1
|
Xu JW, Ma L, Xiang Y, Dai MQ, Li QH, Jin XY, Ruan Y, Li Y, Wang JY, Shen X. Glabridin as a selective Kv2.1 inhibitor ameliorates DPN pathology by disrupting the Aβ/Kv2.1/JNK/NF-κB/NLRP3/p-Tau pathway. Acta Pharmacol Sin 2025:10.1038/s41401-025-01526-6. [PMID: 40113986 DOI: 10.1038/s41401-025-01526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Diabetic peripheral neuropathy (DPN) is a common diabetic complication. DPN has a complicated pathogenesis, and the currently clinical drugs against this disease show only limited efficacy and undesirable side effects. Thus, it is of great challenges to discover effective targets and drugs against DPN. Glabridin (GLA) is a natural prenylated isoflavone from the roots of Glycyrrhiza glabra. It exhibits a wide range of pharmacological activities including anti-inflammatory, antioxidant, cardiovascular protective, neuroprotective, hepatoprotective, anti-obesity and anti-diabetic effects, etc. In this study we investigated the beneficial effects of GLA on late-stage DPN and the underlying mechanisms. Using electrophysiological recording from CHO-Kv2.1 cells, we identified GLA as a new Kv2.1-selective inhibitor with an IC50 value of 2.07 μM. We showed that oral administration of GLA (30, 60 mg·kg-1·d-1) for 4 weeks significantly improved all neurological dysfunctions and peripheral vascular dysfunctions in DPN mice. Furthermore, we demonstrated that GLA administration improved intraepidermal nerve fiber (IENF) density damage and myelin sheath injury, promoted neurite outgrowth of DRG neurons and alleviated the apoptosis of DRG neurons in DPN mice. All these beneficial effects of GLA were deprived in Kv2.1-knockdown DPN mice specifically in the DRG and sciatic nerve tissues by injection of adeno associated virus AAV8-Kv2.1-RNAi (AAV8-Kv2.1). We showed that the levels of Aβ and hyperphosphorylated tau proteins (p-Tau) were pathologically increased in serum of DPN patients. We demonstrated that Kv2.1 channels bridged Aβ to activate NLRP3 inflammasome in Schwann cells and promote p-Tau production in DRG neurons through Schwann cells/DRG neurons crosstalk. GLA interrupted Aβ/Kv2.1/NLRP3/p-Tau axis to ameliorate the DPN-like pathology in mice. Our results support that Kv2.1 inhibition is a therapeutic strategy for DPN and highlight the potential of GLA in treating this disease.
Collapse
Affiliation(s)
- Jia-Wen Xu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Medical School of Nantong University, Nantong, 226000, China
| | - Lin Ma
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Xiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng-Qing Dai
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiu-Hui Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Yan Jin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuan Ruan
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jia-Ying Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xu Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Jin Y, Brennecke J, Sodmann A, Blum R, Sommer C. Antibody selection and automated quantification of TRPV1 immunofluorescence on human skin. Sci Rep 2024; 14:28496. [PMID: 39557902 PMCID: PMC11574049 DOI: 10.1038/s41598-024-79271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
Assessing localization of the transient receptor potential vanilloid-1 (TRPV1) in skin nerve fibers is crucial for understanding its role in peripheral neuropathy and pain. However, information on the specificity and sensitivity of TRPV1 antibodies used for immunofluorescence (IF) on human skin is currently lacking. To find a reliable TRPV1 antibody and IF protocol, we explored antibody candidates from different manufacturers, used rat DRG sections and human skin samples for screening and human TRPV1-expressing HEK293 cells for further validation. Final specificity assessment was done on human skin samples. Additionally, we developed two automated image analysis methods: a Python-based deep-learning approach and a Fiji-based machine-learning approach. These methods involve training a model or classifier for nerve fibers based on pre-annotations and utilize a nerve fiber mask to filter and count TRPV1 immunoreactive puncta and TRPV1 fluorescence intensity on nerve fibers. Both automated analysis methods effectively distinguished TRPV1 signals on nerve fibers from those in keratinocytes, demonstrating high reliability as evidenced by excellent intraclass correlation coefficient (ICC) values exceeding 0.75. This method holds the potential to uncover alterations in TRPV1 associated with neuropathic pain conditions, using a minimally invasive approach.
