by the mitoscore can be used as a standalone predictor of euploidy.
Collapse
Affiliation(s)
- Chun-I Lee
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Ya Su
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
| | - Hsiu-Hui Chen
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Chia Huang
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - En-Hui Cheng
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tsung-Hsien Lee
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pin-Yao Lin
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tzu-Ning Yu
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
| | - Chung-I Chen
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
| | - Ming-Jer Chen
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology and Women's Health, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Maw-Sheng Lee
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan.
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan.
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan.
| | - Chien-Hong Chen
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan.
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
2
|
Ju W, Zhao Y, Yu Y, Zhao S, Xiang S, Lian F. Mechanisms of mitochondrial dysfunction in ovarian aging and potential interventions. Front Endocrinol (Lausanne) 2024; 15:1361289. [PMID: 38694941 PMCID: PMC11061492 DOI: 10.3389/fendo.2024.1361289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/22/2024] [Indexed: 05/04/2024] Open
Abstract
Mitochondria plays an essential role in regulating cellular metabolic homeostasis, proliferation/differentiation, and cell death. Mitochondrial dysfunction is implicated in many age-related pathologies. Evidence supports that the dysfunction of mitochondria and the decline of mitochondrial DNA copy number negatively affect ovarian aging. However, the mechanism of ovarian aging is still unclear. Treatment methods, including antioxidant applications, mitochondrial transplantation, emerging biomaterials, and advanced technologies, are being used to improve mitochondrial function and restore oocyte quality. This article reviews key evidence and research updates on mitochondrial damage in the pathogenesis of ovarian aging, emphasizing that mitochondrial damage may accelerate and lead to cellular senescence and ovarian aging, as well as exploring potential methods for using mitochondrial mechanisms to slow down aging and improve oocyte quality.
Collapse
Affiliation(s)
- Wenhan Ju
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuewen Zhao
- CReATe Fertility Centre, Toronto, ON, Canada
| | - Yi Yu
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuai Zhao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shan Xiang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fang Lian
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Lacconi V, Massimiani M, Carriero I, Bianco C, Ticconi C, Pavone V, Alteri A, Muzii L, Rago R, Pisaturo V, Campagnolo L. When the Embryo Meets the Endometrium: Identifying the Features Required for Successful Embryo Implantation. Int J Mol Sci 2024; 25:2834. [PMID: 38474081 DOI: 10.3390/ijms25052834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Evaluation of the optimal number of embryos, their quality, and the precise timing for transfer are critical determinants in reproductive success, although still remaining one of the main challenges in assisted reproduction technologies (ART). Indeed, the success of in vitro fertilization (IVF) treatments relies on a multitude of events and factors involving both the endometrium and the embryo. Despite concerted efforts on both fronts, the overall success rates of IVF techniques continue to range between 25% and 30%. The role of the endometrium in implantation has been recently recognized, leading to the hypothesis that both the "soil" and the "seed" play a central role in a successful pregnancy. In this respect, identification of the molecular signature of endometrial receptivity together with the selection of the best embryo for transfer become crucial in ART. Currently, efforts have been made to develop accurate, predictive, and personalized tests to identify the window of implantation and the best quality embryo. However, the value of these tests is still debated, as conflicting results are reported in the literature. The purpose of this review is to summarize and critically report the available criteria to optimize the success of embryo transfer and to better understand current limitations and potential areas for improvement.
Collapse
Affiliation(s)
- Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Micol Massimiani
- Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Ilenia Carriero
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Claudia Bianco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Carlo Ticconi
- Department of Surgical Sciences, Section of Gynaecology and Obstetrics, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Valentina Pavone
- Reproductive Sciences Laboratory, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Alteri
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Rocco Rago
- Physiopathology of Reproduction and Andrology Unit, Sandro Pertini Hospital, Via dei Monti Tiburtini 385/389, 00157 Rome, Italy
| | - Valerio Pisaturo
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
4
|
Sills ES, Wood SH. Multichannel Recovery Potential with Activated Autologous Intraovarian Platelet-Rich Plasma and Its Derivatives. MEDICINES (BASEL, SWITZERLAND) 2023; 10:40. [PMID: 37505061 PMCID: PMC10384573 DOI: 10.3390/medicines10070040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
Platelet-rich plasma (PRP) is an 'orthobiologic' with recognized roles in plastic surgery, musculoskeletal disorders, dentistry, dermatology, and more recently, 'ovarian rejuvenation'. Intraovarian PRP involves a complex secretome discharged after platelet activation, comprising multiple cytokine mediators delivered surgically to older or inactive ovarian tissue. Loss of oocyte meiotic fidelity and impaired fertilization accompanying advanced maternal age are already managed by IVF, but only with eggs provided by younger donors. However, if the observed effect of rectifying embryo ploidy error can be proven beyond case reports and small series, activated PRP (or its condensed plasma cytokines) would deliver a welcome therapeutic disruption that is difficult to overstate. Because shortcomings in ovarian function are presently addressed mainly by pharmacological approaches (i.e., via recombinant gonadotropins, GnRH analogs, or luteal support), autologous PRP would represent an unusual departure from these interventions. Given the diversity of platelet cargo proteins, the target response of intraovarian PRP is probably not confined to oocytes or follicles. For example, PRP manipulates signal networks driving improved perfusion, HOX regulation, N-glycan post-translational modification, adjustment of voltage-gated ion channels, telomere stabilization, optimization of SIRT3, and ribosome and mitochondria recovery in older oocytes. While multichannel signals operating on various pathways are not unique to reproductive biology, in intraovarian PRP this feature has received little study and may help explain why its standardization has been difficult. Against this background, our report examines the research themes considered most likely to shape clinical practice.
Collapse
Affiliation(s)
- E Scott Sills
- Regenerative Biology Group, FertiGen CAG, San Clemente, CA 92673, USA
- Department of Obstetrics & Gynecology, Palomar Medical Center, Escondido, CA 92029, USA
| | - Samuel H Wood
- Department of Obstetrics & Gynecology, Palomar Medical Center, Escondido, CA 92029, USA
- Gen 5 Fertility Center, San Diego, CA 92121, USA
| |
Collapse
|