Collapse
Affiliation(s)
- Yuying Jin
- Department of Neurology, University Hospital of Würzburg, 97080, Würzburg, Germany
| | - Julian Brennecke
- Department of Neurology, University Hospital of Würzburg, 97080, Würzburg, Germany
| | - Annemarie Sodmann
- Department of Neurology, University Hospital of Würzburg, 97080, Würzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, 97080, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital of Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
3
|
Hajdú N, Rácz R, Tordai DZ, Békeffy M, Vági OE, Istenes I, Körei AE, Kempler P, Putz Z. Genetic Variants Influence the Development of Diabetic Neuropathy. Int J Mol Sci 2024; 25:6429. [PMID: 38928135 PMCID: PMC11203776 DOI: 10.3390/ijms25126429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The exact mechanism by which diabetic neuropathy develops is still not fully known, despite our advances in medical knowledge. Progressing neuropathy may occur with a persistently favorable metabolic status in some patients with diabetes mellitus, while, in others, though seldom, a persistently unfavorable metabolic status is not associated with significant neuropathy. This might be significantly due to genetic differences. While recent years have brought compelling progress in the understanding of the pathogenetic background-in particular, accelerated progress is being made in understanding molecular biological mechanisms-some aspects are still not fully understood. A comparatively small amount of information is accessible on this matter; therefore, by summarizing the available data, in this review, we aim to provide a clearer picture of the current state of knowledge, identify gaps in the previous studies, and possibly suggest directions for future studies. This could help in developing more personalized approaches to the prevention and treatment of diabetic neuropathy, while also taking into account individual genetic profiles.
Collapse
|
4
|
Gad H, Kalra S, Pinzon R, Garcia RAN, Yotsombut K, Coetzee A, Nafach J, Lim LL, Fletcher PE, Lim V, Malik RA. Earlier diagnosis of peripheral neuropathy in primary care: A call to action. J Peripher Nerv Syst 2024; 29:28-37. [PMID: 38268316 DOI: 10.1111/jns.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Peripheral neuropathy (PN) often remains undiagnosed (~80%). Earlier diagnosis of PN may reduce morbidity and enable earlier risk factor reduction to limit disease progression. Diabetic peripheral neuropathy (DPN) is the most common PN and the 10 g monofilament is endorsed as an inexpensive and easily performed test for DPN. However, it only detects patients with advanced neuropathy at high risk of foot ulceration. There are many validated questionnaires to diagnose PN, but they can be time-consuming and have complex scoring systems. Primary care physicians (PCPs) have busy clinics and lack access to a readily available screening method to diagnose PN. They would prefer a short, simple, and accurate tool to screen for PN. Involving the patient in the screening process would not only reduce the time a physician requires to make a diagnosis but would also empower the patient. Following an expert meeting of diabetologists and neurologists from the Middle East, South East Asia and Latin America, a consensus was formulated to help improve the diagnosis of PN in primary care using a simple tool for patients to screen themselves for PN followed by a consultation with the physician to confirm the diagnosis.
Collapse
Affiliation(s)
- Hoda Gad
- Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, India
| | - Rizaldy Pinzon
- Neurology Department of the Bethesda, General Hospital Yogyakarta, Yogyakarta, Indonesia
| | - Rey-An Nino Garcia
- College of Medicine, De LA Salle, Health Medical and Science Institute College of Medicine, Manila, Philippines
| | - Kitiyot Yotsombut
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Ankia Coetzee
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jalal Nafach
- Dubai Diabetes Center, Dubai Academic Health Corporation, Dubai, UAE
| | - Lee-Ling Lim
- Department of Medicine, Diabetes Care Unit, University of Malaya, Kuala Lumpur, Malaysia
| | - Pablo E Fletcher
- Endocrinology Department, Medical School, University of Panama, Panama, Panama
| | - Vivien Lim
- Endocrinology Department, Gleneagles Hospital, Singapore, Singapore
| | - Rayaz A Malik
- Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
- Institute of Cardiovascular Medicine, University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Tordai DZ, Hajdú N, Rácz R, Istenes I, Békeffy M, Vági OE, Kempler M, Körei AE, Tóbiás B, Illés A, Pikó H, Kósa JP, Árvai K, Papp M, Lakatos PA, Kempler P, Putz Z. Genetic Factors Associated with the Development of Neuropathy in Type 2 Diabetes. Int J Mol Sci 2024; 25:1815. [PMID: 38339094 PMCID: PMC10855482 DOI: 10.3390/ijms25031815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Neuropathy is a serious and frequent complication of type 2 diabetes (T2DM). This study was carried out to search for genetic factors associated with the development of diabetic neuropathy by whole exome sequencing. For this study, 24 patients with long-term type 2 diabetes with neuropathy and 24 without underwent detailed neurological assessment and whole exome sequencing. Cardiovascular autonomic function was evaluated by cardiovascular reflex tests. Heart rate variability was measured by the triangle index. Sensory nerve function was estimated by Neurometer and Medoc devices. Neuropathic symptoms were characterized by the neuropathy total symptom score (NTSS). Whole exome sequencing (WES) was performed on a Thermo Ion GeneStudio S5 system determining the coding sequences of approximately 32,000 genes comprising 50 million base pairs. Variants were detected by Ion Reporter software and annotated using ANNOVAR, integrating database information from dbSNP, ClinVar, gnomAD, and OMIM. Integrative genomics viewer (IGV) was used for visualization of the mapped reads. We have identified genetic variants that were significantly associated with increased (22-49-fold) risk of neuropathy (rs2032930 and rs2032931 of recQ-mediated genome instability protein 2 (RMI2) gene), rs604349 of myosin binding protein H like (MYBPHL) gene and with reduced (0.07-0.08-fold) risk (rs917778 of multivesicular body subunit 12B (MVB12B) and rs2234753 of retinoic acid X receptor alpha (RXRA) genes). The rs2032930 showed a significant correlation with current perception thresholds measured at 5 Hz and 250 Hz for n. medianus (p = 0.042 and p = 0.003, respectively) and at 5 Hz for n. peroneus (p = 0.037), as well as the deep breath test (p = 0.022) and the NTSS (p = 0.023). The rs2032931 was associated with current perception thresholds (p = 0.003 and p = 0.037, respectively), deep breath test (p = 0.022), and NTSS (p = 0.023). The rs604349 correlated with values measured at 2000 (p = 0.049), 250 (p = 0.018), and 5 Hz (p = 0.005) for n. medianus, as well as warm perception threshold measured by Medoc device (p = 0.042). The rs2234753 showed correlations with a current perception threshold measured at 2000 Hz for n. medianus (p = 0.020), deep breath test (p = 0.040), and NTSS (p = 0.003). There was a significant relationship between rs91778 and cold perception threshold (p = 0.013). In our study, genetic variants have been identified that may have an impact on the risk of neuropathy developing in type 2 diabetic patients. These results could open up new opportunities for early preventive measures and might provide targets for new drug developments in the future.
Collapse
Affiliation(s)
- Dóra Zsuszanna Tordai
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (N.H.); (I.I.); (M.B.); (O.E.V.); or (A.E.K.); (B.T.); (A.I.); (H.P.); (J.P.K.); (P.A.L.); (P.K.); or (Z.P.)
| | - Noémi Hajdú
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (N.H.); (I.I.); (M.B.); (O.E.V.); or (A.E.K.); (B.T.); (A.I.); (H.P.); (J.P.K.); (P.A.L.); (P.K.); or (Z.P.)
| | - Ramóna Rácz
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (N.H.); (I.I.); (M.B.); (O.E.V.); or (A.E.K.); (B.T.); (A.I.); (H.P.); (J.P.K.); (P.A.L.); (P.K.); or (Z.P.)
| | - Ildikó Istenes
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (N.H.); (I.I.); (M.B.); (O.E.V.); or (A.E.K.); (B.T.); (A.I.); (H.P.); (J.P.K.); (P.A.L.); (P.K.); or (Z.P.)
| | - Magdolna Békeffy
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (N.H.); (I.I.); (M.B.); (O.E.V.); or (A.E.K.); (B.T.); (A.I.); (H.P.); (J.P.K.); (P.A.L.); (P.K.); or (Z.P.)
| | - Orsolya Erzsébet Vági
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (N.H.); (I.I.); (M.B.); (O.E.V.); or (A.E.K.); (B.T.); (A.I.); (H.P.); (J.P.K.); (P.A.L.); (P.K.); or (Z.P.)
| | - Miklós Kempler
- Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary;
| | - Anna Erzsébet Körei
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (N.H.); (I.I.); (M.B.); (O.E.V.); or (A.E.K.); (B.T.); (A.I.); (H.P.); (J.P.K.); (P.A.L.); (P.K.); or (Z.P.)
| | - Bálint Tóbiás
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (N.H.); (I.I.); (M.B.); (O.E.V.); or (A.E.K.); (B.T.); (A.I.); (H.P.); (J.P.K.); (P.A.L.); (P.K.); or (Z.P.)
- PentaCore Laboratory, 1134 Budapest, Hungary;
- Vascular Diagnostics Ltd., 1026 Budapest, Hungary
- Eötvös Lóránd Scientific Network ENDOMOLPAT, Semmelweis University, 1085 Budapest, Hungary
| | - Anett Illés
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (N.H.); (I.I.); (M.B.); (O.E.V.); or (A.E.K.); (B.T.); (A.I.); (H.P.); (J.P.K.); (P.A.L.); (P.K.); or (Z.P.)
- PentaCore Laboratory, 1134 Budapest, Hungary;
- Eötvös Lóránd Scientific Network ENDOMOLPAT, Semmelweis University, 1085 Budapest, Hungary
| | - Henriett Pikó
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (N.H.); (I.I.); (M.B.); (O.E.V.); or (A.E.K.); (B.T.); (A.I.); (H.P.); (J.P.K.); (P.A.L.); (P.K.); or (Z.P.)
- PentaCore Laboratory, 1134 Budapest, Hungary;
- Eötvös Lóránd Scientific Network ENDOMOLPAT, Semmelweis University, 1085 Budapest, Hungary
| | - János Pál Kósa
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (N.H.); (I.I.); (M.B.); (O.E.V.); or (A.E.K.); (B.T.); (A.I.); (H.P.); (J.P.K.); (P.A.L.); (P.K.); or (Z.P.)
- PentaCore Laboratory, 1134 Budapest, Hungary;
- Vascular Diagnostics Ltd., 1026 Budapest, Hungary
- Eötvös Lóránd Scientific Network ENDOMOLPAT, Semmelweis University, 1085 Budapest, Hungary
| | - Kristóf Árvai
- PentaCore Laboratory, 1134 Budapest, Hungary;
- Vascular Diagnostics Ltd., 1026 Budapest, Hungary
| | - Márton Papp
- Centre for Bioinformatics, University of Veterinary Medicine, 1078 Budapest, Hungary;
| | - Péter András Lakatos
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (N.H.); (I.I.); (M.B.); (O.E.V.); or (A.E.K.); (B.T.); (A.I.); (H.P.); (J.P.K.); (P.A.L.); (P.K.); or (Z.P.)
- PentaCore Laboratory, 1134 Budapest, Hungary;
- Vascular Diagnostics Ltd., 1026 Budapest, Hungary
- Eötvös Lóránd Scientific Network ENDOMOLPAT, Semmelweis University, 1085 Budapest, Hungary
| | - Péter Kempler
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (N.H.); (I.I.); (M.B.); (O.E.V.); or (A.E.K.); (B.T.); (A.I.); (H.P.); (J.P.K.); (P.A.L.); (P.K.); or (Z.P.)
| | - Zsuzsanna Putz
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (N.H.); (I.I.); (M.B.); (O.E.V.); or (A.E.K.); (B.T.); (A.I.); (H.P.); (J.P.K.); (P.A.L.); (P.K.); or (Z.P.)
- Eötvös Lóránd Scientific Network ENDOMOLPAT, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
6
|
Zhang Y, Tang Z, Tong L, Wang Y, Li L. Serum uric acid and risk of diabetic neuropathy: a genetic correlation and mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1277984. [PMID: 38034019 PMCID: PMC10684953 DOI: 10.3389/fendo.2023.1277984] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Background Previous observational studies have indicated an association between serum uric acid (SUA) and diabetic neuropathy (DN), but confounding factors and reverse causality have left the causality of this relationship uncertain. Methods Univariate Mendelian randomization (MR), multivariate MR and linkage disequilibrium score (LDSC) regression analysis were utilized to assess the causal link between SUA and DN. Summary-level data for SUA were drawn from the CKDGen consortium, comprising 288,648 individuals, while DN data were obtained from the FinnGen consortium, with 2,843 cases and 271,817 controls. Causal effects were estimated primarily using inverse variance weighted (IVW) analysis, supplemented by four validation methods, with additional sensitivity analyses to evaluate pleiotropy, heterogeneity, and result robustness. Results The LDSC analysis revealed a significant genetic correlation between SUA and DN (genetic correlation = 0.293, P = 2.60 × 10-5). The primary methodology IVW indicated that each increase of 1 mg/dL in SUA would increase DN risk by 17% (OR = 1.17, 95% CI 1.02-1.34, P = 0.02), while no causal relationship was found in reverse analysis (OR = 1.00, 95% CI 0.98~1.01, P = 0.97). Multivariate MR further identified that the partial effect of SUA on DN may be mediated by physical activity, low density lipoprotein cholesterol (LDL-C), insulin resistance (IR), and alcohol use. Conclusion The study establishes a causal link between elevated SUA levels and an increased risk of DN, with no evidence for a reverse association. This underscores the need for a comprehensive strategy in DN management, integrating urate-lowering interventions with modulations of the aforementioned mediators.
Collapse
Affiliation(s)
- Youqian Zhang
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Zitian Tang
- Law School, Yangtze University, Jingzhou, Hubei, China
| | - Ling Tong
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Yang Wang
- Department of Neurology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Li
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
7
|
Ślęczkowska M, Misra K, Santoro S, Gerrits MM, Hoeijmakers JGJ. Ion Channel Genes in Painful Neuropathies. Biomedicines 2023; 11:2680. [PMID: 37893054 PMCID: PMC10604193 DOI: 10.3390/biomedicines11102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropathic pain (NP) is a typical symptom of peripheral nerve disorders, including painful neuropathy. The biological mechanisms that control ion channels are important for many cell activities and are also therapeutic targets. Disruption of the cellular mechanisms that govern ion channel activity can contribute to pain pathophysiology. The voltage-gated sodium channel (VGSC) is the most researched ion channel in terms of NP; however, VGSC impairment is detected in only <20% of painful neuropathy patients. Here, we discuss the potential role of the other peripheral ion channels involved in sensory signaling (transient receptor potential cation channels), neuronal excitation regulation (potassium channels), involuntary action potential generation (hyperpolarization-activated cyclic nucleotide-gated channels), thermal pain (anoctamins), pH modulation (acid sensing ion channels), and neurotransmitter release (calcium channels) related to pain and their prospective role as therapeutic targets for painful neuropathy.
Collapse
Affiliation(s)
- Milena Ślęczkowska
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Kaalindi Misra
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, INSPE, 20132 Milan, Italy; (K.M.); (S.S.)
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, INSPE, 20132 Milan, Italy; (K.M.); (S.S.)
| | - Monique M. Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands;
| | - Janneke G. J. Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
8
|
Nikitin AS, Kudryavtseva EV, Kamchatnov PR. [Post-traumatic pain mononeuropathies]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:14-23. [PMID: 37084360 DOI: 10.17116/jnevro202312304114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Neuropathic pain syndrome (NPS) caused by peripheral nerve (PN) injury is a serious clinical problem due to its prevalence, complexity of pathogenesis, significant impact on the quality of life of patients. The issues of epidemiology, pathogenesis and treatment of patients with NBS with PN injury are considered. Modern possibilities of invasive treatment of such patients are discussed.
Collapse
Affiliation(s)
- A S Nikitin
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - E V Kudryavtseva
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - P R Kamchatnov
- Pirogov National Research Medical University, Moscow, Russia
| |
Collapse
|
9
|
Ding X, Yu F, He X, Xu S, Yang G, Ren W. Rubbing Salt in the Wound: Molecular Evolutionary Analysis of Pain-Related Genes Reveals the Pain Adaptation of Cetaceans in Seawater. Animals (Basel) 2022; 12:3571. [PMID: 36552490 PMCID: PMC9774174 DOI: 10.3390/ani12243571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Pain, usually caused by a strong or disruptive stimulus, is an unpleasant sensation that serves as a warning to organisms. To adapt to extreme environments, some terrestrial animals have evolved to be inherently insensitive to pain. Cetaceans are known as supposedly indifferent to pain from soft tissue injury representatives of marine mammals. However, the molecular mechanisms that explain how cetaceans are adapted to pain in response to seawater environment remain unclear. Here, we performed a molecular evolutionary analysis of pain-related genes in selected representatives of cetaceans. ASIC4 gene was identified to be pseudogenized in all odontocetes (toothed whales) except from Physeter macrocephalus (sperm whales), and relaxed selection of this gene was detected in toothed whales with pseudogenized ASIC4. In addition, positive selection was detected in pain perception (i.e., ASIC3, ANO1, CCK, and SCN9A) and analgesia (i.e., ASIC3, ANO1, CCK, and SCN9A) genes among the examined cetaceans. In this study, potential convergent amino acid substitutions within predicted proteins were found among the examined cetaceans and other terrestrial mammals, inhabiting extreme environments (e.g., V441I of TRPV1 in cetaceans and naked mole rats). Moreover, specific amino acid substitutions within predicted sequences of several proteins were found in the studied representatives of cetaceans (e.g., F56L and D163A of ASIC3, E88G of GRK2, and F159L of OPRD1). Most of the substitutions were located within important functional domains of proteins, affecting their protein functions. The above evidence suggests that cetaceans might have undergone adaptive molecular evolution in pain-related genes through different evolutionary patterns to adapt to pain, resulting in greater sensitivity to pain and more effective analgesia. This study could have implications for diagnosis and treatment of human pain.
Collapse
Affiliation(s)
- Xiaoyue Ding
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210000, China
| | - Fangfang Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210000, China
| | - Xiaofang He
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210000, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210000, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210000, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210000, China
| |
Collapse
|
10
|
Ślęczkowska M, Almomani R, Marchi M, Salvi E, de Greef BTA, Sopacua M, Hoeijmakers JGJ, Lindsey P, Waxman SG, Lauria G, Faber CG, Smeets HJM, Gerrits MM. Peripheral Ion Channel Genes Screening in Painful Small Fiber Neuropathy. Int J Mol Sci 2022; 23:ijms232214095. [PMID: 36430572 PMCID: PMC9696564 DOI: 10.3390/ijms232214095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Neuropathic pain is a characteristic feature of small fiber neuropathy (SFN), which in 18% of the cases is caused by genetic variants in voltage-gated sodium ion channels. In this study, we assessed the role of fifteen other ion channels in neuropathic pain. Patients with SFN (n = 414) were analyzed for ANO1, ANO3, HCN1, KCNA2, KCNA4, KCNK18, KCNN1, KCNQ3, KCNQ5, KCNS1, TRPA1, TRPM8, TRPV1, TRPV3 and TRPV4 variants by single-molecule molecular inversion probes-next-generation sequencing. These patients did not have genetic variants in SCN3A, SCN7A-SCN11A and SCN1B-SCN4B. In twenty patients (20/414, 4.8%), a potentially pathogenic heterozygous variant was identified in an ion-channel gene (ICG). Variants were present in seven genes, for two patients (0.5%) in ANO3, one (0.2%) in KCNK18, two (0.5%) in KCNQ3, seven (1.7%) in TRPA1, three (0.7%) in TRPM8, three (0.7%) in TRPV1 and two (0.5%) in TRPV3. Variants in the TRP genes were the most frequent (n = 15, 3.6%), partly in patients with high mean maximal pain scores VAS = 9.65 ± 0.7 (n = 4). Patients with ICG variants reported more severe pain compared to patients without such variants (VAS = 9.36 ± 0.72 vs. VAS = 7.47 ± 2.37). This cohort study identified ICG variants in neuropathic pain in SFN, complementing previous findings of ICG variants in diabetic neuropathy. These data show that ICG variants are central in neuropathic pain of different etiologies and provides promising gene candidates for future research.
Collapse
Affiliation(s)
- Milena Ślęczkowska
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Rowida Almomani
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Margherita Marchi
- Neuroalgology Unit, IRCCS Foundation “Carlo Besta” Neurological Institute, 20133 Milan, Italy
| | - Erika Salvi
- Neuroalgology Unit, IRCCS Foundation “Carlo Besta” Neurological Institute, 20133 Milan, Italy
| | - Bianca T A de Greef
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Maurice Sopacua
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Janneke G J Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Patrick Lindsey
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Giuseppe Lauria
- Neuroalgology Unit, IRCCS Foundation “Carlo Besta” Neurological Institute, 20133 Milan, Italy
| | - Catharina G Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
- Correspondence:
| | - Hubert J M Smeets
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Monique M Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
11
|
Liu C, Miao R, Raza F, Qian H, Tian X. Research progress and challenges of TRPV1 channel modulators as a prospective therapy for diabetic neuropathic pain. Eur J Med Chem 2022; 245:114893. [DOI: 10.1016/j.ejmech.2022.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|